

Traffic-Sign Recognition Using Deep

Learning

Zhongbing Qin

A project report submitted to the Auckland University of Technology

in partial fulfillment of the requirements for the degree of

Master of Computer and Information Sciences (MCIS)

2020

School of Engineering, Computer & Mathematical Sciences

 I

Abstract

Traffic-sign recognition (TSR) has been an essential part of driver-assistance systems,

which is able to assist drivers in avoiding a vast number of potential hazards and improve

the experience of driving. However, the TSR is a realistic task that is full of constraints,

such as visual environment, physical damages, and partial occasions, etc. In order to deal

with such constrains, convolutional neural networks (CNN) are widely used to extract the

features of traffic signs and classify them into corresponding classes.

In this project, we initially created a benchmark (NZ Traffic Signs 3K) for the traffic-sign

recognition in New Zealand. In order to determine which deep learning models are the

most suitable one for the TSR task, we chose two kinds of models to perform with deep

learning models: Faster R-CNN and YOLOv5. According to the scores of various metrics,

we summarized the pros and cons of the picked models for the TSR task.

Keywords: Traffic signs, Faster R-CNN, YOLOv5, CNN, NZ Traffic Signs 3K

 II

Table of Contents

Chapter 1 Introduction ... 1

1.1 Background and Motivation .. 2

1.2 Research Questions .. 3

1.3 Contribution ... 4

1.4 Objectives of This Report .. 4

1.5 Structure of This Report... 5

Chapter 2 Literature Review .. 6

2.1 Introduction .. 7

2.2 Traditional Traffic Sign Detection Solutions ... 8

2.2.1 Using Feature Extraction Methods ... 8

2.2.2 Using Machine Learning ... 9

2.3 Convolutional Neural Network .. 9

2.3.1 Convolutional Layer ... 10

2.3.2 Pooling Layer .. 11

2.3.3 ReLU Layer... 12

2.3.4 Fully Connected Layer .. 13

2.3.5 Loss Layer ... 13

2.4 Typical Convolutional Neural Networks ... 13

2.4.1 AlexNet ... 14

2.4.2 VGGNet .. 15

2.4.3 ResNet ... 15

2.5 Object Detection Models ... 16

2.5.1 Faster R-CNN ... 16

2.5.2 You Only Look Once (YOLO) .. 18

Chapter 3 Methodology ... 20

3.1 Traffic Sign Recognition (TSR) in NZ .. 21

3.2 Data Collection .. 22

3.3 Research Design for Training Faster R-CNN .. 23

3.3.1 Dataset Structure for Training Faster R-CNN... 23

3.3.2 Experimental Environment and Parameters for Faster R-CNN 25

3.4 Research Design for Training YOLOv5 .. 27

3.4.1 Dataset Structure for Training YOLOv5 ... 27

 III

3.4.2 Architecture and Functions of YOLOv5 Model.. 29

3.4.3 Experimental Environment and Parameters for YOLOv5 .. 32

3.5 Evaluation Methods ... 34

Chapter 4 Results ... 37

4.1 Data Description .. 38

4.2 Experiment Results of Faster R-CNN ... 40

4.3 Experiment Results of YOLOv5 .. 44

Chapter 5 Analysis and Discussions .. 49

5.1 Analysis and Discussion .. 50

5.2 Limitations of This Project .. 50

Chapter 6 Conclusion and Future Work .. 52

6.1 Conclusion ... 53

6.2 Future Work ... 53

Reference ... 54

 IV

List of Figures

Figure 2.1 Max and average pooling with a filter of size 2×2 and stride 2 …………....11

Figure 2.2 The sigmoid function ………………………….……………………………12

Figure 2.3 Fully connected layer (FC layer)……………………………………………13

Figure 3.1 The workflow of Traffic Sign Recognition……...………………………….17

Figure 3.2 Augmented images ………………………………………………………….23

Figure 3.3 Organized dataset directories for Faster R-CNN…………………………...24

Figure 3.4 An example of annotation file format for our traffic sign recognition………..24

Figure 3.5 Labelling an image in our dataset…………….………………………….…..25

Figure 3.6 An example label file with two traffic signs……………………….…………28

Figure 3.7 Labelling an image by using LabelImg..…….……………………………....28

Figure 3.8 Organized dataset directories for YOLOv5………………………………...29

Figure 4.1 The distribution of seven classes in our dataset (NZ-Traffic-Signs 3K)……...38

Figure 4.2 The density of different sizes of traffic signs in our dataset….………………39

Figure 4.3 The positions of all samples in the images (in pixel size)…………………..39

Figure 4.4 The distribution of our data for training and validation……………………...40

Figure 4.5 Three types of losses for Faster R-CNN……………………………………..42

Figure 4.6 The metrics for evaluating the overall performance of Faster R-CNN……….42

Figure 4.7 Several tested images with class index ………………………………...……43

Figure 4.8 Several tested images with confidence scores …………...……………….…43

Figure 4.9 Three types of losses for YOLOv5…………………………………………..45

Figure 4.10 The metrics for evaluating the overall performance of YOLOv5…………..46

Figure 4.11 Several tested images with class index …………………….……….............46

Figure 4.12 Several tested images with confidence scores……………………..……….47

 V

List of Tables

Table 3.1 Examples of seven categories in our benchmark (NZ-Traffic-Signs 3K)……..22

Table 3.2 The parameters for training Faster R-CNN …………………………….…….26

Table 3.3 The architecture of YOLOv5s ……………………………….………………30

Table 3.4 The details of the installed dependencies for YOLOv5…………...…………33

Table 3.5 The parameters for training YOLOv5………………………………..……….34

Table 4.1 Experimental results for Faster R-CNN across seven classes ………………...40

Table 4.2 Prediction results of various sizes of the traffic signs based on Faster R-

CNN ……………………………………………………………………………………41

Table 4.3 Experimental results for YOLOv5 across seven classes…………………...….44

Table 4.4 Prediction results of various sizes of the traffic signs based on

YOLOv5………………………………………………………………………….....….44

 VI

Attestation of Authorship

I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by another

person (except where explicitly defined in the acknowledgments), nor material which to

a substantial extent has been submitted for the award of any other degree or diploma of a

university or other institution of higher learning.

Signature: Zhongbing Qin Date: 22 October 2020

 VII

Acknowledgment

First of all, I would like to appreciate the guidance of my supervisor Wei Qi Yan. Dr.

Yan’s guidance played an extremely pivotal role in the process of completing my final

project. He not only gave me professional guidance but also provided a lot of advice on

learning methods, which will surely benefit my future researches and life path.

Secondly, I am very grateful to my university, the Auckland University of Technology

(AUT), for delivering a supportive and positive academic atmosphere while the Covid-

19 is prevalent.

Finally, I sincerely thank my parents for their financial support, caring and understanding

while finishing my postgraduate degree.

Zhongbing Qin

Auckland, New Zealand

October 2020

1

Chapter 1

Introduction

This chapter mainly consists of five sections. In the first section,

we will introduce background information of traffic sign detection

and the inspiration of this project. Next, the research questions

will be set forth. Then, we will list our contributions of this project

and explicate them on details. In the last two sections, the

objectives and the format of this report will be elucidated,

respectively.

2

1.1 Background and Motivation

Traffic scene understanding is an important topic in the field of computer vision and

intelligent systems. Traffic signs effectively assist drivers in the process of driving and

keep them drive more safely as they are designed to inform drivers of current road

situations and potential hazards. These signs are normally rigid and simple shapes, such

as circles, triangles and regular polygons, and with eye-catching colors (Zhu et al., 2016).

Hence, traffic sign recognition has become more and more valuable for driver-assistance

systems, highway maintenance and especially for self-driving vehicles (Mogelmose,

Trivedi, & Moeslund, 2012).

 Generally, there are two steps in a typical traffic sign recognition. The first one is to

locate and get size information of traffic signs in natural scene images, which is known

as traffic sign detection. The second step is to categorize detected traffic signs into the

corresponding sub-classes, which is known as traffic sign classification, and this step is

generally completed manually. Although traffic sign recognition has gained a plethora of

popularity in driver assistant system, there are still numerous difficulties for identifying

real-world traffic signs by using computer algorithms due to various size of targets (Zhu

et al., 2016), color deterioration and partial occlusion (Yang, Luo, Xu, & Wu, 2015).

 In order to deal with these obstacles, many approaches and algorithms have been

proposed. In the past, traffic sign detection mainly relied on traditional object detection

algorithms and the pipeline of traffic sign detection normally utilized hand-crafted

features to extract region proposals, and then combined classifiers to filter out the

negatives. Recently, deep learning methods are emerging, and various cutting-edge

approaches have been widely applied into this area, such as deep convolutional networks

(CNNs). CNNs have brought possibility of learning features from giant amount of data

without preprocessing, which avoids the process of designing hand-crafted features and

absorbs more generalized features (Zhang, Huang, Jin, & Li, 2017). Besides, CNN has

been already set forth as an object classifier in machine learning which have been

leveraged on traffic sign classification.

3

 Two benchmarks are widely accepted to evaluate object detection performance,

including PASCAL VOC (Everingham, Van Gool, Williams, Winn, & Zisserman, 2010)

and ImageNet ILSVRC (Russakovsky et al., 2015). In these datasets, objects typically

occupy a large proportion of each image, the size of bounding box is over 20% of the

images, but visual objects of interest only occupy small fractions of corresponding images.

For example, traffic signs are captured while driving and such small size of objects will

have a huge impact on the performance yield by choosing algorithms. A typical traffic

sign in a real-world image might be around 80×80 pixels, they are just approximately 0.2%

of the image. Thus, it is essential to reconsider the evaluation performed benchmark for

those tasks requiring classification and detection of small objects of interest.

