
   

 

 

 

 

Traffic-Sign Recognition Using Deep 

Learning 
 

 

 

 

Zhongbing Qin 

 

 

A project report submitted to the Auckland University of Technology 

in partial fulfillment of the requirements for the degree of 

Master of Computer and Information Sciences (MCIS) 

 

 

 

 

2020 

School of Engineering, Computer & Mathematical Sciences 

 

 

 



 I 

Abstract 

Traffic-sign recognition (TSR) has been an essential part of driver-assistance systems, 

which is able to assist drivers in avoiding a vast number of potential hazards and improve 

the experience of driving. However, the TSR is a realistic task that is full of constraints, 

such as visual environment, physical damages, and partial occasions, etc. In order to deal 

with such constrains, convolutional neural networks (CNN) are widely used to extract the 

features of traffic signs and classify them into corresponding classes.  

In this project, we initially created a benchmark (NZ Traffic Signs 3K) for the traffic-sign 

recognition in New Zealand. In order to determine which deep learning models are the 

most suitable one for the TSR task, we chose two kinds of models to perform with deep 

learning models: Faster R-CNN and YOLOv5. According to the scores of various metrics, 

we summarized the pros and cons of the picked models for the TSR task.  
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Chapter 1  

Introduction 

 

 

This chapter mainly consists of five sections. In the first section, 

we will introduce background information of traffic sign detection 

and the inspiration of this project. Next, the research questions 

will be set forth. Then, we will list our contributions of this project 

and explicate them on details. In the last two sections, the 

objectives and the format of this report will be elucidated, 

respectively.  
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1.1 Background and Motivation 

Traffic scene understanding is an important topic in the field of computer vision and 

intelligent systems. Traffic signs effectively assist drivers in the process of driving and 

keep them drive more safely as they are designed to inform drivers of current road 

situations and potential hazards. These signs are normally rigid and simple shapes, such 

as circles, triangles and regular polygons, and with eye-catching colors (Zhu et al., 2016). 

Hence, traffic sign recognition has become more and more valuable for driver-assistance 

systems, highway maintenance and especially for self-driving vehicles (Mogelmose, 

Trivedi, & Moeslund, 2012).  

    Generally, there are two steps in a typical traffic sign recognition. The first one is to 

locate and get size information of traffic signs in natural scene images, which is known 

as traffic sign detection. The second step is to categorize detected traffic signs into the 

corresponding sub-classes, which is known as traffic sign classification, and this step is 

generally completed manually. Although traffic sign recognition has gained a plethora of 

popularity in driver assistant system, there are still numerous difficulties for identifying 

real-world traffic signs by using computer algorithms due to various size of targets ( Zhu 

et al., 2016), color deterioration and partial occlusion (Yang, Luo, Xu, & Wu, 2015).  

    In order to deal with these obstacles, many approaches and algorithms have been 

proposed. In the past, traffic sign detection mainly relied on traditional object detection 

algorithms and the pipeline of traffic sign detection normally utilized hand-crafted 

features to extract region proposals, and then combined classifiers to filter out the 

negatives. Recently, deep learning methods are emerging, and various cutting-edge 

approaches have been widely applied into this area, such as deep convolutional networks 

(CNNs). CNNs have brought possibility of learning features from giant amount of data 

without preprocessing, which avoids the process of designing hand-crafted features and 

absorbs more generalized features (Zhang, Huang, Jin, & Li, 2017). Besides, CNN has 

been already set forth as an object classifier in machine learning which have been 

leveraged on traffic sign classification.  
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    Two benchmarks are widely accepted to evaluate object detection performance, 

including PASCAL VOC (Everingham, Van Gool, Williams, Winn, & Zisserman, 2010) 

and ImageNet ILSVRC (Russakovsky et al., 2015). In these datasets, objects typically 

occupy a large proportion of each image, the size of bounding box is over 20% of the 

images, but visual objects of interest only occupy small fractions of corresponding images. 

For example, traffic signs are captured while driving and such small size of objects will 

have a huge impact on the performance yield by choosing algorithms. A typical traffic 

sign in a real-world image might be around 80×80 pixels, they are just approximately 0.2% 

of the image. Thus, it is essential to reconsider the evaluation performed benchmark for 

those tasks requiring classification and detection of small objects of interest.   

    In the development of traffic sign recognition, German traffic-sign detection and 

classification benchmarks brought in a vast majority of benefits for evaluation across 

various algorithms, which were not comparable until the release of the benchmarks. 

German Traffic Sign Detection Benchmark (GTSDB) (Stallkamp, Schlipsing, Salmen, & 

Igel, 2012) and German Traffic Sign Recognition Benchmark (GTSRB) (Stallkamp, 

Schlipsing, Salmen, & Igel, 2011) presented two public extensive and available datasets 

and nowadays there are several methods have achieved high accuracy rate based on these 

datasets. Besides, other datasets are also available in public recent years, such as LISA 

traffic sign dataset (LISATSD) (Mogelmose et al., 2012), Swedish Traffic Signs Dataset 

(STSD) (Larsson & Felsberg, 2011) and Chinese Traffic Sign Dataset (CTSD) (Yang et 

al., 2015). The GTSRB and GTSDB datasets are the most popular ones for recognizing 

traffic signs and many methods have achieved great success on them.  

1.2 Research Questions 

In order to effectively recognize real-world traffic signs, this report aims to utilize the 

state-of-the-art deep learning methods to detect and classify signs, and then evaluate their 

performance based on the comparison results. Based on the above purposes, the research 

questions are proposed as follows: 
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(1) Which deep learning algorithms are suitable for recognizing various sizes of real-

world traffic signs? 

(2) What detection and classification algorithm systems will fit for our project? 

    The fundamental idea of this project is to complete traffic sign recognition in New 

Zealand. However, due to the lack of customized dataset for recognizing New Zealand’s 

traffic signs, it is necessary to create a partial dataset in this case. Several deep learning 

algorithms will be chosen to deal with this problem. The pros and cons of them will be 

presented based on the evaluation results.  

