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Abstract. In the lighting conditions such as hazing, raining, and weak lighting 

condition, the accuracy of traffic sign recognition is not very high due to missed 

detection or incorrect positioning. In this article, we propose a traffic sign 

recognition (TSR) algorithm based on Faster R-CNN and YOLOv5. The road 

signs were detected from the driver’s point of view and the view assisted by 

satellite images. Firstly, we conduct image preprocessing by using guided image 

filtering for the input image to remove noises. Secondly, the processed image is 

input into the proposed networks for model training and testing. Three datasets 

are employed to verify the effectiveness of the proposed method finally. The 

outcomes of the traffic sign recognition are promising. 

Keywords: Traffic sign recognition, Faster R-CNN, GTSDB dataset, FRIDA 

database 

1   Introduction 

Various types of traffic signs have been applied to assist road users. Fig 1 shows a rich 

assortment of traffic signs which have been set on roadside. However, only using our 

human visual systems is tough to eye these signs due to fast moving or weather 

conditions. Therefore, advanced driver assistance systems have become the focus of 

our attention [1-3].  

    At present, traffic sign recognition algorithms have achieved satisfactory results 

[4, 5], however these algorithms mainly aim at digital images of traffic signs acquired 

under ideal weather conditions. Due to environmental changes in recent years, haze 

weather has increased very often that leads to image blur, which in turn slash the 

recognition accuracy of these algorithms. In response to this issue, an accurate locating 

and recognition algorithm for traffic signs in haze weather is proposed in this article. 

 

Fig. 1. Traffic signs in a foggy weather 
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    Traffic sign recognition (TSR) was developed in the early 1980s and has been 

taken a great step in the field of autonomous vehicles in 1987 [6]. It mainly targets at 

speed limit signs and takes use of classic algorithms based on image segmentation as 

well as template matching. The recognition process takes around 0.50 second on 

average. Due to hardware being developed at that time, the systems were not working 

in real time, the images were relatively small and cannot be integrated in real 

applications.  

    Since the 1990s, with the continuous improvement of the hardware and its 

computing capability, advanced technology in the world has been emerged to take 

effects on discovering the principle of TSR. A variety of solutions have been proposed, 

such as edge extraction, color-based segmentation, feature vector extraction, artificial 

neural network, etc. In recent years, with the successful applications of deep learning 

[7,8], such as speech recognition, semantic segmentation, etc., deep learning methods 

have been gradually brought into TSR. 

    The existing algorithms of traffic sign recognition generally have two key steps: 

Traffic sign positioning and recognition. Because of swift development of deep 

learning, in this paper, our objective is to identify traffic signs from wild weather, thus 

we propose a deep learning method for TSR based on Faster R-CNN model. 

    The rest of the paper is arranged as follows: The existing work is critically 

reviewed in Section 2. The proposed methods of this paper will be detailed in Section 

3. The experimental results will be showcased and analyzed in Section 4. Our 

conclusion and our future work will be presented in Section 5. 

2   Literature Review 

Traffic sign recognition has become a hot topic in current research. With the progress 

of hardware, there are various ways to obtain traffic sign images. In terms of image 

acquisition methods, there are mainly two-fold: One is road condition and traffic 

information taken by optical camera on the ground; the other is high-resolution remote 

sensing image obtained by using satellite transmitting electromagnetic waves to the 

ground in space, the road signs on the ground are also obtained from these images. 

Then, deep learning algorithms are proffered to extract visual features from the 

acquired images to realize road target detection. 

   A comprehensive scheme [9] was propounded for traffic sign recognition. Firstly, 

a cascade of trained classifiers were employed to scan the background quickly so as to 

locate a region of interest (ROI), then Hough transform was applied to shape detection. 

This method was evaluated based on an image database including 135 traffic signs. The 

average recognition speed was 25.00 frames per second, the recognition accuracy was 

93.00%. Edge detection [10] was accomplished by using a combination of color 

filtering and closed curves. Through a neural network, the extracted features were 

applied to classify the targets. The average recognition rate was up to 94.90%. The 

nearest neighbors were applied to classify and recognize traffic signs from digital 

images by calculating Euclidean distance between a traffic sign and its standard 

template, then the image was classified according to the minimum distance. 
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    Girshick et al. [11] proposed a rich feature hierarchical structure for precise target 

detection and semantic segmentation, Region CNN (R-CNN) uses selective search (SS) 

[12,35] instead of traditional. The sliding window method extracted 2,000 target 

candidate regions on the given image, then took use of a deep convolutional network 

to classify the target candidate areas. However, because it performed convolution 

operations on each candidate area instead of sharing calculations, the detection speed 

was slow, but with 47.90% segmentation accuracy. He et al. [13] proposed the spatial 

pyramid pooling network (SPPNets), which improved the speed by sharing 

convolutional feature maps. Fast R-CNN [14,15] extracted convolutional feature maps, 

the training process improved the detection accuracy and speed. 