 In the development of traffic sign recognition, German traffic-sign detection and

classification benchmarks brought in a vast majority of benefits for evaluation across

various algorithms, which were not comparable until the release of the benchmarks.

German Traffic Sign Detection Benchmark (GTSDB) (Stallkamp, Schlipsing, Salmen, &

Igel, 2012) and German Traffic Sign Recognition Benchmark (GTSRB) (Stallkamp,

Schlipsing, Salmen, & Igel, 2011) presented two public extensive and available datasets

and nowadays there are several methods have achieved high accuracy rate based on these

datasets. Besides, other datasets are also available in public recent years, such as LISA

traffic sign dataset (LISATSD) (Mogelmose et al., 2012), Swedish Traffic Signs Dataset

(STSD) (Larsson & Felsberg, 2011) and Chinese Traffic Sign Dataset (CTSD) (Yang et

al., 2015). The GTSRB and GTSDB datasets are the most popular ones for recognizing

traffic signs and many methods have achieved great success on them.

1.2 Research Questions

In order to effectively recognize real-world traffic signs, this report aims to utilize the

state-of-the-art deep learning methods to detect and classify signs, and then evaluate their

performance based on the comparison results. Based on the above purposes, the research

questions are proposed as follows:

4

(1) Which deep learning algorithms are suitable for recognizing various sizes of real-

world traffic signs?

(2) What detection and classification algorithm systems will fit for our project?

 The fundamental idea of this project is to complete traffic sign recognition in New

Zealand. However, due to the lack of customized dataset for recognizing New Zealand’s

traffic signs, it is necessary to create a partial dataset in this case. Several deep learning

algorithms will be chosen to deal with this problem. The pros and cons of them will be

presented based on the evaluation results.

1.3 Contribution

The contributions of this report are shown as follows:

• In order to effectively recognize New Zealand’s traffic signs, we have created a

new and realistic traffic-sign benchmark, which contains partial traffic sign

classes because of physical and time limitations. The benchmark is composed of

seven traffic sign categories and various sizes of real-world signs were captured.

The distinction of this benchmark is that it covers number of small-size objects,

which cannot be identified in off-the-shelf datasets. We call this benchmark NZ-

Traffic-Signs 3K.

• We conducted an experiment for traffic sign recognition on the latest deep learning

model (YOLOV5) and accomplish a comparison across the applied algorithms.

The evaluation results illustrated the robustness, which will benefit the research

of New Zealand traffic scene understanding.

1.4 Objectives of This Report

Overall, the ultimate objective of this report is to complete the customized traffic-sign

recognition in New Zealand and figure out which state-of-art networks better fit into this

project.

5

 Firstly, so as to recognize traffic signs in NZ, the dataset generation process will be

emphasized since the quality of original data will have a huge impact on the training

results of networks and models.

 Secondly, the tuning process of detectors and classifiers will be introduced, and we

will adjust the neural networks from the following perspectives: (1) Experiments

performed on different algorithms (Faster R-CNN and YOLOv5), (2) Validation and

evaluation based on the chose models, (3) Parameter tuning process.

 Finally, this report will summary the pros and cons across the applied algorithm

systems and discover the best system for traffic-sign recognition according to the New

Zealand traffic scene.

1.5 Structure of This Report

The rest of this report is structured as follows. In Chapter 2, we will conduct a

comprehensive literature review to identify the current studies and technologies that are

corresponding to object detection and classification. In Chapter 3, the methodology in

this project will be introduced from three aspects, including the benchmark generation

methods, experiment designs and evaluation metrics. In Chapter 4, the experiment results

will be presented and illustrated. In Chapter 5, we will discuss and analysis the experiment

results, and then figure out which algorithms achieve the best performance. Finally, we

will make a summary of this project and clarify the future study direction in Chapter 6.

6

Chapter 2

Literature Review

The focus of this report is to leverage the cutting-edge

algorithms to complete traffic-sign recognition. Therefore,

we comprehensively reviewed the previous studies and

identified the corresponding theories and algorithms over

the past ten years.

7

2.1 Introduction

Traffic sign recognition (TSR) has benefited a large number of realistic applications, such

as driver assistance system, autonomous vehicles, and intelligent mobile robots since they

have delivered the current state of traffic signs into various systems. However, there are

a few difficulties for computer to recognize traffic signs on the road, which are mainly

from two aspects: One is relevant to the complex traffic scene (Wang, Ren, & Quan, 2013)

on the road and another one is about unbalanced class frequencies in the datasets

(Stallkamp et al., 2012).

 As for the difficulty of real-world traffic scenes, though traffic signs are always well

designed for drivers to easily read and recognize the signs during the driving process,

including vivid colors, strong and big size words, as well as various specific shapes, it

can be still a tricky task to design such features combining with contaminated conditions

(Sermanet & LeCun, 2011). For example, the conditions can be bad illumination, small-

size signs in scenes, partial occlusions, rotations and physical damages. All of these

factors will have a huge impact on the performance of computer algorithms to recognize

traffic signs.

 In terms of the characteristics of the benchmarks, they usually have an uneven

distribution of data categories. As we known, traffic signs have various types. For instance,

the GTSRB includes 43 classes with the lowest frequency rate of 0.5% and the highest

frequency rate of near 6% across all classes (Mao et al., 2016).

 Before the wide acceptation of convolutional neural networks, the dominant

approaches for identifying traffic signs focused on several feature extraction methods and

machine learning algorithms. The technique, Histogram Oriented Gradients (HOG)

(Dalal & Triggs, 2005), was initially used to detect pedestrians in traffic scenes and the

gradients in a color image were calculated along with normalized and weighted

histograms. The feature transform technique was utilized to classify window sliding.

Several machine learning algorithms were leveraged for traffic-sign classification,

8

including support vector machines, linear discriminant analysis ensemble (Malik,

Khurshid, & Ahmad, 2007) and random forest (Zaklouta & Stanciulescu, 2014), etc.

2.2 Traditional Traffic Sign Detection Solutions

2.2.1 Using Feature Extraction Methods

The initial methods for object detection mainly depend on feature extraction methods.

People usually took color and shape features into consideration to achieve traffic-sign

detection and classification tasks.

 In terms of color features, the images were transformed to other color spaces like

HSV (Hue, Saturation, Values) instead of using RGB (Red, Green, Blue). Wang et al.

(2013) pointed out that the computer algorithms based on RGB color spaces could limit

the performance of detection traffic signs due to different illuminant conditions. Besides,

Li et al. (2014) also proposed a color probability model based on Ohta space to compute

the maps of probability for each color belonging to traffic signs (Yang & Wu, 2014).

 With regard to shape features, traffic signs have various geometries, such as circular,

rectangular, triangular or polygonal. People extracted contour lines by Hough transforms

and radial symmetry, etc. The circular traffic signs would deform by shooting angle or

other external force. In order to tackle this issue, Wang et al. (2014) proposed an ellipse-

detection method in their article (G. Wang, Ren, Wu, Zhao, & Jiang, 2014). Moreover,

Liang et al. (2013) designed a list of templets for each traffic-sign class to match shape

(Liang, Yuan, Hu, Li, & Liu, 2013). The HOG as one of the most widely used features

also benefited a lot for the traffic-sign feature extraction. The HOG feature of each cell

would be normalized over each of its neighboring blocks to represent more local detail

information, but which can lead to redundant dimensions of a feature representation (Yao,

Wu, Chen, Hao, & Shen, 2014). Hence, it is challenging to make a trade-off between rich

local details and redundancy.

9

2.2.2 Using Machine Learning

Several machine learning algorithms were used for traffic sign classification like linear

discriminant analysis, support vector machines, random forest and kd-trees as well as

ensemble classifiers.

 Linear Discriminate Analysis (LDA) relies on maximum posteriori estimation of the

class membership (Wu, Liu, Li, Liu, & Hu, 2013) and the density of classes are presumed

to own multiple variate Gaussian and general co-variance matrix. Random Forest is an

ensemble method that consists of the set of non-pruned random decision trees, which are

all built based on the random training data. The classification output is generated from

the majority of voting over all decision trees (Stallkamp et al., 2011). Support Vector

Machines (SVM) not only classify the data according to n-dimensional data plane with a

hyper plane, but also separate non-linearly scattered data by converting the classification

plane to higher dimensions (Park & Kim, 2013).

Machine learning techniques provided a wealth of benefits for classifying traffic signs,

but they were unable to handle the features, such as various sizes of images and aspect

ratios, which must be completed manually. Thus, the feature generated process was

always time-consuming and error-prone (Mogelmose et al., 2012).

2.3 Convolutional Neural Network

In the field of deep learning, a CNN model represents a class of deep neural networks and

is offered for visual imagery (Valueva, Nagornov, Lyakhov, Valuev, & Chervyakov, 2020).

CNNs have multilayer perceptron, which is fully connected. The meaning of fully

connection in multilayer perceptron is that each neural in one layer is connected to all

neurons of next layer. This architecture can effectively prevent data from overfitting.

Their specific applications have image and video recognition, classification, medical

image analysis and natural language processing, etc.

 A convolutional neural network is composed of an input and an output layer as well

10

as several hidden layers (Xu, Ren, Liu, & Jia, 2014). The hidden layers also consist of a

series of convolutional layers that are based on a multiplication and other dot product.

ReLU layer is regarded as the activation function and is generally followed by other

convolutions like pooling layers, fully connected layers and normalization layers. They

refer to as hidden layers as their inputs and outputs are hidden by the activation function

and final convolution. The architecture of a typical CNN is introduced as follows:

2.3.1 Convolutional Layer

The core block of a CNN architecture is convolutional layer. It involves a set of kernels

(or filters) that can only receive a small fraction but extend through the full depth of input

volume. Each filter is learnable and will be involved across the height and width of input

volume along with the computation of dot product between the entries of filters and the

input. During the initial process, a 2D feature map will be produced (Liang & Hu, 2015).