1.3 Contribution 

The contributions of this report are shown as follows: 

• In order to effectively recognize New Zealand’s traffic signs, we have created a 

new and realistic traffic-sign benchmark, which contains partial traffic sign 

classes because of physical and time limitations. The benchmark is composed of 

seven traffic sign categories and various sizes of real-world signs were captured. 

The distinction of this benchmark is that it covers number of small-size objects, 

which cannot be identified in off-the-shelf datasets. We call this benchmark NZ-

Traffic-Signs 3K. 

• We conducted an experiment for traffic sign recognition on the latest deep learning 

model (YOLOV5) and accomplish a comparison across the applied algorithms. 

The evaluation results illustrated the robustness, which will benefit the research 

of New Zealand traffic scene understanding.  

1.4 Objectives of This Report 

Overall, the ultimate objective of this report is to complete the customized traffic-sign 

recognition in New Zealand and figure out which state-of-art networks better fit into this 

project.  
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    Firstly, so as to recognize traffic signs in NZ, the dataset generation process will be 

emphasized since the quality of original data will have a huge impact on the training 

results of networks and models.   

    Secondly, the tuning process of detectors and classifiers will be introduced, and we 

will adjust the neural networks from the following perspectives: (1) Experiments 

performed on different algorithms (Faster R-CNN and YOLOv5), (2) Validation and 

evaluation based on the chose models, (3) Parameter tuning process.  

    Finally, this report will summary the pros and cons across the applied algorithm 

systems and discover the best system for traffic-sign recognition according to the New 

Zealand traffic scene.  

1.5 Structure of This Report 

The rest of this report is structured as follows. In Chapter 2, we will conduct a 

comprehensive literature review to identify the current studies and technologies that are 

corresponding to object detection and classification. In Chapter 3, the methodology in 

this project will be introduced from three aspects, including the benchmark generation 

methods, experiment designs and evaluation metrics. In Chapter 4, the experiment results 

will be presented and illustrated. In Chapter 5, we will discuss and analysis the experiment 

results, and then figure out which algorithms achieve the best performance. Finally, we 

will make a summary of this project and clarify the future study direction in Chapter 6. 
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Chapter 2  

Literature Review 

 
The focus of this report is to leverage the cutting-edge 

algorithms to complete traffic-sign recognition. Therefore, 

we comprehensively reviewed the previous studies and 

identified the corresponding theories and algorithms over 

the past ten years.   
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2.1 Introduction 

Traffic sign recognition (TSR) has benefited a large number of realistic applications, such 

as driver assistance system, autonomous vehicles, and intelligent mobile robots since they 

have delivered the current state of traffic signs into various systems. However, there are 

a few difficulties for computer to recognize traffic signs on the road, which are mainly 

from two aspects: One is relevant to the complex traffic scene (Wang, Ren, & Quan, 2013) 

on the road and another one is about unbalanced class frequencies in the datasets  

(Stallkamp et al., 2012).  

    As for the difficulty of real-world traffic scenes, though traffic signs are always well 

designed for drivers to easily read and recognize the signs during the driving process, 

including vivid colors, strong and big size words, as well as various specific shapes, it 

can be still a tricky task to design such features combining with contaminated conditions 

(Sermanet & LeCun, 2011). For example, the conditions can be bad illumination, small-

size signs in scenes, partial occlusions, rotations and physical damages. All of these 

factors will have a huge impact on the performance of computer algorithms to recognize 

traffic signs.   

   In terms of the characteristics of the benchmarks, they usually have an uneven 

distribution of data categories. As we known, traffic signs have various types. For instance, 

the GTSRB includes 43 classes with the lowest frequency rate of 0.5% and the highest 

frequency rate of near 6% across all classes (Mao et al., 2016).  

    Before the wide acceptation of convolutional neural networks, the dominant 

approaches for identifying traffic signs focused on several feature extraction methods and 

machine learning algorithms. The technique, Histogram Oriented Gradients (HOG) 

(Dalal & Triggs, 2005), was initially used to detect pedestrians in traffic scenes and the 

gradients in a color image were calculated along with normalized and weighted 

histograms. The feature transform technique was utilized to classify window sliding. 

Several machine learning algorithms were leveraged for traffic-sign classification, 
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including support vector machines, linear discriminant analysis ensemble (Malik, 

Khurshid, & Ahmad, 2007) and random forest (Zaklouta & Stanciulescu, 2014), etc.  

2.2 Traditional Traffic Sign Detection Solutions 

2.2.1 Using Feature Extraction Methods 

The initial methods for object detection mainly depend on feature extraction methods. 

People usually took color and shape features into consideration to achieve traffic-sign 

detection and classification tasks.  

    In terms of color features, the images were transformed to other color spaces like 

HSV (Hue, Saturation, Values) instead of using RGB (Red, Green, Blue). Wang et al. 

(2013) pointed out that the computer algorithms based on RGB color spaces could limit 

the performance of detection traffic signs due to different illuminant conditions. Besides, 

Li et al. (2014) also proposed a color probability model based on Ohta space to compute 

the maps of probability for each color belonging to traffic signs (Yang & Wu, 2014).  

    With regard to shape features, traffic signs have various geometries, such as circular, 

rectangular, triangular or polygonal. People extracted contour lines by Hough transforms 

and radial symmetry, etc. The circular traffic signs would deform by shooting angle or 

other external force. In order to tackle this issue, Wang et al. (2014) proposed an ellipse-

detection method in their article (G. Wang, Ren, Wu, Zhao, & Jiang, 2014). Moreover, 

Liang et al. (2013) designed a list of templets for each traffic-sign class to match shape 

(Liang, Yuan, Hu, Li, & Liu, 2013). The HOG as one of the most widely used features 

also benefited a lot for the traffic-sign feature extraction. The HOG feature of each cell 

would be normalized over each of its neighboring blocks to represent more local detail 

information, but which can lead to redundant dimensions of a feature representation (Yao, 

Wu, Chen, Hao, & Shen, 2014). Hence, it is challenging to make a trade-off between rich 

local details and redundancy.  
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2.2.2 Using Machine Learning  

Several machine learning algorithms were used for traffic sign classification like linear 

discriminant analysis, support vector machines, random forest and kd-trees as well as 

ensemble classifiers.  