    Single shot multibox detector (SSD) [16] was set forth to detect traffic signs by 

using Inceptionv3 network instead of VGG-16 [36]. Pertaining to SSD [38], a random 

center point with a prior designed strategy was proposed. Douville, et al. [17] firstly 

normalized the image of traffic signs, then extracted Gabor features, finally a three-

layer perceptron was employed to classify and recognize the traffic sign. A perceptual 

confrontation network was put forwarded for highway traffic sign detection [18], which 

combined Faster R-CNN with a generative confrontation network. The residual 

network was applied to learn the differences between the feature maps of small visual 

objects and large target objects so as to uplift the rates of highway traffic sign 

recognition (HTSR). The detection results have been achieved based on the Tsinghua-

Tencent 100K dataset. 

    With development of satellite remote sensing, the traffic target detection has been 

probed based on satellite remote sensing images. In the early stage, a large number of 

researchers realized target recognition of satellite remote sensing images based on 

traditional methods. Huang et al [19] implemented road extraction from remote sensing 
images according to geometric, radiation and topological features of roads, and 

classifies them by SVM (i.e., support vector machine) method. The method of the 

decision tree classifier is related to recursive segmentation of the input image. Its 

branches represent different segmentation paths and leaves represent the final 

classification results. Therefore, the whole tree is the process of segmentation.  

    Eikil and Aurdal [20] proposed vehicle detection based on high-resolution satellite 

images. Firstly, a rule-based method was employed to segment the image into normal 

region and shadow region. Then the targets were classified by using a statistics-based 

method and the detection results were compared with the results of manual 

identification. The experimental results show that the image resolution was low and it 

was difficult to classify objects manually, the detection results of the algorithm are good 

and close to the results of artificial classification.  

    Leitloff et.al [21] took use of a Haar-like feature-based AdaBoost algorithm to 

identify vehicles, combined with line detection method to find individual vehicles in 

the fleet. Compared with the method based on statistics alone, the accuracy of this 

method was improved up to 80.00%. Although the traditional method has achieved 

good results in target recognition based on satellite remote sensing images, which needs 

to extract features manually, the design process is complicated, and lacks good 

robustness for the diversity of targets. 

   With rapid development of deep learning, a breakthrough has been made in the field 

of pattern recognition. A large number of experts have begun to study the target 

detection of satellite remote sensing images based on deep learning. Audebert et al [22] 
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proffered a completely symmetric convolution neural network to obtain all for more 

details on shallow layer information, realized the semantic segmentation task of high-

resolution remote sensing image. Volpi et al [23] put forward a multi-path 

deconvolution method to obtain more low-level details and judge the edge of the object 

more accurately. As a new field, there are still a slew of problems in using this method 

for object recognition.  

   Sherrah et al [24] utilized general images to pre-train FCN (i.e., fully connected 

network) and then applied it to remote sensing images, which effectively improved the 

accuracy of object recognition in remote sensing images. Cheng et al [25] proposed a 

multitarget detection framework: Rotation-invariant convolutional neural network 

(RICNN), which effectively detected a variety of targets in remote sensing images and 

is a stable and high-performance detection framework. However, the average accuracy 

of the RICNN method for all objects was only 72.60% on average, the detection 

accuracy of different types of objects varied. There are a lot of small-size targets in 

remote sensing image, which is very difficult to identify, and it is a very challenging 

part in target detection from remote sensing images. Therefore, deep learning is 

possible to be applied to the identification of traffic signs from satellite images, and 

there should be a large room for further development. 

3   Our Methodology 

We see the current work has the following defects, ground angle images are influenced 

by using the environment, the angle, light intensity, the concentration of the mist has 

impact on the results, such as the influence on the image is the largest one, we mainly 

aim at the TSR with haze weather. Our idea for TSR in this paper is depicted in Fig 2. 

We firstly employ digital image processing to cope with foggy images, then input the 

preprocessed images into a neural network for object detection and classification. 

 

Fig. 2. The pipeline for TSR  

3.1   Guided Image Filtering  

Image defogging is an important process for haze removal, which enhances visual 

effects such as edges and contours. There are generally two types of image defogging 

algorithms, one is histogram equalization, which simply enhances the contrast of the 

image. The other is an image restoration-based defogging algorithm [26], which takes 
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use of original images to compare with the foggy images so as to reconstruct the new 

image. The dehazing result is prominent, but it is difficult to achieve the quality of 

original image. 