Finally, the network will learn from activate filters while detecting some specific features

at some spatial position in the input (Géron, 2019). The full output of the convolutional

layer is formed by storing the activation maps for all filters along the depth dimension.

The output of a neural is a small region in the input and the parameters will be shared

between neurons in the same activation map.

 There are three hyperparameters controlled the size of the output volume of

convolutional layer: Depth, stride and zero-padding (Bochinski, Senst, & Sikora, 2017).

The depth of the output volume controls how many neurons in a layer that connect to the

same region of the input volume. Stride controls the allocation of the depth of columns

around the spatial dimensions referring to the width and height of the input. The value of

stride (S) should be greater than zero and any integer. In practice, the lengths of S are

usually less than three. Less receptive fields overlapping will lead the output volume to

have smaller spatial dimensions while stride length is increasing. Zero-padding controls

the spatial size of the output volume. Equation (2.1) is to calculate the number of neurons

that can fit in a given volume:

11

 𝑛 =
𝑊−𝐾+2𝑃

𝑆
+ 1 (1)

 where W is the size of input volume. The kernel size of the convolutional layer neurons

is denoted by K. The length of stride and the amount of zero-padding are represented by

S and P, respectively. Generally, we set the zero-padding as 𝑃 =
𝐾−1

2
 while 𝑆 = 1 ,

which make the input volume and output volume have the same spatial size.

2.3.2 Pooling Layer

Similarly, the pooling layer is responsible for reducing the spatial size of the convolved

feature. It not only decreases the computational consumption through reducing

dimensionality, but also is used to extract dominant features (Giusti, Cireşan, Masci,

Gambardella, & Schmidhuber, 2013). Besides, the pooling layer serves to simplify the

configuration of parameters and memory footprint, and thus controls overfitting. It is

meaningful to insert pooling layers across series of convolutional layers (normally

followed by ReLU layers) in a CNN architecture.

 There are two dominant types of pooling, including max pooling (Nagi et al., 2011)

and average pooling (Sun, Song, Jiang, Pan, & Pang, 2017). As the name implies, the max

pooling returns the maximum value from the portion of the image covered by the kernel.

The average pooling returns the average across all the values from the portion of the

image covered by the Kernel. The most commonly used pooling form has the filter size

of 2×2 and a stride of 2 down samples. The depth of volume is not changed.

Figure 2.1 Max and average pooling with a filter of size 2×2 and stride 2

 In practice, the max pooling is performed better than average pooling (Scherer,

12

Müller, & Behnke, 2010). Max pooling was used to discard the noisy activations and

denoising while reducing dimensionalities. In terms of average pooling, it just simply

performs the dimensionality reduction to suppress noises. Hence, we can say that the max

pooling is a better option comparing to average pooling.

 Due to the aggressive reduction in the size of representation (Suárez-Paniagua &

Segura-Bedmar, 2018), they get rid of pooling layer in favor of the architecture of the

pure repeated convolutional layers, which is known as the all convolutional net.

Discarding pooling layers can benefit the generative model training, such as generative

adversarial networks (GANs) (Zhang, Goodfellow, Metaxas, & Odena, 2019). This is the

recent trending in this field.

2.3.3 ReLU Layer

Rectified linear unit (ReLU) utilized the non-saturating activation function 𝑓(𝑥) =

max(0, 𝑥) (Krizhevsky, Sutskever, & Hinton, 2012) to remove negative values from an

activation map and replace them with number 0. This operation enhances the nonlinearity

of the decision function and the whole network without influencing the reception domain

of the CONV layer. There are other options available for increasing the nonlinear

properties, such as the saturating hyperbolic tangent 𝑓(𝑥) = tanh(x), 𝑓(𝑥) = |tanh(x)|

and the sigmoid function 𝜎(𝑥) = (1 + e−x)−1. ReLU has gain more popularity comparing

to other functions due to the faster speed of training the neural network (Krizhevsky et

al., 2012).

 Figure 2.2 The sigmoid function

13

2.3.4 Fully connected layer

In the fully connected layer, the neurons connect to all activations as seen in the regular

neural networks. Generally, inserting a fully connected layer is a cheap way to capture

the nonlinear combination of high-dimensional features as represented by the yield of

CONV layer (Albawi, Mohammed, & Al-Zawi, 2017).

Figure 2.3 Fully connected layer (FC layer)

2.3.5 Loss Layer

The loss layer is normally the last layer in a neural network, which specifies the

penalization process of training to the deviation between true labels and predicted results

(Xie, Wang, Wei, Wang, & Tian, 2016). Different tasks should apply with different loss

functions. For instance, the Softmax loss is to predict a single class between dominant

and certain low-level features in images. Sigmoid cross-entropy is to predict independent

values of probability in [0, 1].

2.4 Typical Convolutional Neural Networks

The typical CNN architecture is composed of blocks of convolutional layers and pooling

14

layers followed by a fully connected layer and SoftMax layer at the end. Several such

CNN models are AlexNet, VGGNet, LeNet, NiN and all convolutional (All CONV).

Besides, some state-of-the-art architectures have been proposed, such as the GoogleNet

(Al-Qizwini, Barjasteh, Al-Qassab, & Radha, 2017) with ResNet (Z. Wu, Shen, & Van

Den Hengel, 2019) and DenseNet (Jégou, Drozdzal, Vazquez, Romero, & Bengio, 2017).

 Actually, all of these architectures have the similar fundamental components

(convolution and pooling). Different architectures may have their own topological

distinction. For instance, in terms of DCNN (Jin, McCann, Froustey, & Unser, 2017), the

AlexNet, VGGNet, GoogleNet could be the most appropriate architectures to employ

since they have shown the distinct performance on the task of object recognition. Some

of architectures have shown their advantages in dealing with large volume of data,

including GoogleNet and ResNet. However, the VGG networks is regarded as a common

architecture in this field.

2.4.1 AlexNet

AlexNet was the champion CNN model in the most difficult ImageNet challenge named

the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012 (Krizhevsky

et al., 2012). This model proposed by Alex and others were deeper and wider than the

previous neural network (LeNet), and it achieved the astonishing recognition accuracy

against all the traditional approaches. The appearance of AlexNet could be seen as the

turning point of the development of using machine learning and computer vision for

object detection and classification tasks.

 There are two innovative concepts introduced in the architecture of AlexNet. Firstly,

the first convolutional layer of AlexNet applied Local Response Normalization (LRN)

while performing the convolution and max pooling. LRP can be either applied on single

channel and feature maps, or applied across single channel and feature maps (Hong-meng,

Di, & Xue-bin, 2017). The formular for LRN is:

15

 𝑏𝑥,𝑦
𝑖 = 𝑎𝑥,𝑦

𝑖 / (𝑘 + 𝛼 ∑ (𝑎𝑥,𝑦
𝑖)

2

min(𝑁−1,𝑖+
𝑛
2

)

𝑗=max(0,𝑖−
𝑛
2

)

)

𝛽

 (2.2)

where 𝑎𝑥,𝑦
𝑖 denotes the value yields by the number of 𝑖 convolution at the position

(𝑥, 𝑦) and the result of outputting by the ReLU activation function. 𝑛 is the number of

neighboring convolution kernels, and N is the total number of convolution kernels in this

layer. The rest of variants are parameters, which are obtained in the experimental

validation set.

2.4.2 VGGNet

The Visual Geometry Group neural network (VGGNet) was proposed by the Visual

Geometry Group, which is the runner of the 2014 ILSVRC. This network initially showed

that the importance of the depth of a network was the crucial factor to achieve higher

accuracy of recognition and classification. Two convolutional layers were contained in

VGG architecture and both of them utilized the ReLU activation function, which was also

used in the following activation function with a single max pooling and several fully

connected layers. Three VGG models with different number of layers were proposed,

including VGG-11, VGG-16 and VGG-19.

 All versions of VGG models ended with three fully connected layers. However, they

had different number of convolutional layers. VGG-11, VGG-16 and VGG-19 contained

8, 13 and 16 convolutional layers, respectively. Among them, the VGG-19 was the most

computational consumption model, required 138M weights and 15.5M MACs.

2.4.3 ResNet

The Residual Network (ResNet) was developed by Kaiming He et al. with the intention

of creating a deeper network that can avoid the effect of the vanishing gradient issue (He,

Zhang, Ren, & Sun, 2016). ResNet architectures can be performed with different number

of layers, such as 34, 50, 101, 152 and even 1202. Among them, the most popular ResNet

16

architecture had 50 layers, including 49 convolutional layers and 1 fully connected layer.

It is worthy to mention that even though the ResNet had 152 layers the complexity of it

was still lower than VGGNet.

 ResNet is a typical network with residual connection. The final ouput of a residual

layer can be defined by the following equation:

 𝑥𝑙 = 𝐹(𝑥𝑙−1) + 𝑥𝑙−1 (2.3)

where 𝑥𝑙 is defined as the output of a residual layer. Thus, 𝑥𝑙−1 is generated based on

the output of previous layer. 𝐹(𝑥𝑙−1) represents the output after performing other

operations, such as convolution with various size of filters and Batch Normalization (BN)

followed by an activation function like ReLU. The residual networks generally are

composed of several fundamental residual blocks, but the operations within the blocks

are varied corresponding to different residual architectures (He et al., 2016).

 Recently, several improved residual networks have been proposed. For example, a

residual network was known as aggregated residual transformation (S. Xie, Girshick,

Dollár, Tu, & He, 2017). Moreover, several researchers have combined residual units with

Inception, and mathematically it can be expressed by the following eq. (2.4).