    Linear Discriminate Analysis (LDA) relies on maximum posteriori estimation of the 

class membership (Wu, Liu, Li, Liu, & Hu, 2013) and the density of classes are presumed 

to own multiple variate Gaussian and general co-variance matrix. Random Forest is an 

ensemble method that consists of the set of non-pruned random decision trees, which are 

all built based on the random training data. The classification output is generated from 

the majority of voting over all decision trees (Stallkamp et al., 2011). Support Vector 

Machines (SVM) not only classify the data according to n-dimensional data plane with a 

hyper plane, but also separate non-linearly scattered data by converting the classification 

plane to higher dimensions (Park & Kim, 2013).  

Machine learning techniques provided a wealth of benefits for classifying traffic signs, 

but they were unable to handle the features, such as various sizes of images and aspect 

ratios, which must be completed manually. Thus, the feature generated process was  

always time-consuming and error-prone (Mogelmose et al., 2012). 

2.3 Convolutional Neural Network 

In the field of deep learning, a CNN model represents a class of deep neural networks and 

is offered for visual imagery (Valueva, Nagornov, Lyakhov, Valuev, & Chervyakov, 2020). 

CNNs have multilayer perceptron, which is fully connected. The meaning of fully 

connection in multilayer perceptron is that each neural in one layer is connected to all 

neurons of next layer. This architecture can effectively prevent data from overfitting. 

Their specific applications have image and video recognition, classification, medical 

image analysis and natural language processing, etc.  

    A convolutional neural network is composed of an input and an output layer as well 
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as several hidden layers (Xu, Ren, Liu, & Jia, 2014). The hidden layers also consist of a 

series of convolutional layers that are based on a multiplication and other dot product. 

ReLU layer is regarded as the activation function and is generally followed by other 

convolutions like pooling layers, fully connected layers and normalization layers. They 

refer to as hidden layers as their inputs and outputs are hidden by the activation function 

and final convolution. The architecture of a typical CNN is introduced as follows: 

2.3.1 Convolutional Layer 

The core block of a CNN architecture is convolutional layer. It involves a set of kernels 

(or filters) that can only receive a small fraction but extend through the full depth of input 

volume. Each filter is learnable and will be involved across the height and width of input 

volume along with the computation of dot product between the entries of filters and the 

input. During the initial process, a 2D feature map will be produced (Liang & Hu, 2015). 

Finally, the network will learn from activate filters while detecting some specific features 

at some spatial position in the input (Géron, 2019). The full output of the convolutional 

layer is formed by storing the activation maps for all filters along the depth dimension. 

The output of a neural is a small region in the input and the parameters will be shared 

between neurons in the same activation map.  

    There are three hyperparameters controlled the size of the output volume of 

convolutional layer: Depth, stride and zero-padding (Bochinski, Senst, & Sikora, 2017). 

The depth of the output volume controls how many neurons in a layer that connect to the 

same region of the input volume. Stride controls the allocation of the depth of columns 

around the spatial dimensions referring to the width and height of the input. The value of 

stride (S) should be greater than zero and any integer. In practice, the lengths of S are 

usually less than three. Less receptive fields overlapping will lead the output volume to 

have smaller spatial dimensions while stride length is increasing. Zero-padding controls 

the spatial size of the output volume. Equation (2.1) is to calculate the number of neurons 

that can fit in a given volume: 
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                                                                 𝑛 =   
𝑊−𝐾+2𝑃

𝑆
+ 1                           (1) 

 where W is the size of input volume. The kernel size of the convolutional layer neurons 

is denoted by K. The length of stride and the amount of zero-padding are represented by 

S and P, respectively. Generally, we set the zero-padding as 𝑃 =
𝐾−1

2
  while 𝑆 = 1 , 

which make the input volume and output volume have the same spatial size. 

2.3.2 Pooling Layer 

Similarly, the pooling layer is responsible for reducing the spatial size of the convolved 

feature. It not only decreases the computational consumption through reducing 

dimensionality, but also is used to extract dominant features (Giusti, Cireşan, Masci, 

Gambardella, & Schmidhuber, 2013). Besides, the pooling layer serves to simplify the 

configuration of parameters and memory footprint, and thus controls overfitting. It is 

meaningful to insert pooling layers across series of convolutional layers (normally 

followed by ReLU layers) in a CNN architecture.  

    There are two dominant types of pooling, including max pooling (Nagi et al., 2011) 

and average pooling (Sun, Song, Jiang, Pan, & Pang, 2017). As the name implies, the max 

pooling returns the maximum value from the portion of the image covered by the kernel. 

The average pooling returns the average across all the values from the portion of the 

image covered by the Kernel. The most commonly used pooling form has the filter size 

of 2×2 and a stride of 2 down samples. The depth of volume is not changed.  

Figure 2.1 Max and average pooling with a filter of size 2×2 and stride 2 

    In practice, the max pooling is performed better than average pooling (Scherer, 
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Müller, & Behnke, 2010). Max pooling was used to discard the noisy activations and 

denoising while reducing dimensionalities. In terms of average pooling, it just simply 

performs the dimensionality reduction to suppress noises. Hence, we can say that the max 

pooling is a better option comparing to average pooling.  

    Due to the aggressive reduction in the size of representation (Suárez-Paniagua & 

Segura-Bedmar, 2018), they get rid of pooling layer in favor of the architecture of the 

pure repeated convolutional layers, which is known as the all convolutional net. 

Discarding pooling layers can benefit the generative model training, such as generative 

adversarial networks (GANs) (Zhang, Goodfellow, Metaxas, & Odena, 2019). This is the 

recent trending in this field.   