   Image filtering is able to resolve the drawbacks of the two dehazing algorithms. The 

algorithm adopts an image to guide and filter the target image so that the final output 

image roughly resembles to the target image, the texture is akin to the guiding image. 

The guiding or reference image is either a different one or the same one as the input 

image itself. If the guiding image is equivalent to the input image, the filtering becomes 

an edge-preserving operation, which is able to be used for image reconstruction. By 

using visual features of the guided image filtering, haze image processing for traffic 

signs achieves the results of image denoising, image smoothing, and fog removal. 

Therefore, we define the original image as 𝑝𝑖, 𝑙𝑖 as the guiding image, and 𝑞𝑖 as the 

output image. The relationship is linear as shown in eq.(1). 

𝑞𝑖 = 𝑎𝑘𝐼𝑘 + 𝑏𝑘   𝑖 ∈ 𝜔𝑘  (1)  

where 𝑎𝑘  and 𝑏𝑘  are specific factors, 𝜔𝑘 is a square window with a centre point k, 

𝑖 ∈ 𝜔𝑘   guarantees that 𝑎𝑘  is not too big. In order to ensure the guided image filtering 

has the best outcome, the difference between the original image and the output image 

needs to be minimized. Therefore, the cost function E (𝑎𝑘 , 𝑏𝑘) is defined as  

𝐸(𝑎𝑘 , 𝑏𝑘) = ∑ (|(𝑞𝑖 − 𝑝𝑖)2 − 𝜀𝑎𝑘
2|)𝑖,𝑘∈𝜔𝑘

. (2) 

 

(a) original picture             (b) after the guided filtering 

Fig. 3. (a) The original picture from FROSI databases (b) The picture obtained by removing the 

foggy after the guided filtering 

    The output is the best one if E(𝑎𝑘 , 𝑏𝑘) is the smallest one. We find the least square 

method by using 𝑎𝑘  and 𝑏𝑘, 

𝑎𝑘 =

1
|𝜔|

∑ 𝐼𝑖𝑞𝑖 − 𝑢𝑘𝑝𝑘

−

𝑖∈𝜔𝑘

𝜎𝑘
2 + 𝜀

, 𝑏𝑘=𝑝𝑘

−
− 𝑎𝑘𝑢𝑘 

(3) 
 

where u is the mean of I in W, σ is the variance of I in W, w is the number of pixels in 

the window. We input 𝑎𝑘  and 𝑏𝑘 into eq.(1) and obtain, 

𝑞𝑖 =
1

|𝜔|
∑ (𝑎𝑘𝐼𝑘 + 𝑏𝑘)𝑖∈𝜔𝑘

= 𝑎𝑖

−
𝐼𝑖 + 𝑏𝑖

−

. (4) 
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3.2   Improved Faster R-CNN 

Convolutional neural networks (CNNs) usually include a convolutional layer and a 

pooling layer, where the convolutional layer is normally employed to extract visual 

features from the target. The feature extraction network in Faster R-CNN is based on a 

convolutional neural network, which takes use of CNN and rectified linear unit (ReLU) 

activation function to extract the features from the target image, the extracted features 

are input into the RPN layer and ROI pooling layer, respectively. 

    Conventional methods may be use of sliding windows or selective search to 

generate detection windows. Faster R-CNN chooses RPN (i.e., region proposal network) 

to generate the detection window. The network takes advantage of softmax function to 

determine the properties of anchor points (foreground or background). Then regression 

is employed to correct it. Finally, accurate proposals will be obtained.  

    In Fig. 3, the RPN structure is framed by dotted lines. After 33 convolution, the 

feature map flows into two different channels, respectively. The upper one is classified 

by using softmax layer to obtain foreground and background. In order to obtain a 

relatively accurate proposal, the feature passes through the channel to calculate the 

offset of the regression. Finally, whilst removing the proposal that exceeds the 

boundary and the value is too small, the previous information is integrated to obtain a 

new proposal. With the network structure, the RPN layer basically completes the 

operation of locating the target.  

    The input of ROI pooling layer is the proposals with different sizes. However, the 

input and output sizes of a convolutional neural network after training are fixed, which 

resize the proposals to the same. 

    In Faster R-CNN, we have fine-tuned parameters, set the learning rate to 0.01, the 

momentum as 0.90, the batch size as 24, and the epoch as 200. The input features 

contain the proposal of the classification network which is composed of fully connected 

layer and softmax activation function so as to attain the predicted probability of each 
class the traffic sign belongs to. Faster R-CNN is shown in eq.(5). 