 𝑥𝑙 = 𝐹(𝑥𝑙−1
3×3⨀𝑥𝑙−1

5×5) + 𝑥𝑙−1 (2.4)

where ⨀ is used to express the concentration operations between two outputs produced

by the 3×3 and 5×5 filters. Following the convolutional operation is performed and the

outputs of the operation are attached with the inputs of block 𝑥𝑙−1 (Szegedy, Vanhoucke,

Ioffe, Shlens, & Wojna, 2016).

2.5 Object Detection Models

2.5.1 Faster R-CNN

Faster R-CNN is an improved network based on the design of Fast R-CNN and R-CNN,

17

which use region proposal algorithm like selective search with CNN to generate regional

objects in an image. However, the method to propose region proposal requires a lot of

time consumption even though it is performed directly to the CNN.

 In the architecture of Faster R-CNN, the Region Proposal method (selective search)

is replaced by a more advanced approach named Region Proposal Network (Ren, He,

Girshick, & Sun, 2015). This network leverages the extracted features of CNN to generate

region proposal. We can say that Faster R-CNN is a combination of RPN and Fast R-

CNN detector.

 A RPN takes an image as input and output a set of rectangular object proposals and

each of them is attached with an objectiveness score (Ren et al., 2015). In this network, a

concept of anchor boxes is introduced. In an image, some referencing boxes are placed at

different positions. The number of 𝑘 anchor boxes are hyperparameter in the network

and generated for each pixel based on the feature map which outputs of CNN. The total

number of anchor boxes can be calculated by ℎ ∗ 𝑤 ∗ 𝑘 (ℎ ∗ 𝑤 is the size of feature

map). A targeted object will be covered by multiple anchor boxes, and then these

redundant predicted results are removed by non-max suppression (Liu, Zhao, & Sun,

2017). Different sizes of anchor boxes replace the operation of using multiple scales at

test time. Comparing to Fast R-CNN and R-CNN, the speed of region proposal with

selective search is 2 seconds per image but it is just 10 milliseconds.

 The loss function applied in Faster R-CNN is similar to the previous networks (e.g.

multitask loss). The mathematical expression for multitask loss function is shown below:

 𝐿({𝑝𝑖}, {𝑡𝑖}) =
1

𝑁𝑐𝑙𝑠
∑ 𝐿𝑐𝑙𝑠(𝑝𝑖 , 𝑝𝑖

∗) + 𝜆
1

𝑁𝑟𝑒𝑔
𝑖

∑ 𝑝𝑖
∗

𝑖

𝐿𝑟𝑒𝑔(𝑡𝑖 , 𝑡𝑖
∗) (2.5)

Where 𝑝𝑖 denotes the predicted probability which yields by classification, 𝑝𝑖
∗ denotes

the similarity of ground truth. 𝑡𝑖 and 𝑡𝑖
∗ respectively represent the predicted box and

ground truth box.

18

2.5.2 You Only Look Once (YOLO)

The release of You Only Look Once (YOLO) was a milestone in the field of object

detection. It was presented by Joseph Redmon et al. (2016) and immediately gained a lot

of attention by fellow workers in computer vision. YOLO is a single network and can be

improved end-to-end directly on the performance of detection (Redmon, Divvala,

Girshick, & Farhadi, 2016). Instead of repurposing classifiers to complete detection task,

the proposers framed object detection as a regression problem to separate bounding boxes

and related class probabilities. In other words, the YOLO simplified the process of

generating bounding boxes and class probabilities. Compared to cutting-edge detection

architecture, it not only speeds up the training process but also doubles the accuracy of

real-time detection, even if it has more localization errors.

 The workflow of YOLO is briefly introduced as follows: YOLO as a single neural

network extracts features from the entire image and uses them to predict each bounding

box while predicting all bounding boxes for an image. It divides an input image into an

𝑆 × 𝑆 grid. When the center of an object overlaps with a grid cell, this cell will be used

to detect this object. Each gride cell should predict number of bounding boxes and the

confidence stores corresponding to these boxes. If there is no object falling into a gride

cell, the confidence store is defined as 0.

 The confidence store should be the intersection over union (IOU) between the

predicted box and the ground truth and the IOU value can be calculated by Pr (𝑂𝑏𝑗𝑒𝑐𝑡) ∗

𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ . Each bounding box has five variables, including 𝑥, 𝑦, 𝑤, ℎ and confidence

store. The 𝑥, 𝑦 will be used to produce the coordinate of the center of the bounding box

in relation to the bounds of the gride cell. Besides, each cell also predicts the probability

of conditional class Pr (𝐶𝑙𝑎𝑠𝑠𝑖|𝑂𝑏𝑗𝑒𝑐𝑡). Finally, the confidence stores of a specific class

for each box is formally defined as:

 Pr(𝐶𝑙𝑎𝑠𝑠𝑖|𝑂𝑏𝑗𝑒𝑐𝑡) ∗ Pr(𝑂𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ = Pr(𝐶𝑙𝑎𝑠𝑠𝑖) ∗ 𝐼𝑂𝑈𝑝𝑟𝑒𝑑

𝑡𝑟𝑢𝑡ℎ (2.6)

19

which shows how well the predicted box fits the object.

 Different versions of YOLO network have been released in 2016, 2017 and 2018.

Recently, YOLOv4, YOLOv5 and PP-YOLO successively proposed within just few

months after the release of those three main versions of YOLO. Although the appearing

of YOLOv5 has made a fierce discussion in the community, the easier implementation

and several improvements (e.g. mosaic data augmentation and auto-learning anchor boxes)

cannot be ignored among the YOLO network family.

20

Chapter 3

Methodology

This chapter mainly expounds the details of the

implementation of traffic sign recognition which

performed on two trending CNN models, including

YOLOv5 and Faster R-CNN. The dataset preparation,

training process and evaluation methods will be also

introduced in the following content.

21

3.1 Traffic-Sign Recognition (TSR) in NZ

Traffic sign recognition is a task which is considering with both object detection and

classification. It is a real-world application that computer vision techniques are aligned

with to develop driver assistant system. In practice, the implementation of this task

usually confronts with a lot of uncertain issues, such as color fading, disorientation and

variations in size and shape (Fleyeh, 2008). Recently, there are a lot of researches

available to deal with such problems and provide solutions to boost the performance of

traffic sign recognition. The following diagram illustrates the general workflow of TSR

task:

Figure 3.1 The workflow of traffic-sign Recognition

 Traffic signs in NZ mainly are categorized into three groups: Regulatory (including

general, parking and road user restrictions), Warning (including temporary and

permanent), Advisory (including guide and route signs, e.g. street name, community

facilities, tourist signs, service signs and general information signs). Although the design

of traffic signs in NZ followed the dominant trending and international standards, NZ is

not a signatory to the convention on international road signs and signals, and thus some

of its traffic signs have different shape and function. According to the above inconsistency,

22

it is necessary to take the rebuilding of the customized dataset into consideration for

effectively recognizing traffic signs in NZ.

3.2 Data Collection

In this project, we used the 12-megapixel wide-angle camera of iPhone 11 to capture the

realistic traffic sign images in Auckland. Due to the lower appearing frequency of traffic

signs comparing to pedestrians and vehicles, we directly took traffic sign images using

camera instead of recording video. The pixels of the images are 1080×1440 and stored

in .JPEG format. Our dataset (NZ-Traffic-Signs 3K) consist of 3436 images and 3545

instances in total: Stop (236 instances), Keep Left (536 instances), Road Diverges (505

instances), Road Bump (619 instances), Crosswalk Ahead (636 instances), Give Way at

Roundabout (533 instances) and Roundabout Ahead (480 instances).

Table 3.1 Examples of seven categories in our benchmark (NZ-Traffic-Signs 3K)

 In order to avoid the overfitting when training the chosen models, we utilized data

augmentation to expand our dataset. Several basic manipulations for data augmentation

include flipping, rotation, shearing and adding noise as well as blurring images. In this

case, we merely applied two augmentation operations, including adding noise and

blurring images, based on our original dataset because these methods could to deal with

the distorted objects, which could impact the quality of our dataset and even degrade the

23

accuracy of our training models. The manipulations were implemented by importing a

Python library, named Skimage.

Figure 3.2 Augmented images: (a) original images (b) adding noise (c) blurring images

3.3 Research Design for Training Faster R-CNN

In this experiment, we chose Faster R-CNN to conduct recognizing traffic signs with on

our dataset. Faster R-CNN needs a traditional CNN as the basic convolutional layers for

feature extraction. A pretrained VGG16 model was used to assist us in outputting the

feature map.

3.3.1 Dataset Structure for Training Faster R-CNN

In order to successfully implement Faster R-CNN, the data directory should follow the

structure of PASCAL VOC dataset. The dataset organization structure is divided into five

parts, including Annotations, ImageSets, JPEGImages and SegmentationClass as well as

SegmentationObject. The structure is shown in Figure 3.3.

24

Figure 3.3 Organized dataset directories for Faster R-CNN

 The Annotations folder is responsible for storing all the .xml label files. The ImageSets

stores the segmented datasets for training, validation and testing. Then, the JPEGImages

is used to store the .jpeg images. Finally, as the name revealed, the SegmentationClass

and SegmentationObject are used to the segmented images based on the criteria of

different classes and objects.

 As for training the Faster R-CNN, the annotation files are stored in .xml format and

formatted very restrictedly. We use a labelled tool, named LabelImg, to label all the

images in our dataset.

Figure 3.4 An example of annotation file format for traffic-sign recognition

25

 The LabelImg can export voc format label files while labelling the images. The

process of labelling our images is shown down below:

Figure 3.5 Labelling an image in our dataset

3.3.2 Experimental Environment and Parameters for Faster R-CNN

Due to the implementation based on Python, several dependencies should be preinstalled

to setup the experimental environment. Caffe must be built with support for Python layers.