2.3.3 ReLU Layer 

Rectified linear unit (ReLU) utilized the non-saturating activation function 𝑓(𝑥) =

max(0, 𝑥) (Krizhevsky, Sutskever, & Hinton, 2012) to remove negative values from an 

activation map and replace them with number 0. This operation enhances the nonlinearity 

of the decision function and the whole network without influencing the reception domain 

of the CONV layer. There are other options available for increasing the nonlinear 

properties, such as the saturating hyperbolic tangent 𝑓(𝑥) = tanh(x), 𝑓(𝑥) = |tanh(x)| 

and the sigmoid function 𝜎(𝑥) = (1 + e−x)−1. ReLU has gain more popularity comparing 

to other functions due to the faster speed of training the neural network (Krizhevsky et 

al., 2012).  

                    Figure 2.2 The sigmoid function 
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2.3.4 Fully connected layer 

In the fully connected layer, the neurons connect to all activations as seen in the regular 

neural networks. Generally, inserting a fully connected layer is a cheap way to capture 

the nonlinear combination of high-dimensional features as represented by the yield of 

CONV layer (Albawi, Mohammed, & Al-Zawi, 2017).  

Figure 2.3 Fully connected layer (FC layer) 

2.3.5 Loss Layer 

The loss layer is normally the last layer in a neural network, which specifies the 

penalization process of training to the deviation between true labels and predicted results 

(Xie, Wang, Wei, Wang, & Tian, 2016). Different tasks should apply with different loss 

functions. For instance, the Softmax loss is to predict a single class between dominant 

and certain low-level features in images. Sigmoid cross-entropy is to predict independent 

values of probability in [0, 1].  

2.4 Typical Convolutional Neural Networks 

The typical CNN architecture is composed of blocks of convolutional layers and pooling 
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layers followed by a fully connected layer and SoftMax layer at the end. Several such 

CNN models are AlexNet, VGGNet, LeNet, NiN and all convolutional (All CONV). 

Besides, some state-of-the-art architectures have been proposed, such as the GoogleNet 

(Al-Qizwini, Barjasteh, Al-Qassab, & Radha, 2017) with ResNet (Z. Wu, Shen, & Van 

Den Hengel, 2019) and DenseNet (Jégou, Drozdzal, Vazquez, Romero, & Bengio, 2017).  

    Actually, all of these architectures have the similar fundamental components 

(convolution and pooling). Different architectures may have their own topological 

distinction. For instance, in terms of DCNN (Jin, McCann, Froustey, & Unser, 2017), the 

AlexNet, VGGNet, GoogleNet could be the most appropriate architectures to employ 

since they have shown the distinct performance on the task of object recognition. Some 

of architectures have shown their advantages in dealing with large volume of data, 

including GoogleNet and ResNet. However, the VGG networks is regarded as a common 

architecture in this field.  

2.4.1 AlexNet 

AlexNet was the champion CNN model in the most difficult ImageNet challenge named 

the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012 (Krizhevsky 

et al., 2012). This model proposed by Alex and others were deeper and wider than the 

previous neural network (LeNet), and it achieved the astonishing recognition accuracy 

against all the traditional approaches. The appearance of AlexNet could be seen as the 

turning point of the development of using machine learning and computer vision for 

object detection and classification tasks.  

    There are two innovative concepts introduced in the architecture of AlexNet. Firstly, 

the first convolutional layer of AlexNet applied Local Response Normalization (LRN) 

while performing the convolution and max pooling. LRP can be either applied on single 

channel and feature maps, or applied across single channel and feature maps (Hong-meng, 

Di, & Xue-bin, 2017). The formular for LRN is: 
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                                     𝑏𝑥,𝑦
𝑖 = 𝑎𝑥,𝑦

𝑖 / (𝑘 + 𝛼 ∑ (𝑎𝑥,𝑦
𝑖 )

2

min(𝑁−1,𝑖+
𝑛
2

)

𝑗=max(0,𝑖−
𝑛
2

)

)

𝛽

                                        (2.2) 

where 𝑎𝑥,𝑦
𝑖   denotes the value yields by the number of 𝑖  convolution at the position 

(𝑥, 𝑦) and the result of outputting by the ReLU activation function. 𝑛 is the number of 

neighboring convolution kernels, and N is the total number of convolution kernels in this 

layer. The rest of variants are parameters, which are obtained in the experimental 

validation set. 

2.4.2 VGGNet 

The Visual Geometry Group neural network (VGGNet) was proposed by the Visual 

Geometry Group, which is the runner of the 2014 ILSVRC. This network initially showed 

that the importance of the depth of a network was the crucial factor to achieve higher 

accuracy of recognition and classification. Two convolutional layers were contained in 

VGG architecture and both of them utilized the ReLU activation function, which was also 

used in the following activation function with a single max pooling and several fully 

connected layers. Three VGG models with different number of layers were proposed, 

including VGG-11, VGG-16 and VGG-19.  

    All versions of VGG models ended with three fully connected layers. However, they 

had different number of convolutional layers. VGG-11, VGG-16 and VGG-19 contained 

8, 13 and 16 convolutional layers, respectively. Among them, the VGG-19 was the most 

computational consumption model, required 138M weights and 15.5M MACs.  

2.4.3 ResNet 

The Residual Network (ResNet) was developed by Kaiming He et al. with the intention 

of creating a deeper network that can avoid the effect of the vanishing gradient issue (He, 

Zhang, Ren, & Sun, 2016). ResNet architectures can be performed with different number 

of layers, such as 34, 50, 101, 152 and even 1202. Among them, the most popular ResNet 
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architecture had 50 layers, including 49 convolutional layers and 1 fully connected layer. 

It is worthy to mention that even though the ResNet had 152 layers the complexity of it 

was still lower than VGGNet.  

    ResNet is a typical network with residual connection. The final ouput of a residual 

layer can be defined by the following equation: 

                                                                𝑥𝑙 = 𝐹(𝑥𝑙−1) + 𝑥𝑙−1                                                 (2.3) 

where 𝑥𝑙 is defined as the output of a residual layer. Thus, 𝑥𝑙−1 is generated based on 

the output of previous layer. 𝐹(𝑥𝑙−1)  represents the output after performing other 

operations, such as convolution with various size of filters and Batch Normalization (BN) 

followed by an activation function like ReLU. The residual networks generally are 

composed of several fundamental residual blocks, but the operations within the blocks 

are varied corresponding to different residual architectures (He et al., 2016).  