 

𝐿((𝑓𝑖), (𝑙𝑖)) = 𝜆
1

𝑁𝑟𝑒𝑔
∑ 𝑓𝑖

∗𝐿𝑟𝑒𝑔(𝑙𝑖, 𝑙𝑖
∗)

𝑖

+
1

𝑁
∑ 𝐿𝑐𝑙𝑠(𝑓𝑖, 𝑓𝑖

∗)

𝑖

 
(6) 

 

 

(5) 
 

 

where i represents the anchor index, fi stands for the output probability of the softmax 

layer of positive samples, f * means the corresponding prediction probability, l refers to 

the predicted bounding box, l* denotes the GT (i.e., ground truth) box corresponding 

to the positive anchor. 

    Taken into account the advantages of Faster R-CNN, this paper adopts Faster R-

CNN model to detect traffic signs. Faster R-CNN takes advantage of VGG net [27] as 

the backbone of the net. However, as the basic network improves, in this paper, we take 

use of GoogLeNet [28] for feature extraction in our experiments. The network 

parameters are shown in Table 1. 
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Fig. 4. The structure of Faster R-CNN 

 

 

    After experimental verification, GoogLeNet has achieved the best results in terms 

of time-consuming and model performance based on the given dataset. During 

convolution, the kernels with various sizes were taken for the convolutional operations, 

the output feature maps are connected together. 

    Because the traffic sign will show multiple scales in the given image, after feature 

extraction, the traffic signs with different scales are represented as features. We are use 

of cross-layer connection to improve the performance of multiscale target detection.  

    The detection net that we designed for the cross-layer connection is shown in Fig 

4. As shown in Fig 4, CNN is accommodated to extract the features of the entire image. 

The RPN network is applied to extract a series of candidate regions based on the feature 

map. The change lies in the feature composition of the candidate region. This feature is 

no longer extracted by using only a single convolution layer, but is a fusion of features 

extracted from multiple convolution layers. The fused features contain not only 

semantic information but also local information. 

    In the given dataset, we often find a slew of objects that resemble highway traffic 

signs. This will generate false detections. In order to achieve the purpose of reducing 

false detection, we take use of sample mining [29]. Firstly, the model is used to test on 

the training set. If there are negative samples with a score 0.80 or more in the obtained 

test results, they will be classified into a new sample class. In this way, the training set 

contains two classes: Traffic signs and traffic-like objects. The training set is obtained 

by mining negative samples so as to retrain a new detection model. Traffic signs are 

classified into the classes and added to the training set, so that the model has the 

difference between the two classes during the training time. This resolves the problem 

that the model cannot classify background objects with minor differences between the 

positive class and the positive class if the amount of data is insufficient, thereby we 

obtain a satisfy outcome. 

   



 

8 

 

Table 1. The parameters of GoogLeNet 

Layers Types Sizes Strides 

1 Conv (7,7) 2 

2 Max pooling (3,3) 2 

3 Conv (3,3) 1 

4 Max pooling (3,3) 2 

5 Inception(a)   

6 Inception(b)   

7 Max pooling (3,3) 2 

8 Inception(a)   

9 Inception(b)   

10 Inception(c)   

11 Inception(d)   

12 Inception(e)   

13 Max pooling (3,3) 2 

14 Inception(a)   

15 Inception(b)   

 

 

Fig. 5. The improved framework 

3.3   Improved YOLOv5 

You Only Look Once (YOLO) is a fast and compact open-source object detection 

model. Compared with other nets, it has stronger performance at the same size and has 

excellent stability. The YOLO framework treats target detection as a regression 

problem, it is the first one that the end-to-end net is employed to predict the class and 

bounding box of the visual object. At present, YOLOv5 has faster recognition speed 

and smaller network size than YOLOv4. While model training with various datasets, 

YOLOv3 and YOLOv4 need a separate program to calculate the initial anchor box, 

YOLOv5 embeds this function into the code to automatically calculate the best anchor 

box for different datasets. In YOLOv5, we have fine-tuned parameters, set the learning 

rate as 1.2010-3, the momentum as 0.95, the batch size as 16, and the epoch as 200 

according to the batch size. However, in practice, it was found that the clustering results 
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are deviated from the statistical results of the samples, which affected the performance 

of subsequent tests. Therefore, in this paper, we optimize the prior anchor box 

regression algorithm and add the random correction processing of clustering algorithm. 

Wb = O2 3(random[v1, v2]× wb )               (6)   
 

 

where O2
3 (•) means that two of every three cluster centres are randomly selected for 

correction, wb is the width of prior anchor point before correction, Wb is the width after 

correction. The numbers reflect the width and the height of anchor box, respectively.  