Some Python packages are needed, including Cython, python-opencv and easydict, etc.

In order to train Faster R-CNN with VGG16, the CUDA device with Tesla V100-SXM2-

16GB are necessary.

 During the process of training the Faster R-CNN, critical parameters should be

preliminarily set, and the details are shown in Table 3.2. In neural networks, the ideal

situation is to make the error function reach a global minimum, but in practice the error

may comprise of many local minimums where the optimization can be stuck in, and thus

the global optimum cannot be guaranteed. In this case, the algorithm will use the

unoptimized results to lead to sub-optimal results. Momentum term can increase the step

size to jump from the local minimums. Most importantly, a large value of Momentum can

contribute to a faster model convergence. Normally, a large Momentum had better match

26

with a smaller Learning Rate (LR), otherwise the algorithm might skip the global

minimum with a huge step. In this experiment, we set the Momentum to 0.9 and LR to

0.01 to avoid the above issue.

Table 3.2 The parameters for training Faster R-CNN

 The max number of training epoch is also a key factor that influence the performance

of a model. An appropriate of max training epochs will contribute to a lower training and

validation rate while overfitting is non-existent. As for our project, the most appropriate

max epochs number is 200 which were tested after several pilot experiments.

 Batch size as another vital parameter in training neural networks is used to estimate

error gradient. It is the number of examples from the part of training data to achieve the

error gradient estimation. Generally, the more training examples used in the estimation,

the higher accuracy will be achieved and the more possibility that the network weights

will be adjusted in a way that will boost the performance of the model. The batch size is

set to 24 in this experiment.

 The data is complicated in the real-world. Having fewer parameters in the process

of training a model is a way that can prevent a model from suffering from complex data,

but it is an impractical and limited solution. The more parameters are employed with, the

more intersections among them exist. These intersections mean more non-linearities,

which will help a model solve complex problems. Thus, in order to solve the issue, a

parameter called Weight Decay (WD) is used to penalize the complexity. We set the WD

to 0.0005 for training Faster R-CNN.

27

3.4 Research Design for Training YOLOv5

The second performed model in this project is YOLOv5, which was just less than fifty

days later than the release of YOLOv4. Although the appearing of it has gained a lot of

attentions and debates in the community, it was indeed published with a number of

improvements and distinctions. The improvements are mainly reflected in two aspects:

improved the accessibility for detecting real-time objects and the performance of

prediction either on training speed or accuracy.

 Firstly, YOLOv5 is the first release in the YOLO family to be written in PyTorch

instead of using PJ Reddie’s Darknet (Chen, 2019). The implementation based on

PyTorch makes the process of deployment easier and simpler. Secondly, YOLOv5 is

extremely fast. In the official YOLOv5 Colab notebook, the inference times up to 0.007

seconds per image, meaning 140 frames per second. Compared to the previous models

(e.g. YOLOv4), the processing speed is a milestone in the development of object detectors.

Thirdly, it is more accurate. In one of the most popular tests of performing YOLOv5

(Blood Cell Count and Detection Dataset), it achieved approximately 0.895 mean average

precision (mAP) after running 100 epochs. Finally, it is much smaller than YOLOv4 and

it provides four different size models: YOLOv5s (smallest one with 7.5M params),

YOLOv5m (21.8M params), YOLOv5l (47.8M params) and YOLOv5x (largest one with

89.0M params). In this experiment, we chose the smallest model (YOLOv5s) to perform

with due to the relatively small scale of our dataset.

3.4.1 Dataset Structure for Training YOLOv5

In order to train the YOLOv5 model, the first step is to label the images in our dataset. A

graphical image annotation tool (LabelImg) was used to label the images in our dataset.

The labelling process is shown in Figure 3.4. Each of the corresponding annotation files

was saved as a *.txt file and the produced labels were exported by YOLO format. The

specifications of *.txt are:

28

Figure 3.6 An example label file with two traffic signs

• Each object in an image is denoted by one row;

• Each row has the unified format: class, x_center, y_center, width, height;

• Box coordinates (x, y, w, h) must be normalized in the range of (0, 1). Our initial

images are all in pixel sizes. Thus, the x_center and width are required to be

divided by image width. The y_center and height are required to be divided by

image height.

• Class numbers should start from 0. For example, we have seven categories in this

case and hence the range of class numbers is (0, 6).

Figure 3.7 Labelling an image by using LabelImg

29

 After generating the label files based on our dataset, the next step is to organize

directories which save the train and validation images and labels. In the official version

of YOLOv5 released by Glenn Jocher, the folder stored data (named /𝑓𝑖𝑛𝑎𝑙_𝑑𝑎𝑡𝑎𝑠𝑒𝑡 in

this case) must be next to the /𝑦𝑜𝑙𝑜𝑣5 directory, and make sure the folder stored all the

labels (𝑓𝑖𝑛𝑎𝑙_𝑑𝑎𝑡𝑠𝑒𝑡/𝑙𝑎𝑏𝑒𝑙𝑠) next to the folder stored all the images (𝑓𝑖𝑛𝑎𝑙_𝑑𝑎𝑡𝑠𝑒𝑡/

𝑖𝑚𝑎𝑔𝑒𝑠).

Figure 3.8 Organized dataset folders for YOLOv5

3.4.2 Architecture and Functions of YOLOv5 Model

The model structure of YOLOv5 is the same as the common single-stage object detector

(S. Wu, Li, & Wang, 2020). It has three main parts: model backbone, model neck and

model head. The overall model architecture is illustrated in Table 3.3.

30

Table 3.3 The Architecture of YOLOv5s

 Model backbone is normally responsible for extracting important features from

images. The Cross Stage Partial Networks (CSP) are employed as the backbone of

YOLOv5. This state-of-the-art network effectively mitigated the problem of heavy

inference computations from the network architecture (Wang et al., 2020). In other words,

the CSPNet can significantly reduce the processing time with deeper neural networks.

Thus, the employment of it surely contributes to the progress made by YOLOv5.

 Model neck is used to generate feature pyramids, which are a fundamental

component of recognition systems for detecting multiscale objects and built only based

on CNNs (Lin, Dollár, et al., 2017). It not only assists the detector in identifying the same

object with various sizes and scales, but also has shown the obvious strength in unseen

data. There are off-the-shelf feature pyramids techniques, such as Feature Pyramid

Network (FPN) (Lin, Goyal, Girshick, He, & Dollár, 2017), Bi-directional Feature

Pyramid Network (BiFPN) (Tan, Pang, & Le, 2020) and Path Aggregation Network (PAN)

(S. Liu, Qi, Qin, Shi, & Jia, 2018), etc. In YOLOv5, the model neck is PANet.

 Model head is used for performing the final detection. In this part, the anchor boxes

are applied on features and output final vectors with class probabilities, objectiveness

31

scores and bounding boxes. The model head of YOLOv5 follows the previous YOLOv3

and YOLOv4.

 The choice of activation functions is vital in deep neural network. Recently, there

are a lot of activation functions available like Leaky ReLU (LReLU) (Maas, Hannun, &

Ng, 2013), mish, etc. The chosen activation functions in YOLOv5 are LReLU and

Sigmoid. Specifically, the LReLU is added in the middle/hidden layers and the Sigmoid

is added in the final detection layer.

 In terms of ReLU, it was proposed to alleviate potential problems caused by zero

gradient, which allows a small and non-zero gradient presented if the unit is not active

(Maas et al., 2013),

 ℎ(𝑖) = max(𝑤(𝑖)𝑇𝑥, 0) = {𝑤(𝑖)𝑇𝑥 𝑤(𝑖)𝑇𝑥 > 0
0.01𝑤(𝑖)𝑇𝑥 𝑒𝑙𝑠𝑒

 (3.1)

where 𝑤(𝑖) represents the weight vector of the 𝑖𝑡ℎ middle layer and 𝑥 is the input. The

introduction of Sigmoid activation function can refer to Section 2.3.3 in Chapter 2. As for

the optimization function in YOLOv5, we have two options, including Stochastic

Gradient Descent (SGD) and Adam. The default optimizer is SGD, but it can be

transferred to Adam by the command “-- adam”.

 The last emphasized function is the loss function or cost function. In YOLOv5, the

loss is computed based on three values: objectiveness score, class probabilities and

bounding box regression score. YOLOv5 imports the Binary Cross-Entropy with Logits

Loss (BCELoss) from PyTorch for calculating the compound loss. This method combines

a Sigmoid layer with the BCELoss in one single class, which is more numerically stable

than adding the BCELoss after a Sigmoid layer. The unreduced loss can be described as:

 𝑙(𝑥, 𝑦) = 𝐿 = {𝑙1, … , 𝑙𝑁}𝑇 (3.2)

 𝑙𝑛 = −𝑊𝑛[𝑦𝑛 ∙ log 𝜎(𝑥𝑛) + (1 − 𝑦𝑛) ∙ log(1 − 𝜎(𝑥𝑛))] (3.3)

32

Where N is the batch size. When the reduction is not none, the error of a reconstruction

can be measured by

 𝑙(𝑥, 𝑦) = {
𝑚𝑒𝑎𝑛(𝐿), 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = ′𝑚𝑒𝑎𝑛′

𝑠𝑢𝑚(𝐿), 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = ′𝑠𝑢𝑚′
 (3.4)

 While predicting the multilabel classification the loss can be expressed as follows,

which achieves by adding weights into positive instances.

 𝑙𝑐(𝑥, 𝑦) = 𝐿𝑐 = {𝑙1,𝑐, … , 𝑙𝑁,𝑐}
𝑇

 (3.5)

 𝑙𝑛,𝑐 = −𝑊𝑛,𝑐 [𝑝𝑐𝑦𝑛,𝑐 ∙ log 𝜎(𝑥𝑛,𝑐) + (1 − 𝑦𝑛,𝑐) ∙ log (1 − 𝜎(𝑥𝑛,𝑐))] (3.6)

where c is the class number. For example, c = 1 means the single label classification and

n is the number of the instances in the batch as well as 𝑝𝑐 is the weight of positive

instances for the c class.