    Recently, several improved residual networks have been proposed. For example, a 

residual network was known as aggregated residual transformation (S. Xie, Girshick, 

Dollár, Tu, & He, 2017). Moreover, several researchers have combined residual units with 

Inception, and mathematically it can be expressed by the following eq. (2.4). 

                                                    𝑥𝑙 = 𝐹(𝑥𝑙−1
3×3⨀𝑥𝑙−1

5×5) + 𝑥𝑙−1                                               (2.4) 

where ⨀ is used to express the concentration operations between two outputs produced 

by the 3×3 and 5×5 filters. Following the convolutional operation is performed and the 

outputs of the operation are attached with the inputs of block 𝑥𝑙−1 (Szegedy, Vanhoucke, 

Ioffe, Shlens, & Wojna, 2016).  

2.5 Object Detection Models 

2.5.1 Faster R-CNN 

Faster R-CNN is an improved network based on the design of Fast R-CNN and R-CNN, 
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which use region proposal algorithm like selective search with CNN to generate regional 

objects in an image. However, the method to propose region proposal requires a lot of 

time consumption even though it is performed directly to the CNN.  

    In the architecture of Faster R-CNN, the Region Proposal method (selective search) 

is replaced by a more advanced approach named Region Proposal Network (Ren, He, 

Girshick, & Sun, 2015). This network leverages the extracted features of CNN to generate 

region proposal. We can say that Faster R-CNN is a combination of RPN and Fast R-

CNN detector.  

    A RPN takes an image as input and output a set of rectangular object proposals and 

each of them is attached with an objectiveness score (Ren et al., 2015). In this network, a 

concept of anchor boxes is introduced. In an image, some referencing boxes are placed at 

different positions. The number of 𝑘 anchor boxes are hyperparameter in the network 

and generated for each pixel based on the feature map which outputs of CNN. The total 

number of anchor boxes can be calculated by ℎ ∗ 𝑤 ∗ 𝑘  (ℎ ∗ 𝑤  is the size of feature 

map). A targeted object will be covered by multiple anchor boxes, and then these 

redundant predicted results are removed by non-max suppression (Liu, Zhao, & Sun, 

2017). Different sizes of anchor boxes replace the operation of using multiple scales at 

test time. Comparing to Fast R-CNN and R-CNN, the speed of region proposal with 

selective search is 2 seconds per image but it is just 10 milliseconds.  

    The loss function applied in Faster R-CNN is similar to the previous networks (e.g. 

multitask loss). The mathematical expression for multitask loss function is shown below: 

                      𝐿({𝑝𝑖}, {𝑡𝑖}) =
1

𝑁𝑐𝑙𝑠
∑ 𝐿𝑐𝑙𝑠(𝑝𝑖 , 𝑝𝑖

∗) + 𝜆
1

𝑁𝑟𝑒𝑔
𝑖

∑ 𝑝𝑖
∗

𝑖

𝐿𝑟𝑒𝑔(𝑡𝑖 , 𝑡𝑖
∗)              (2.5) 

Where 𝑝𝑖 denotes the predicted probability which yields by classification, 𝑝𝑖
∗ denotes 

the similarity of ground truth. 𝑡𝑖 and 𝑡𝑖
∗ respectively represent the predicted box and 

ground truth box.  
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2.5.2 You Only Look Once (YOLO) 

The release of You Only Look Once (YOLO) was a milestone in the field of object 

detection. It was presented by Joseph Redmon et al. (2016) and immediately gained a lot 

of attention by fellow workers in computer vision. YOLO is a single network and can be 

improved end-to-end directly on the performance of detection (Redmon, Divvala, 

Girshick, & Farhadi, 2016). Instead of repurposing classifiers to complete detection task, 

the proposers framed object detection as a regression problem to separate bounding boxes 

and related class probabilities. In other words, the YOLO simplified the process of 

generating bounding boxes and class probabilities. Compared to cutting-edge detection 

architecture, it not only speeds up the training process but also doubles the accuracy of 

real-time detection, even if it has more localization errors.  

    The workflow of YOLO is briefly introduced as follows: YOLO as a single neural 

network extracts features from the entire image and uses them to predict each bounding 

box while predicting all bounding boxes for an image. It divides an input image into an 

𝑆 × 𝑆 grid. When the center of an object overlaps with a grid cell, this cell will be used 

to detect this object. Each gride cell should predict number of bounding boxes and the 

confidence stores corresponding to these boxes. If there is no object falling into a gride 

cell, the confidence store is defined as 0.  

    The confidence store should be the intersection over union (IOU) between the 

predicted box and the ground truth and the IOU value can be calculated by Pr (𝑂𝑏𝑗𝑒𝑐𝑡) ∗

𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ . Each bounding box has five variables, including 𝑥, 𝑦, 𝑤, ℎ  and confidence 

store. The 𝑥, 𝑦 will be used to produce the coordinate of the center of the bounding box 

in relation to the bounds of the gride cell. Besides, each cell also predicts the probability 

of conditional class Pr (𝐶𝑙𝑎𝑠𝑠𝑖|𝑂𝑏𝑗𝑒𝑐𝑡). Finally, the confidence stores of a specific class 

for each box is formally defined as: 

                Pr(𝐶𝑙𝑎𝑠𝑠𝑖|𝑂𝑏𝑗𝑒𝑐𝑡) ∗ Pr(𝑂𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ = Pr(𝐶𝑙𝑎𝑠𝑠𝑖) ∗ 𝐼𝑂𝑈𝑝𝑟𝑒𝑑

𝑡𝑟𝑢𝑡ℎ     (2.6) 
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which shows how well the predicted box fits the object. 

    Different versions of YOLO network have been released in 2016, 2017 and 2018. 