    It is observed that the minimum aspect ratio of the clustering results is 0.53 and the 

maximum is 0.71. However, for the dataset in this article, the aspect ratio of 70.00% 

training sample is between 0.72 and 1.00, 20.00% samples are between 0.60 and 0.70, 

10.00% samples are between 0.60 and 0.70. From the analysis, we see that there is a 

deviation between the clustering results and the statistical results. 

    Compared with pedestrians and vehicles, the physical size of traffic signs is smaller 

and there are three kinds of traffic signs in most samples. Because the ratio of 

foreground to background is severely unbalanced, most of the bounding boxes do not 

contain the target if the one-stage target detector is applied. Because the confidence 

error of these untargeted bounding boxes is relatively large, the loss of the foreground 

is submerged in the loss of the background. Therefore, in this paper, we optimize on 

the basis of the original loss function. The main idea of optimization is to adaptively 

balance the loss of foreground and background. The loss function encapsulates two 

parts, namely, regression loss and classification loss.   
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(7) 

 

 

where S is the width and height of the feature map. There are three sizes of the feature 

map in this article: 52×52, 26×26, 13×13, B is the number of a priori boxes at each 

anchor point position; 
obj

ijkE represents the anchor point whether the box is responsible 

for predicting the target, 
noobj

ijkE means not responsible for predicting the target; xgt, ygt, 

wgt, and hgt are ground truths, xp, yp, wp, and hp are predicted values, which indicate the 

coordinates of the object and its width as well as height (in pixels); Cgt and Cp represent 

true value confidence and prediction confidence, respectively; Pgt and Pp show 

classification true value probability and classification prediction probability, 

respectively; ω is the weight coefficient of each loss part, for weight. The value is set 

in this paper as ωcoord=5.00, ωobj=1.00, ωnoobj=0.50, the purpose of this setting is to 

reduce the loss of non-target areas and increase the loss of target areas; in order to 

further avoid the loss of background values to confidence. In this paper, Cp is employed 

as a part of the weight to adjust the loss value of the background frame adaptively. 
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3.4 Visual Object Detection from Satellite Images Using YOLOV5 

YOLOv5 has high flexibility and productivity owing to the features of PyTorch. 

YOLOv5 takes use of a combination of CSPDarknet backbone, PANet neck and 

YOLOv3 head instead of the Darknet in YOLOv4. The activation function in the last 

detection layer is a nonlinear activation function (e.g., sigmoid function) which is 

broadly applied to deep learning, rather than mish function in YOLOv4. In addition, 

YOLOv5 also is use of auto-learning bounding box anchors to fine-tuning and optimize 

anchor selection. 

 
Fig. 6. The network architecture of YOLOv5 

 

    We choose YOLOv5 as our algorithm for road sign recognition from satellite 

images. Firstly, YOLOv5 incorporate cross stage partial network (CSPNet) [30] into 

Darknet and created CSPDarknet as its backbone. CSPNet solves the problem of 

repeated gradient information in large-scale trunk and integrates gradient changes into 

feature map, thus reduces model parameters and floating-point operations per second, 

which not only ensures the speed and accuracy of reasoning, but also reduces the size 

of the model. In the task of acquiring road sign images for satellite radar sensors, visual 

object detection speed and accuracy are essential, the compact model is also conducive 

to its reasoning efficiency on resource-poor edge equipment. 

    Secondly, YOLOv5 applies path aggregation network (PANet) [31] as its neck to 

boost information flow. PANet adopts a new feature pyramid network (FPN) structure 

with enhanced bottom-up path, which improves the propagation of low-level features. 

At the same time, adaptive feature pooling, which links feature grid and all feature 

levels, is employed to make useful information in each feature level propagate directly 

to following subnetwork. PANet improves the utilization of accurate localization 

signals in lower layers, which obviously enhances the location accuracy of visual 

object.  

    Finally, the head of YOLOv5 generates 3 different resolutions of feature maps to 

achieve multiscale prediction, enables the model to handle small, medium, and big 
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objects. Traffic signs come in various types and resolutions. Multiscale [32] detection 

ensures that the model can follow the scale changes in the process of vehicle travel and 

weather changes. The training objective function of our final YOLOv5-based satellite 

image sign recognition takes use of the improved loss function as shown in eq.(7). 

4   Our Results and Discussion 

4.1   Our Datasets 

Dataset GTSDB contains 900 images with a total of 1,206 traffic signs. There are four 

types of traffic signs: Mandatory, prohibit, danger, and others. As there are not many 

foggy scenes in GTSDB, we take advantage of FRIDA, FRIDA2, and FROSI databases. 

FRIDA consists of 90 images of 18 urban road scenes, meanwhile FRIDA2 has 330 

composite images of 66 road scenes. They have the same viewpoint from drivers’ view, 

with the four types of fogs (i.e., uniform fog, heterogeneous fog, cloudy fog, and cloudy 

heterogeneous fog) added to each sign (i.e., Give Way, Watch Out for Pedestrians, etc.) 