3.4.3 Experimental Environment and Parameters for YOLOv5

In this section, we will introduce how we set up the experimental environment and be

explicit about the parameters of training YOLOv5. Firstly, YOLOv5 was developed by

Python. Different versions of dependencies should be installed to support the

implementation of our project. The PyTorch version should be ≥ 1.6, Python version ≥

3.8 and CUDA version 10.2. The details of requirements for this project are provided in

Table 3.2. Furthermore, this experiment was performed on Colab using Tesla V100-

SXM2-16GB.

33

Table 3.4 The details of the installed dependencies for YOLOv5

 Secondly, a customized . 𝑦𝑎𝑚𝑙 file should be created to describe our dataset and

this file is saved under . 𝑑𝑎𝑡𝑎 directory which is responsible for storing the dataset

description file.

 The parameters for training YOLOv5 are shown in Table 3.5. In addition to the same

parameters as the Faster R-CNN, several other parameters are used in this experiment,

such as giou which is the GIoU loss gain, cls which is the classification loss gain, cls_pw

which is the classification of BCELoss positive weight and obj_pw which is objectness

BCELoss positive weight as well as the loss gain of objectness obj.

34

Table 3.5 The parameters for training YOLOv5

3.5 Evaluation Methods

To comprehensively evaluate the performance of YOLOv5 and Faster R-CNN, six

metrics are considered in this traffic-sign recognition task. They are Generalized

Intersection over Union (GIoU), the predicted probability of Objectness, Classification,

Precision and Recall as well as mean Average Precisions with multiple IoU.

 GIoU is the optimized version of Intersection over Union (IoU), which is the most

commonly used metric used to justify the performance of detectors (Rezatofighi et al.,

2019). IoU is used to determine true positives and false positives among predicted results.

In our experiment, we chose the optimized IoU (GIoU) mainly because it overcomes the

weakness of IoU optimization while appearing non-overlapped bounding boxes.

Specifically, if |𝐴 ∩ 𝐵| = 0, 𝐼𝑜𝑈(𝐴, 𝐵) = 0 . In this situation, the IoU is not able to

reflect whether two bounding boxes are far from or vicinal each other. The GIoU

mitigates this problem mainly from two perspectives (Rezatofighi et al., 2019):

• IoU is regarded as a distance (e.g. 𝐿𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈), which fulfils all properties

of a metric.

35

• IoU is constant confronting with the problem scale. This can keep two arbitrary

shapes A and B separated from the scale of their space.

 The GIoU is described by the following eq. (3.7).

 𝐺𝐼𝑜𝑈 = 𝐼𝑜𝑈 −
|𝐶\(𝐴 ∪ 𝐵)|

|𝐶|
 (3.7)

 Objectness metric reflects how likely a bounding box contains a targeted object

(traffic sign in this case) (Kuo, Hariharan, & Malik, 2015). As we know, the output of the

model in YOLO family is a set of boundary boxes and each box contains one box

confidence score. The objectness is equivalent to the confidence score, which determines

how accurate the boundary box is.

 Classification accuracy (CA) is defined as the number of correct predictions divided

by the total number of predictions. The following expression is used to calculate this score:

 𝐶𝐴 =
𝑡𝑟𝑢𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑡𝑟𝑢𝑒_𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 (3.8)

 Precision is a metric that justifies the performance based on the specific class,

especially when the distribution of dataset is unbalanced. This metric is regarded as a

supplementary of CA due to the weakness of CA performing on uneven data. Precision

is defined as

 𝐴𝐶𝐶 =
𝑡𝑟𝑢𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (3.9)

 Recall is another important metric that indicates accuracy of the model. It refers to

the percentage of the results correctly categorized by the model. Recall is expressed by

 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒_𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (3.10)

 Mean Average Precision (mAP) is the modified version of Average Precision (AP),

which is one of the most popular method for measuring the performance of object

detectors such as YOLO, Faster R-CNN and SSD, etc. It is computed by the mentioned

36

metrics Precision and Recall (Henderson & Ferrari, 2016). The general definition of AP

is searching for the area under the precision-recall curve. The range of recall and precision

is always between 0 and 1, which makes the value of AP is within (0, 1).

 𝐴𝑃 = ∫ 𝑝(𝑟)𝑑𝑟 (3.11)

The mAP just simply takes the mean of average precision, which is finally expressed by

 𝑚𝐴𝑃 =
1

𝑐
∑

𝑡𝑟𝑢𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

 (3.12)

where c is the class number that is 7 in this case. Generally, IoU is set to larger than 0.5.

The mAP with multiple IoU in this experiment is employed. The IoU thresholds increase

from 0.5 to 0.95.

37

Chapter 4

Results

In this chapter, our experimental results will be

demonstrated. In addition, a comparison between two

chosen model will be conducted based on the accuracy of

them for recognizing traffic signs in NZ.

38

4.1 Data Description

After initially removed the redundant and poor-quality images, the total number of our

dataset (NZ Traffic Signs 3K) is 3,439 of the 7 classes. All the images in the dataset are

in pixel size 1080×1440. The distribution of all the classes are illustrated in Figure 4.1.

Figure 4.1 The distribution of seven classes in our dataset

 In Figure 4.1, we see that the distribution of the data is relatively satisfactory except

the class “Stop” that has the minimum number of instances comparing to other classes in

the dataset. A balanced distribution across all the classes could not only benefit the

performance of two models over all the classes but also the effectiveness of the

comparison results between two models.

 In Chapter 1, one of our main objectives in this project is to evaluate the performance

of neural networks on recognizing the traffic signs in small sizes. Hence, we concerned

more about the various sizes recognition of traffic signs in NZ. More clearly, we used a

scatter plot to show the density of different sizes of traffic signs in our dataset.

39

Figure 4.2 The density of different sizes of traffic signs in our dataset

 Each dot in the scatter represents a traffic-sign sample in the dataset and (𝑥, 𝑦) is

practical pixel location in the corresponding image. As we see, most of pixel sizes are

gathering in the pixel size of (200,200) , which is expected for training the chosen

models to recognize smaller size objects. Besides, the positions of all the samples in the

images are shown in Figure 4.3.

Figure 4.3 The positions of all samples in the images

40

 In the training phase, we split our data into two parts 80% for training and 20% for

validation.

Figure 4.4 The distribution of our data for training and validation

4.2 Experiment Results of Faster R-CNN

In this experiment, we used the model Faster R-CNN as the detector and VGG16 as the

classifier to perform the traffic-sign recognition task. The experimental results are

provided in Table 4.1. We evaluate the performance of the Faster R-CNN with VGG16

mainly using three measures, including Precision, Recall and Mean Average Precision

with IoU 0.5 (𝑚𝐴𝑃@0.5). Fortunately, the accuracy of predictions is relatively good

across seven classes.

Table 4.1 Experimental results for Faster R-CNN across seven classes

 The Faster R-CNN has shown an obvious strength in predicting traffic signs. It is

worthy to mention that almost all the evaluation measures are over 0.9 except the

prediction of Keep Left with the Precision score 0.899. The two classes with the highest

precision score are Stop and Road Diverges, which is mainly due to the extremely distinct

features exist in the design of these types of signs.

mailto:𝑚𝐴𝑃@0.5

41

 In order to evaluate the performance of the model on smaller traffic signs, we also

performed another experiment and justify the results from this perspective. The same

measures are applied to estimate the prediction results.

Table 4.2 Prediction results of various sizes of the traffic signs based on Faster R-CNN

 In Figure 4.2, we collected a large percentage of small size traffic signs in our dataset.

Such amount of data guarantees the performance of the Faster R-CNN on recognizing

small size objects in this experiment. The model achieves the highest precision for

recognizing the traffic signs in pixel sizes [200, 400]. Although the lowest accuracy score

appearing while recognition the traffic signs in smaller sizes (<=200 pixels), the score of

this size category is still over 0.9, which is an impressive result of a CNN for recognizing

objects.

 After illustrating the specific results across different categories from the two

perspectives, we also performed the Faster R-CNN on the whole dataset rather than solely

training it according to different categories. The five measures mentioned in Chapter 3

(GIoU, Objectness, Classification, Precision, Recall and mAP with multiple IoU) are used

to estimate the overall performance of the model. Those metric scores both in the process

of training and validation are shown in Figure 4.5.

 After trained 200 epochs, an obvious trend of convergence both shown in the process

of training and validation for the losses of GIoU, Objectness and Classification. In terms

of GIoU loss, the final score of it converges to less than 0.02. Incorporating the GIoU loss

can improve the model performance on datasets (Rezatofighi et al., 2019). The objectness

loss is 0.005 during the training, and even reaches to zero while validating the model.

42

Impressively, the Classification loss almost reaches zero both in the processes of training

and validation.

Figure 4.5 Three types of losses for Faster R-CNN

43

 In Figure 4.6, the Precision-Recall curves are consistent, which means the scores of

Precision increase along with the increase of Recall scores. The consistence between two

curves affirms the good performance of the Faster R-CNN in the traffic-sign recognition.

Moreover, the scores of mAP with 0.5 threshold of IoU are significantly converging to 1.

The mAP values with multiple IoU also converge to an impressive value 0.8. Finally, we

tested the performance of the Faster R-CNN on several images. The predicted results are

shown in Figure 4.7 and Figure 4.8.

44

Figure 4.7 Several tested images with class index

Figure 4.8 Several tested images with confidence scores

4.3 Experimental Results of YOLOv5

In this experiment, we chose YOLOv5 to perform with and it is a newly released end-to-

end network that is different from the Faster R-CNN. Similarity, we conducted the model

training based on the categized of all seven classes in our dataset (NZ Traffic Signs 3K).