Recently, YOLOv4, YOLOv5 and PP-YOLO successively proposed within just few 

months after the release of those three main versions of YOLO. Although the appearing 

of YOLOv5 has made a fierce discussion in the community, the easier implementation 

and several improvements (e.g. mosaic data augmentation and auto-learning anchor boxes) 

cannot be ignored among the YOLO network family. 
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Chapter 3 

Methodology 

This chapter mainly expounds the details of the 

implementation of traffic sign recognition which 

performed on two trending CNN models, including 

YOLOv5 and Faster R-CNN. The dataset preparation, 

training process and evaluation methods will be also 

introduced in the following content.  
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3.1 Traffic-Sign Recognition (TSR) in NZ 

Traffic sign recognition is a task which is considering with both object detection and 

classification. It is a real-world application that computer vision techniques are aligned 

with to develop driver assistant system. In practice, the implementation of this task 

usually confronts with a lot of uncertain issues, such as color fading, disorientation and 

variations in size and shape (Fleyeh, 2008). Recently, there are a lot of researches 

available to deal with such problems and provide solutions to boost the performance of 

traffic sign recognition. The following diagram illustrates the general workflow of TSR 

task: 

Figure 3.1 The workflow of traffic-sign Recognition 

   Traffic signs in NZ mainly are categorized into three groups: Regulatory (including 

general, parking and road user restrictions), Warning (including temporary and 

permanent), Advisory (including guide and route signs, e.g. street name, community 

facilities, tourist signs, service signs and general information signs). Although the design 

of traffic signs in NZ followed the dominant trending and international standards, NZ is 

not a signatory to the convention on international road signs and signals, and thus some 

of its traffic signs have different shape and function. According to the above inconsistency, 
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it is necessary to take the rebuilding of the customized dataset into consideration for 

effectively recognizing traffic signs in NZ.  

3.2 Data Collection  

In this project, we used the 12-megapixel wide-angle camera of iPhone 11 to capture the 

realistic traffic sign images in Auckland. Due to the lower appearing frequency of traffic 

signs comparing to pedestrians and vehicles, we directly took traffic sign images using 

camera instead of recording video. The pixels of the images are 1080×1440 and stored 

in .JPEG format. Our dataset (NZ-Traffic-Signs 3K) consist of 3436 images and 3545 

instances in total: Stop (236 instances), Keep Left (536 instances), Road Diverges (505 

instances), Road Bump (619 instances), Crosswalk Ahead (636 instances), Give Way at 

Roundabout (533 instances) and Roundabout Ahead (480 instances). 

Table 3.1 Examples of seven categories in our benchmark (NZ-Traffic-Signs 3K) 

    In order to avoid the overfitting when training the chosen models, we utilized data 

augmentation to expand our dataset. Several basic manipulations for data augmentation 

include flipping, rotation, shearing and adding noise as well as blurring images. In this 

case, we merely applied two augmentation operations, including adding noise and 

blurring images, based on our original dataset because these methods could to deal with 

the distorted objects, which could impact the quality of our dataset and even degrade the 
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accuracy of our training models. The manipulations were implemented by importing a 

Python library, named Skimage.  

Figure 3.2 Augmented images: (a) original images (b) adding noise (c) blurring images 

3.3 Research Design for Training Faster R-CNN 

In this experiment, we chose Faster R-CNN to conduct recognizing traffic signs with on 

our dataset. Faster R-CNN needs a traditional CNN as the basic convolutional layers for 

feature extraction. A pretrained VGG16 model was used to assist us in outputting the 

feature map. 

3.3.1 Dataset Structure for Training Faster R-CNN 

In order to successfully implement Faster R-CNN, the data directory should follow the 

structure of PASCAL VOC dataset. The dataset organization structure is divided into five 

parts, including Annotations, ImageSets, JPEGImages and SegmentationClass as well as 

SegmentationObject. The structure is shown in Figure 3.3.  
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Figure 3.3 Organized dataset directories for Faster R-CNN 

   The Annotations folder is responsible for storing all the .xml label files. The ImageSets 

stores the segmented datasets for training, validation and testing. Then, the JPEGImages 

is used to store the .jpeg images. Finally, as the name revealed, the SegmentationClass 

and SegmentationObject are used to the segmented images based on the criteria of 

different classes and objects.  

    As for training the Faster R-CNN, the annotation files are stored in .xml format and 

formatted very restrictedly. We use a labelled tool, named LabelImg, to label all the 

images in our dataset.  

Figure 3.4 An example of annotation file format for traffic-sign recognition 
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    The LabelImg can export voc format label files while labelling the images. The 

process of labelling our images is shown down below: 

Figure 3.5 Labelling an image in our dataset 

3.3.2 Experimental Environment and Parameters for Faster R-CNN 

Due to the implementation based on Python, several dependencies should be preinstalled 

to setup the experimental environment. Caffe must be built with support for Python layers. 

Some Python packages are needed, including Cython, python-opencv and easydict, etc. 

In order to train Faster R-CNN with VGG16, the CUDA device with Tesla V100-SXM2-

16GB are necessary. 

    During the process of training the Faster R-CNN, critical parameters should be 

preliminarily set, and the details are shown in Table 3.2. In neural networks, the ideal 

situation is to make the error function reach a global minimum, but in practice the error 

may comprise of many local minimums where the optimization can be stuck in, and thus 

the global optimum cannot be guaranteed. In this case, the algorithm will use the 

unoptimized results to lead to sub-optimal results. Momentum term can increase the step 

size to jump from the local minimums. Most importantly, a large value of Momentum can 

contribute to a faster model convergence. Normally, a large Momentum had better match 
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with a smaller Learning Rate (LR), otherwise the algorithm might skip the global 

minimum with a huge step. In this experiment, we set the Momentum to 0.9 and LR to 

0.01 to avoid the above issue.  

Table 3.2 The parameters for training Faster R-CNN 

   The max number of training epoch is also a key factor that influence the performance 

of a model. An appropriate of max training epochs will contribute to a lower training and 

validation rate while overfitting is non-existent. As for our project, the most appropriate 

max epochs number is 200 which were tested after several pilot experiments.  