The FROSI dataset contains foggy images with the visibility ranging from 50 to 400 

meters, including 1,620 traffic signs at various locations. With these datasets, it is 

possible to train our YOLOv5 model and Faster R-CNN model much comprehensively. 

In this paper, in our TSR experiments from the drivers’ view, we combine two datasets 

for training and testing. Among them, 60.00% images were used for training, 20.00% 

were employed for verification, and 20.00% were utilized for testing.  

In the experiment of identifying road signs based on satellite images, we were use 

of the dataset that we have created by ourselves. There are 1,000 images captured from 

the Google Earth, and each image is manually labelled. In this dataset, we mainly 

include the traffic signs like straight, right, left, give way, stop, crosswalk, keep clear, 

etc. This is shown in Fig. 6. In the dataset, each sample of identifiers is not uniform, 

straight-line sign is the most and bicycle lane is the least. Again, we adopt 60.00% for 

training, 20.00% for validating, and 20.00% for model testing. 
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Fig.7. The satellite images of traffic signs on the roads. 

4.2   Evaluation Index 

After trained the model, it is necessary to evaluate its results. Accuracy is our most 

useful evaluation index, it is easy to understand, that is, the number of samples to be 

matched divided by the number of all samples. Generally, the higher the accuracy, the 

better the classifier. At the same time, we also have taken mAP and PR curves to 

evaluate the model. Because Precision considers the values of TP and FP in the PR 

curve, the precision-recall (PR) curve is more accurate than the receiver operating 

characteristic (ROC) curve under unbalanced data. 

 

    In this article, the evaluation index for TSR is measured by mean average precision 

(mAP), which is employed in the field of visual object detection. The test results include 

four prediction categories: TP, FP, FN, TN. Precision is the rate that the positive sample 

predicted correctly including false alarms (FP). Recall is for the primary positive 

samples, which indicates how many of the positive samples are predicted correctly 

including correctly rejected (FN). Therefore, the precision rate and recall rate are 

calculated as eq.(8) and eq.(9): 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(8)  

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(9) 
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4.3   Comparison and Analysis of Two Defogging Models 

In this section, we analyse and compare the defogging results by using the dark channel 

algorithm and the guided image filtering method. Fig. 8 shows the output of each 

defogging algorithm. 

 

Fig.8. The results of defogging methods for various scenes 

    We see from the results that the defogging algorithm based on guided image 

filtering is much robust and has a more stable defogging effect for multiple scenes. 

Guided image filtering obtains a better dehazing result, and the image colour is less 

distorted or darkened. At the same time, it plays a pivotal role in colour enhancement. 

4.4   The Impact of Data Set Division on Experimental Results 

In this experiment, in order to find the most suitable way to divide the data set, we split 

the dataset with three proportions. The ratios between training set, validation set and 

test sets are 4:3:3, 6:2:2, and 8:1:1. In this section, we find a suitable dataset division 

ratio for our experiment based on the error rate. Before calculating the error rate, we 

need to understand bias, variance, and noise.Bias and variance describe the gap 

between the model we have trained and the real model from two aspects. Bias is the 

error between the output result of the model based on the samples and the ground truths, 

which is the accuracy of the model. Variance is the error between each output result of 

the model and the expected value of the model output, which is the stability of the 

model. The error rate is obtained by adding the values of bias, variance and noises. The 

calculation is shown in eq. (10). 
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     𝐸𝑟𝑟𝑜𝑟 = 𝔼𝐷 [(𝑓(𝑥; 𝐷) −  𝑓̅(𝑥))
2

] +  (𝑓̅(𝑥) − 𝑦)2 + 𝔼𝐷[(𝑦𝐷−𝑦)2]       (10) 

where 𝑥 is the test sample, 𝐷 is the data set, y is the true mark of the test sample, 

𝑓(𝑥) is the model trained with the training set 𝐷, and 𝑓(𝑥; 𝐷) is the predicted value 

of 𝑥 for the 𝑓(𝑥) trained with the training set 𝐷, 𝑓̅(𝑥) is the predicted value of 

model 𝑓(𝑥) for 𝑥. We firstly calculate the error rates related to the ratio 4:3:3, the error 

rate of the training set is 5.70%, and the error rate of the validation set is 8.10%. 

Secondly, we calculate the error rates of the ratio 6:2:2, the error rate of the training set 

is 3.10%, and the error rate of the validation set is 4.30%. Finally, we calculated that 

when the dataset is divided into 8:1:1, the error rate of the training set is 1.00%, and the 

error of the validation set is 7.40%. 