The experimental results are provided in Table 4.3.

45

Table 4.3 Experimental results for YOLOv5 across seven classes

 In Table 4.3, the recognition result of Stop signs remains a high accuracy (0.952),

even though it has a minimum number of samples in the dataset. Surprisingly, the

predicted accuracy of Keep Left has a slightly increase (0.02) comparing to its accuracy

rate reached by the Faster R-CNN. As for the rest of traffic-sign recognition, the output

of the YOLOv5 maintains a high level of accuracy rate and impressively all the results

are over 0.9.

Table 4.4 Prediction results of various sizes of the traffic signs based on YOLOv5

 In the interest of exploring the performance of networks on recognizing small size

of traffic signs, we similarly performed an experiment according to various sizes of traffic

signs. While predicting the traffic signs with less than 200 pixels, the YOLOv5 still

achieved a fairly good performance. The YOLOv5 outputs the best results (0.976) while

recognizing the traffic signs with medium sizes [200, 400] in this case. The accuracy rate

has a slightly decrease comparing to the Faster R-CNN, but it is still over 0.88.

46

 An overall performance of the YOLOv5 also was justified in this case. The

distribution of training and validation sets are invariant, 80% for training and 20% for

validation. The evaluation is conducted according to the same measures as the Faster R-

CNN, including different losses, Precision and Recall as well as the mAP with multiple

IoU.

Figure 4.9 Three types of losses for YOLOv5

 On the one hand, comparing to the results of the Faster R-CNN, there is no big

difference between the losses of the Faster R-CNN and YOLOv5 except the loss score of

Objectness. The loss of Objectness is around 0.005 which is much lower than the loss

(0.025) achieved by the Faster R-CNN. The objectness loss is defined to evaluate how

bad our model identifies the positions and object class during the processes of training

and validation (Kong et al., 2017). In this case, the YOLOv5 gains a better result than the

Faster R-CNN.

47

Figure 4.10 The metrics for evaluating the overall performance of YOLOv5

Figure 4.11 Several tested images with class index

48

 On the other hand, Precision score is slightly lower that the Faster R-CNN but the

curve of it has more fluctuation, which means the trend of convergence is not stable. In

other words, we can say that the Faster R-CNN achieved a better prediction on

recognizing the traffic signs in our dataset. Finally, there is no big difference in mAP

scores between the two models. At the end of the experiment, we use some of images to

test the overall performance of the YOLOv5. The details are shown in Figure 4.11 and

4.12.

Figure 4.12 Several tested images with confidence scores

49

 Chapter 5

Analysis and Discussions

In this chapter, a comprehensive analysis and discussion will be

conducted according to the experimental results for the two

models. The pros and cons of the two models for traffic-sign

recognition will be identified. Besides, the limitations of this

project will be also clarified at the end.

50

5.1 Analysis and Discussion

After comparing the results of two models, we concluded that the Faster R-CNN has

achieved a higher accuracy rate than the YOLOv5 for recognizing the traffic signs in NZ.

The conclusion was summarized according to the loss scores and precision related metrics.

The Faster R-CNN has achieved lower loss scores while gaining higher precision related

scores, such as the consistent changing trend of Precision and Recall scores and mAP

values.

 However, in the testing phase, we noticed that the end-to-end model YOLOv5 is

more efficient when it was processing the data of inference. The test video in the inference

is composed of 2,074 frames. The processing time for per frame of the YOLOv5 is only

around 0.011 seconds but the time consumption for the Faster R-CNN (37 seconds) is so

much longer than the YOLOv5. From the perspective of time consumption, the YOLOv5

is a more reasonable choice for performing recognition tasks.

 In summary, the Faster R-CNN is a much accurate model for recognizing traffic

signs without considering the time consumption. The YOLOv5 is a better one when the

tasks concern more about the data processing time.

5.2 Limitations of This Project

The limitations of this project are mainly reflected in four aspects. Firstly, our dataset

does not cover all the classes of traffic signs in New Zealand, which is mainly due to the

limited time and physical resources. Thus, only seven the most common used traffic signs

are contained in our dataset for training networks for recognition tasks. The practicability

of this project will suffer from the partial types of traffic-sign data and the project

temporally stuck in the experimental phase.

 Secondly, though the experiments in this project were performed both on the two-

stage and on-stage neural networks (Faster R-CNN with VGG16 and YOLOv5), there are

51

still a lot of models that are worthy to be estimated so that a more comprehensive results

will be summarized and the conclusions will be more instructional in this field.

 Thirdly, there are only several metrics used to evaluate the performance of the two

models. Several meaningful measures, such as F1 score and the areas under Precision-

Recall curve, could be considered as the additional measures to help us choose

appropriate models for recognizing traffic signs.

 Lastly, we only explored this problem from a limited researching angle. There are a

lot of real-world difficulties while recognizing traffic signs like we mentioned at the

beginning of this report, including illuminant issue, rotations, partial occasions and

physical damages, etc. However, in this project, we only focused on tackling with the

problem of recognizing smaller size of traffic signs. There are still a lot of researching

spaces in this field to be mined.

52

Chapter 6

Conclusion and Future Work

In this chapter, we will draw a conclusion for the project based

on our experimental results and analysis. In addition, the future

research directions will be pointed out.

53

6.1 Conclusion

One of the objectives of this report is to propose a customized benchmark for recognizing

the traffic signs in NZ since there is no benchmarks that can fit into traffic-sign

recognition tasks for all counties. Our dataset consists of 3,436 images in total and

contains seven classes of traffic signs of NZ. The distribution of these classes is more

even comparing to the most popular benchmark, German Traffic Sign Recognition

Benchmark (GTSRB), which is an improvement directly contributed to the distinct

performance of the two chosen models. Most importantly, we trained CNN models to

recognize small size traffic signs, thus there are sufficient instances in smaller sizes in our

dataset. The results of two models which performed based on our dataset are promising

and impressive.

 Another objective of this report is to evaluate the neural networks for this task. We

evaluated the performance of a one-stage model (YOLOv5) and a two-stage model

(Faster R-CNN with VGG16). According to the comparison between the two models, we

concluded that the Faster R-CNN is a better option for TSR without considering the time

consumption as the higher-level accuracy reached by it. YOLOv5 is more sufficient and

important there is a slightly degrade of accuracy rate comparing to the Faster R-CNN.

6.2 Future Work

 Recently, there is redundant research work emerging for recognizing traffic signs for

handling with the real-world problems. On the one hand, in future, we will complete our

benchmark by covering more types of the traffic signs in NZ so that we can make this

project more instructional in this field. On the other hand, more object recognition

techniques will be employed into TSR. For example, recognizing objects utilizes

heatmaps methods. Finally, more evaluation measures also should be used to estimate the

performance of different models.

54

References

Al-Qizwini, M., Barjasteh, I., Al-Qassab, H., & Radha, H. (2017). Deep learning

algorithm for autonomous driving using googlenet. In IEEE Intelligent Vehicles

Symposium (IV).

Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017). Understanding of a convolutional

neural network. In International Conference on Engineering and Technology

(ICET).

Bochinski, E., Senst, T., & Sikora, T. (2017). Hyper-parameter optimization for

convolutional neural network committees based on evolutionary algorithms. In

IEEE International Conference on Image Processing (ICIP).

Chen, R.-C. (2019). Automatic license plate recognition via sliding-window DarkNet-

YOLO deep learning. Image and Vision Computing, 87, 47-56.

Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In

IEEE Conference on Computer Vision and Pattern Recognition (CVPR'05).

Everingham, M., Van Gool, L., Williams, C. K., Winn, J., & Zisserman, A. (2010). The

pascal visual object classes (VOC) challenge. International Journal of Computer

Vision, 88(2), 303-338.

Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow:

Concepts, Tools, and Techniques to build intelligent systems. O'Reilly Media.

Giusti, A., Cireşan, D. C., Masci, J., Gambardella, L. M., & Schmidhuber, J. (2013). Fast

image scanning with deep max-pooling convolutional neural networks. In IEEE

International Conference on Image Processing.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image

recognition. In IEEE Conference on Computer Vision and Pattern Recognition.

55

Henderson, P., & Ferrari, V. (2016). End-to-end training of object class detectors for mean

average precision. In Asian Conference on Computer Vision.

Hong-meng, L., Di, Z., & Xue-bin, C. (2017). Deep learning for early diagnosis of

Alzheimer's disease based on intensive AlexNet. Computer Science, 44(6), 50-59.

Jégou, S., Drozdzal, M., Vazquez, D., Romero, A., & Bengio, Y. (2017). The one hundred

layers tiramisu: Fully convolutional densenets for semantic segmentation. In

IEEE Conference on Computer Vision and Pattern Recognition Workshops.

Jin, K. H., McCann, M. T., Froustey, E., & Unser, M. (2017). Deep convolutional neural

network for inverse problems in imaging. IEEE Transactions on Image

Processing, 26(9), 4509-4522.

Kong, T., Sun, F., Yao, A., Liu, H., Lu, M., & Chen, Y. (2017). Ron: Reverse connection

with objectness prior networks for object detection. In IEEE Conference on

Computer Vision and Pattern Recognition.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep

convolutional neural networks. In Advances in Neural Information Processing

Systems.

Kuo, W., Hariharan, B., & Malik, J. (2015). Deepbox: Learning objectness with

convolutional networks. In IEEE International Conference on Computer Vision.

Larsson, F., & Felsberg, M. (2011). Using Fourier descriptors and spatial models for

traffic sign recognition. In Scandinavian Conference on Image Analysis.

Liang, M., & Hu, X. (2015). Recurrent convolutional neural network for object

recognition. In IEEE Conference on Computer Vision and Pattern Recognition.