    Batch size as another vital parameter in training neural networks is used to estimate 

error gradient. It is the number of examples from the part of training data to achieve the 

error gradient estimation. Generally, the more training examples used in the estimation, 

the higher accuracy will be achieved and the more possibility that the network weights 

will be adjusted in a way that will boost the performance of the model. The batch size is 

set to 24 in this experiment.  

    The data is complicated in the real-world. Having fewer parameters in the process 

of training a model is a way that can prevent a model from suffering from complex data, 

but it is an impractical and limited solution. The more parameters are employed with, the 

more intersections among them exist. These intersections mean more non-linearities, 

which will help a model solve complex problems. Thus, in order to solve the issue, a 

parameter called Weight Decay (WD) is used to penalize the complexity. We set the WD 

to 0.0005 for training Faster R-CNN.   
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3.4 Research Design for Training YOLOv5 

The second performed model in this project is YOLOv5, which was just less than fifty 

days later than the release of YOLOv4. Although the appearing of it has gained a lot of 

attentions and debates in the community, it was indeed published with a number of 

improvements and distinctions. The improvements are mainly reflected in two aspects: 

improved the accessibility for detecting real-time objects and the performance of 

prediction either on training speed or accuracy.  

    Firstly, YOLOv5 is the first release in the YOLO family to be written in PyTorch 

instead of using PJ Reddie’s Darknet (Chen, 2019). The implementation based on 

PyTorch makes the process of deployment easier and simpler. Secondly, YOLOv5 is 

extremely fast. In the official YOLOv5 Colab notebook, the inference times up to 0.007 

seconds per image, meaning 140 frames per second. Compared to the previous models 

(e.g. YOLOv4), the processing speed is a milestone in the development of object detectors. 

Thirdly, it is more accurate. In one of the most popular tests of performing YOLOv5 

(Blood Cell Count and Detection Dataset), it achieved approximately 0.895 mean average 

precision (mAP) after running 100 epochs. Finally, it is much smaller than YOLOv4 and 

it provides four different size models: YOLOv5s (smallest one with 7.5M params), 

YOLOv5m (21.8M params), YOLOv5l (47.8M params) and YOLOv5x (largest one with 

89.0M params). In this experiment, we chose the smallest model (YOLOv5s) to perform 

with due to the relatively small scale of our dataset.  

3.4.1 Dataset Structure for Training YOLOv5 

In order to train the YOLOv5 model, the first step is to label the images in our dataset. A 

graphical image annotation tool (LabelImg) was used to label the images in our dataset. 

The labelling process is shown in Figure 3.4. Each of the corresponding annotation files 

was saved as a *.txt file and the produced labels were exported by YOLO format. The 

specifications of *.txt are: 



28 
 

Figure 3.6 An example label file with two traffic signs 

• Each object in an image is denoted by one row; 

• Each row has the unified format: class, x_center, y_center, width, height; 

• Box coordinates (x, y, w, h) must be normalized in the range of (0, 1). Our initial 

images are all in pixel sizes. Thus, the x_center and width are required to be 

divided by image width. The y_center and height are required to be divided by 

image height.  

• Class numbers should start from 0. For example, we have seven categories in this 

case and hence the range of class numbers is (0, 6). 

Figure 3.7 Labelling an image by using LabelImg 
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    After generating the label files based on our dataset, the next step is to organize 

directories which save the train and validation images and labels. In the official version 

of YOLOv5 released by Glenn Jocher, the folder stored data (named /𝑓𝑖𝑛𝑎𝑙_𝑑𝑎𝑡𝑎𝑠𝑒𝑡 in 

this case) must be next to the /𝑦𝑜𝑙𝑜𝑣5 directory, and make sure the folder stored all the 

labels (𝑓𝑖𝑛𝑎𝑙_𝑑𝑎𝑡𝑠𝑒𝑡/𝑙𝑎𝑏𝑒𝑙𝑠) next to the folder stored all the images (𝑓𝑖𝑛𝑎𝑙_𝑑𝑎𝑡𝑠𝑒𝑡/

𝑖𝑚𝑎𝑔𝑒𝑠). 

Figure 3.8 Organized dataset folders for YOLOv5 

3.4.2 Architecture and Functions of YOLOv5 Model 

The model structure of YOLOv5 is the same as the common single-stage object detector 

(S. Wu, Li, & Wang, 2020). It has three main parts: model backbone, model neck and 

model head. The overall model architecture is illustrated in Table 3.3. 



30 
 

Table 3.3 The Architecture of YOLOv5s 

    Model backbone is normally responsible for extracting important features from 

images. The Cross Stage Partial Networks (CSP) are employed as the backbone of 

YOLOv5. This state-of-the-art network effectively mitigated the problem of heavy 

inference computations from the network architecture (Wang et al., 2020). In other words, 

the CSPNet can significantly reduce the processing time with deeper neural networks. 

Thus, the employment of it surely contributes to the progress made by YOLOv5.  

    Model neck is used to generate feature pyramids, which are a fundamental 

component of recognition systems for detecting multiscale objects and built only based 

on CNNs (Lin, Dollár, et al., 2017). It not only assists the detector in identifying the same 

object with various sizes and scales, but also has shown the obvious strength in unseen 

data. There are off-the-shelf feature pyramids techniques, such as Feature Pyramid 

Network (FPN) (Lin, Goyal, Girshick, He, & Dollár, 2017), Bi-directional Feature 

Pyramid Network (BiFPN) (Tan, Pang, & Le, 2020) and Path Aggregation Network (PAN) 

(S. Liu, Qi, Qin, Shi, & Jia, 2018), etc. In YOLOv5, the model neck is PANet. 

    Model head is used for performing the final detection. In this part, the anchor boxes 

are applied on features and output final vectors with class probabilities, objectiveness 
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scores and bounding boxes. The model head of YOLOv5 follows the previous YOLOv3 

and YOLOv4.  

    The choice of activation functions is vital in deep neural network. Recently, there 

are a lot of activation functions available like Leaky ReLU (LReLU) (Maas, Hannun, & 

Ng, 2013), mish, etc. The chosen activation functions in YOLOv5 are LReLU and 

Sigmoid. Specifically, the LReLU is added in the middle/hidden layers and the Sigmoid 

is added in the final detection layer.  