In the experiment, we see that if the data set is divided into 4:3:3, the error rates 

of the verification set and the test set are relatively high, which indicates that the 

training is not enough. More training samples are needed. We split the dataset into 6:2:2, 

and then the test results are ideal. The error rates of the training set and the validation 

set are reduced, the difference between the two is kept at 1.20%, which is a good result. 

Finally, we segment the dataset into the ratio 8:1:1. From the experimental results, we 

found that though the error rate of the training set has dropped to 1.00%, the error rate 

of the validation set has risen to 7.40%. This is a manifestation of overfitting, such a 

model does not have generalization, as shown in Figure 9. Hence, in this article, we 

divide the data into 60.00% for training, 20% for validating and 20.00% for testing. 

 

Fig. 9. The error rate curve of training set and validation set 

4.5   TSR from Drivers’ View 

4.5.1 Our Results of Improved Faster R-CNN 

In our experiments, we test various backbone networks. The performance of the 

network depends on the ability of the network. Therefore, the part of feature extraction 

that directly affects network performance requires much effort. In this paper, we offer 

classic networks as the feature extraction network of Faster R-CNN to compare the 
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impact of different networks on classification performance. Table 2 shows the 

experimental results of different networks. We see that different backbone networks 

have positive results. GoogLeNet and ResNet both have an improvement 5.10% 

compared to VGG net, meanwhile the running time of GoogLeNet is similar to that of 

VGG. Therefore, considered mAP and running time, Faster R-CNN as an object 

detector, GoogLeNet is employed as the backbone network. 

    Next, we tackle the image with guided filtering, and input the augmented images 

into the designed network for classifying the traffic signs. We compare the basic Faster 

R-CNN network. Table 3 shows the specific performance of our proposed method 

based on the given dataset. 

Table 2.  The performance of different networks based on our results. 

Networks Recall (%) Precision (%) mAP (%) fps 

VGGNet 88.2 89.1 90.2 16 

GoogLeNet 88.7 93.2 95.3 17 

ResNet 92.8 91.2 95.2 16 

Table 3.  Contrast experiment with the basic Faster R-CNN net 

Methods Recall (%) Precision (%) mAP (%) 

Faster R-CNN 90.60 91.30 80.30 

Our method 92.60 93.40 95.30 

 

 

Fig. 10. PR curves of our experimental results. 

  In Table 2, we compare the accuracy, recall and precision rates of the three nets. We 

see that under the current scale of data training, GoogLeNet is better than VGG net in 

recall and accuracy, but the running time will be relatively slower than the VGG net. 

Compared with ResNet, our recall rate is relatively low, other metrics are rather better. 

However, it costs a little bit longer time. 
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    In Table 3, the recall and accuracy rates of Faster R-CNN are relatively high. The 

reason is that there are a large number of traffic signs in reality. Accordingly, we took 

use of the guided image filtering for processing the images. The feature fusion method 

based on the GoogLeNet is proposed in this paper for model training. Although the 

recall of target detection has not been improved too much, the accuracy has increased 

by 15.00%, which is explained as that by adding difficult negative samples, the 

capability of the net has been increased a lot owning to the image enhancement. Fig. 10 

shows the PR curves for four different classifiers. In complicated scenes, the general 

model usually cannot detect the traffic signs well. 

4.5.2 The Result of Improved YOLOv5 

Whilst training and testing YOLOv5 model, the same dataset was employed, the dataset 

was split in the same way, 60.00% for training, 20.00% for validating, and 20.00% for 

testing. In this paper, we modify YOLOv5 framework as the basis of the TSR net, and 

train two nets separately. One of them is the standard YOLOv5 net, which is used as a 

comparison method. The test results of improved YOLOv5 algorithm and original 

YOLOv5 algorithm are shown in Table 4. The loss curve is shown in Fig 11. 

Table 4.  The comparison of our experimental results 

Methods Recall (%) Accuracy(%) 

YOLOv5 96.56% 94.30% 

Improved YOLOv5 97.55% 95.63% 

 

 

Fig.11. The loss curve with the improved deep learning models. 

4.5.3   The Comparison of YOLOv5 and Faster R-CNN 

These models with the same dataset were trained and evaluated based on a computer 

equipped with a Core i7-8th CPU, 16GB of RAM, and NVIDIA RTX2060 GPU. 

Firstly, we compare the training time of the two. Faster R-CNN training took 14 hours, 

YOLOv5 training spent 11 hours because YOLOv5 has a smaller network size than 

Faster R-CNN. Secondly, we compare the recognition speed of the two methods. The 

detection speed of Faster R-CNN is 17 fps, the recognition speed of YOLOv5 is 60 fps. 
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YOLOv5 is much suitable for TSR in real time. Finally, Fig 12(a) and Fig. 12(b) show 

the TSR results of the two nets by using the FRIDA dataset. 