Liang, M., Yuan, M., Hu, X., Li, J., & Liu, H. (2013). Traffic sign detection by ROI

extraction and histogram features-based recognition. In International Joint

Conference on Neural Networks (IJCNN).

56

Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature

pyramid networks for object detection. In IEEE Conference on Computer Vision

and Pattern Recognition.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object

detection. In IEEE International Conference on Computer Vision.

Liu, B., Zhao, W., & Sun, Q. (2017). Study of object detection based on Faster R-CNN.

In Chinese Automation Congress (CAC).

Liu, S., Qi, L., Qin, H., Shi, J., & Jia, J. (2018). Path aggregation network for instance

segmentation. In IEEE Conference on Computer Vision and Pattern Recognition.

Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve neural

network acoustic models. In ICML.

Malik, R., Khurshid, J., & Ahmad, S. N. (2007). Road sign detection and recognition

using colour segmentation, shape analysis and template matching. In

International Conference on Machine Learning and Cybernetics.

Mao, X., Hijazi, S., Casas, R., Kaul, P., Kumar, R., & Rowen, C. (2016). Hierarchical

CNN for traffic sign recognition. In IEEE Intelligent Vehicles Symposium (IV).

Mogelmose, A., Trivedi, M. M., & Moeslund, T. B. (2012). Vision-based traffic sign

detection and analysis for intelligent driver assistance systems: Perspectives and

survey. IEEE Transactions on Intelligent Transportation Systems, 13(4), 1484-

1497.

Nagi, J., Ducatelle, F., Di Caro, G. A., Cireşan, D., Meier, U., Giusti, A., . . . Gambardella,

L. M. (2011). Max-pooling convolutional neural networks for vision-based hand

gesture recognition. In IEEE International Conference on Signal and Image

Processing Applications (ICSIPA).

Park, J.-G., & Kim, K.-J. (2013). Design of a visual perception model with edge-adaptive

57

Gabor filter and support vector machine for traffic sign detection. Expert Systems

with Applications, 40(9), 3679-3687.

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified,

real-time object detection. In IEEE Conference on Computer Vision and Pattern

Recognition.

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time object

detection with region proposal networks. In Advances in Neural Information

Processing Systems.

Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., & Savarese, S. (2019).

Generalized intersection over union: A metric and a loss for bounding box

regression. In IEEE Conference on Computer Vision and Pattern Recognition.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., . . . Bernstein, M.

(2015). Imagenet large scale visual recognition challenge. In International

Journal of Computer Vision, 115(3), 211-252.

Scherer, D., Müller, A., & Behnke, S. (2010). Evaluation of pooling operations in

convolutional architectures for object recognition. In International Conference on

Artificial Neural Networks.

Sermanet, P., & LeCun, Y. (2011). Traffic sign recognition with multi-scale convolutional

networks. In International Joint Conference on Neural Networks.

Stallkamp, J., Schlipsing, M., Salmen, J., & Igel, C. (2011). The German traffic sign

recognition benchmark: A multi-class classification competition. In International

Joint Conference on Neural Networks.

Stallkamp, J., Schlipsing, M., Salmen, J., & Igel, C. (2012). Man vs. computer:

Benchmarking machine learning algorithms for traffic sign recognition. Neural

Networks, 32, 323-332.

58

Suárez-Paniagua, V., & Segura-Bedmar, I. (2018). Evaluation of pooling operations in

convolutional architectures for drug-drug interaction extraction. BMC

bioinformatics, 19(8), 39-47.

Sun, M., Song, Z., Jiang, X., Pan, J., & Pang, Y. (2017). Learning pooling for

convolutional neural network. Neurocomputing, 224, 96-104.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the

inception architecture for computer vision. In IEEE conference on computer

vision and pattern recognition.

Tan, M., Pang, R., & Le, Q. V. (2020). Efficientdet: Scalable and efficient object detection.

In IEEE/CVF Conference on Computer Vision and Pattern Recognition.

Valueva, M. V., Nagornov, N., Lyakhov, P. A., Valuev, G. V., & Chervyakov, N. I. (2020).

Application of the residue number system to reduce hardware costs of the

convolutional neural network implementation. Mathematics and Computers in

Simulation, 177, 232-243.

Wang, C.-Y., Mark Liao, H.-Y., Wu, Y.-H., Chen, P.-Y., Hsieh, J.-W., & Yeh, I.-H. (2020).

CSPNet: A new backbone that can enhance learning capability of CNN. In

IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.

Wang, G., Ren, G., & Quan, T. (2013). A traffic sign detection method with high accuracy

and efficiency. In International Conference on Computer Science and Electronics

Engineering.

Wang, G., Ren, G., Wu, Z., Zhao, Y., & Jiang, L. (2014). A fast and robust ellipse-

detection method based on sorted merging. The Scientific World Journal.

Wu, S., Li, X., & Wang, X. (2020). IoU-aware single-stage object detector for accurate

localization. Image and Vision Computing, 103911.

Wu, Y., Liu, Y., Li, J., Liu, H., & Hu, X. (2013). Traffic sign detection based on

59

convolutional neural networks. In International Joint Conference on Neural

Networks (IJCNN).

Wu, Z., Shen, C., & Van Den Hengel, A. (2019). Wider or deeper: Revisiting the resnet

model for visual recognition. Pattern Recognition, 90, 119-133.

Xie, L., Wang, J., Wei, Z., Wang, M., & Tian, Q. (2016). Disturblabel: Regularizing CNN

on the loss layer. In IEEE Conference on Computer Vision and Pattern

Recognition.

Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual

transformations for deep neural networks. In IEEE Conference on Computer

Vision and Pattern Recognition.

Xu, L., Ren, J. S., Liu, C., & Jia, J. (2014). Deep convolutional neural network for image

deconvolution. In Advances in Neural Information Processing Systems.

Yang, Y., Luo, H., Xu, H., & Wu, F. (2015). Towards real-time traffic sign detection and

classification. IEEE Transactions on Intelligent Transportation Systems, 17(7),

2022-2031.

Yang, Y., & Wu, F. (2014). Real-time traffic sign detection via color probability model

and integral channel features. In Chinese Conference on Pattern Recognition.

Yao, C., Wu, F., Chen, H.-j., Hao, X.-l., & Shen, Y. (2014). Traffic sign recognition using

HOG-SVM and grid search. In International Conference on Signal Processing

(ICSP).

Zaklouta, F., & Stanciulescu, B. (2014). Real-time traffic sign recognition in three stages.

Robotics and Autonomous Systems, 62(1), 16-24.

Zhang, H., Goodfellow, I., Metaxas, D., & Odena, A. (2019). Self-attention generative

adversarial networks. In International Conference on Machine Learning.

Zhang, J., Huang, M., Jin, X., & Li, X. (2017). A real-time Chinese traffic sign detection

60

algorithm based on modified YOLOv2. Algorithms, 10(4), 127.

Zhu, Y., Zhang, C., Zhou, D., Wang, X., Bai, X., & Liu, W. (2016). Traffic sign detection

and recognition using fully convolutional network guided proposals.

Neurocomputing, 214, 758-766.

Zhu, Z., Liang, D., Zhang, S., Huang, X., Li, B., & Hu, S. (2016). Traffic-sign detection

and classification in the wild. In IEEE Conference on Computer Vision and

Pattern Recognition.

	Abstract
	Figure 2.1 Max and average pooling with a filter of size 2×2 and stride 2 …………....11
	List of Tables
	Attestation of Authorship
	Acknowledgment
	First of all, I would like to appreciate the guidance of my supervisor Wei Qi Yan. Dr. Yan’s guidance played an extremely pivotal role in the process of completing my final project. He not only gave me professional guidance but also provided a lot of ...
	Secondly, I am very grateful to my university, the Auckland University of Technology (AUT), for delivering a supportive and positive academic atmosphere while the Covid-19 is prevalent.
	Finally, I sincerely thank my parents for their financial support, caring and understanding while finishing my postgraduate degree.
	Chapter 1
	Introduction
	1.1 Background and Motivation
	1.2 Research Questions
	1.3 Contribution
	1.4 Objectives of This Report
	1.5 Structure of This Report

	Chapter 2
	Literature Review
	2.1 Introduction
	2.2 Traditional Traffic Sign Detection Solutions
	2.2.1 Using Feature Extraction Methods
	2.2.2 Using Machine Learning

	2.3 Convolutional Neural Network
	2.3.1 Convolutional Layer
	2.3.2 Pooling Layer
	2.3.3 ReLU Layer
	2.3.4 Fully connected layer
	2.3.5 Loss Layer

	2.4 Typical Convolutional Neural Networks
	2.4.1 AlexNet
	2.4.2 VGGNet
	2.4.3 ResNet

	2.5 Object Detection Models
	2.5.1 Faster R-CNN
	2.5.2 You Only Look Once (YOLO)

	Chapter 3 Methodology
	3.1 Traffic-Sign Recognition (TSR) in NZ
	3.2 Data Collection
	3.3 Research Design for Training Faster R-CNN
	3.3.1 Dataset Structure for Training Faster R-CNN
	3.3.2 Experimental Environment and Parameters for Faster R-CNN

	3.4 Research Design for Training YOLOv5
	3.4.1 Dataset Structure for Training YOLOv5
	3.4.2 Architecture and Functions of YOLOv5 Model
	3.4.3 Experimental Environment and Parameters for YOLOv5

	3.5 Evaluation Methods

	Chapter 4 Results
	4.1 Data Description
	4.2 Experiment Results of Faster R-CNN
	4.3 Experimental Results of YOLOv5

	Chapter 5 Analysis and Discussions
	5.1 Analysis and Discussion
	5.2 Limitations of This Project

	Chapter 6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	References