    We also compare the recognition results of Faster R-CNN and YOLOv5 in real life. 

Figure 13 shows our TSR under sunny weather, Figures 14 displays the recognition 

results of the two methods in foggy weather. In Figure 13, we see the TSR results, 

which show that Faster R-CNN is often missed and incorrectly detected if the traffic 

signs are far from the camera. In contrast, YOLOv5 has higher recognition accuracy 

and speed when recognizing small objects or objects that move faster. Figure 14 shows 

the recognition result based on foggy images, which is roughly similar to the 

recognition result based on sunny-day images. Faster R-CNN is prone to solving the 

problems of low object detection rate and slow object recognition speed whilst 

recognising small and fast-moving objects. 

    The video for our tests is composed of 2,590 frames. YOLOv5 takes 9.0010-3 

second to cope with each frame. Faster R-CNN spends 21.00 seconds to deal with each 

frame, which takes much longer time than YOLOv5. Under the same accuracy rate, 

YOLOv5 has a faster recognition speed. Because TSR is often used for real-time object 

detection and recognition with high requirements of computing speed, YOLOv5 is 

much suitable for TSR. 

(a)  (b) 

Fig.12. The result of recognition on FRIDA dataset with YOLOv5 (a) and Faster R-CNN (b) 
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(a)

(b) 

Fig. 13. The TSR results on sunny days (a) Faster R-CNN (b) YOLOv5 

(a) 
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(b) 

Fig. 14. TSR results based on foggy images (a) R-CNN (b) YOLOv5 

 

4.5.4 Guided Image Filtering 

In this section, we are use of YOLOv5 as the basic framework to compare the 

recognition results with and without dehazing. With the dehazing operation, more 

traffic signs have been recognized. In Fig. 15 (a), there is a traffic sign that has been 

recognized after the dehazing operation. 

 

 

(a) YOLOv5 without dehazing             (b) YOLOv5 with image guided filtering 

Fig. 15. TSR results with and without dehazing operation 
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4.6   TSR from Satellite Imagery  

In order to further expand traffic sign recognition, we take use of the improved 

YOLOv5 to detect traffic signs from another view angle of satellite images. The 

hyperparameters of the YOLOv5 model are: Batch size and mini-batch size are 16 and 

4, respectively. The momentum and weight decay are 0.90 and 0.5010-3; the initial 

learning rate is 0.1010-2, the epoch is 30. 

    Fig. 16 shows multiple metrics as the number of iterations increases, where 

bounding box regression decreases as the iteration increases at this point, mAP values 

drop as the iteration raises. It shows that the detection result of the proposed net in this 

paper is getting much better with the growth of iteration times. The precision and recall 

rates are also boosted with the more iterations of network parameters, this indicates that 

the number of positive samples also increases with the increase of the number of 

iterations. In general, the improved YOLOv5 model in this paper is better for the 

detection of road signs based on satellite images as the number of iterations increases. 

    Fig. 17 shows PR (i.e., precision-recall) curve of our test results in this experiment, 

with precision rate as y-axis and recall rate as x-axis. We see that the closer the drawn 

PR curve is to the upper right, which proves that the YOLOv5 method has super 

effectiveness in the road sign recognition based on the satellite image. Therefore, the 

road sign recognition based on satellite image is a promising prospect. 

Fig. 18 shows TSR results under various iteration times for satellite images. We 

see that the more iterations, the better the recognition outcomes. Fig. 19 displays the 

final result with the satellite images. 

 

 
Fig.16. The changes with various metrics. 
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Fig.17. The PR curves for TSR based on satellite images 

 

 

 
 

Fig.18. TSR results with various iteration times. 

5   Conclusion 

Under the adverse weather conditions, the TSR accuracy is not very high. In this article, 

we deeply investigated Faster R-CNN and improved YOLOv5 algorithm for TSR, from 

the perspective of the drivers’ view and satellite imagery. We compare the results of 

TSR recognition with multiple nets. If the overall framework of the experiments is the 

same, we chose the excellent network as our base net. 

    We have effectively employed multiresolution feature maps through cross-layer 

connections to build up the feature maps of traffic sign objects with multiple scales.  

We take use of guided image filtering to eliminate the noises from the given images, 

and further improve the accuracy of our experiments. 
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Fig.19. TSR results with satellite images 

     

    There are two aspects in our future work. One is to collect more traffic signs as the 

samples under complicated conditions to form our own dataset. The other is to further 

optimize the method to form an end-to-end TSR framework [33,34,37,39,40]. 
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