    In terms of ReLU, it was proposed to alleviate potential problems caused by zero 

gradient, which allows a small and non-zero gradient presented if the unit is not active 

(Maas et al., 2013), 

                       ℎ(𝑖) = max(𝑤(𝑖)𝑇𝑥, 0) = {𝑤(𝑖)𝑇𝑥                    𝑤(𝑖)𝑇𝑥 > 0
0.01𝑤(𝑖)𝑇𝑥          𝑒𝑙𝑠𝑒           

                         (3.1) 

where 𝑤(𝑖) represents the weight vector of the 𝑖𝑡ℎ middle layer and 𝑥 is the input. The 

introduction of Sigmoid activation function can refer to Section 2.3.3 in Chapter 2. As for 

the optimization function in YOLOv5, we have two options, including Stochastic 

Gradient Descent (SGD) and Adam. The default optimizer is SGD, but it can be 

transferred to Adam by the command “-- adam”.  

   The last emphasized function is the loss function or cost function. In YOLOv5, the 

loss is computed based on three values: objectiveness score, class probabilities and 

bounding box regression score. YOLOv5 imports the Binary Cross-Entropy with Logits 

Loss (BCELoss) from PyTorch for calculating the compound loss. This method combines 

a Sigmoid layer with the BCELoss in one single class, which is more numerically stable 

than adding the BCELoss after a Sigmoid layer. The unreduced loss can be described as: 

                                                      𝑙(𝑥, 𝑦) = 𝐿 = {𝑙1, … , 𝑙𝑁}𝑇                                                  (3.2) 

                           𝑙𝑛 = −𝑊𝑛[𝑦𝑛 ∙ log 𝜎(𝑥𝑛) + (1 − 𝑦𝑛) ∙ log(1 − 𝜎(𝑥𝑛))]                        (3.3) 
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Where N is the batch size. When the reduction is not none, the error of a reconstruction 

can be measured by  

                                  𝑙(𝑥, 𝑦) = {
𝑚𝑒𝑎𝑛(𝐿),    𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = ′𝑚𝑒𝑎𝑛′

𝑠𝑢𝑚(𝐿),    𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = ′𝑠𝑢𝑚′
                                   (3.4) 

    While predicting the multilabel classification the loss can be expressed as follows, 

which achieves by adding weights into positive instances. 

                                                     𝑙𝑐(𝑥, 𝑦) = 𝐿𝑐 = {𝑙1,𝑐, … , 𝑙𝑁,𝑐}
𝑇

                                         (3.5) 

             𝑙𝑛,𝑐 = −𝑊𝑛,𝑐 [𝑝𝑐𝑦𝑛,𝑐 ∙ log 𝜎(𝑥𝑛,𝑐) + (1 − 𝑦𝑛,𝑐) ∙ log (1 − 𝜎(𝑥𝑛,𝑐))]                (3.6) 

where c is the class number. For example, c = 1 means the single label classification and 

n is the number of the instances in the batch as well as 𝑝𝑐  is the weight of positive 

instances for the c class.  

3.4.3 Experimental Environment and Parameters for YOLOv5 

In this section, we will introduce how we set up the experimental environment and be 

explicit about the parameters of training YOLOv5. Firstly, YOLOv5 was developed by 

Python. Different versions of dependencies should be installed to support the 

implementation of our project. The PyTorch version should be ≥ 1.6, Python version ≥ 

3.8 and CUDA version 10.2. The details of requirements for this project are provided in 

Table 3.2. Furthermore, this experiment was performed on Colab using Tesla V100-

SXM2-16GB. 
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Table 3.4 The details of the installed dependencies for YOLOv5 

 

    Secondly, a customized . 𝑦𝑎𝑚𝑙 file should be created to describe our dataset and 

this file is saved under . 𝑑𝑎𝑡𝑎  directory which is responsible for storing the dataset 

description file.   

    The parameters for training YOLOv5 are shown in Table 3.5. In addition to the same 

parameters as the Faster R-CNN, several other parameters are used in this experiment, 

such as giou which is the GIoU loss gain, cls which is the classification loss gain, cls_pw 

which is the classification of BCELoss positive weight and obj_pw which is objectness 

BCELoss positive weight as well as the loss gain of objectness obj.  
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Table 3.5 The parameters for training YOLOv5 

3.5 Evaluation Methods 

To comprehensively evaluate the performance of YOLOv5 and Faster R-CNN, six 

metrics are considered in this traffic-sign recognition task. They are Generalized 

Intersection over Union (GIoU), the predicted probability of Objectness, Classification, 

Precision and Recall as well as mean Average Precisions with multiple IoU.  

    GIoU is the optimized version of Intersection over Union (IoU), which is the most 

commonly used metric used to justify the performance of detectors (Rezatofighi et al., 

2019). IoU is used to determine true positives and false positives among predicted results. 

In our experiment, we chose the optimized IoU (GIoU) mainly because it overcomes the 

weakness of IoU optimization while appearing non-overlapped bounding boxes. 

Specifically, if |𝐴 ∩ 𝐵| = 0, 𝐼𝑜𝑈(𝐴, 𝐵) = 0 . In this situation, the IoU is not able to 

reflect whether two bounding boxes are far from or vicinal each other. The GIoU 

mitigates this problem mainly from two perspectives (Rezatofighi et al., 2019):  

• IoU is regarded as a distance (e.g. 𝐿𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈), which fulfils all properties 

of a metric.  
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• IoU is constant confronting with the problem scale. This can keep two arbitrary 

shapes A and B separated from the scale of their space.  

    The GIoU is described by the following eq. (3.7). 

                                                 𝐺𝐼𝑜𝑈 = 𝐼𝑜𝑈 −
|𝐶\(𝐴 ∪ 𝐵)|

|𝐶|
                                                 (3.7) 

    Objectness metric reflects how likely a bounding box contains a targeted object 

(traffic sign in this case) (Kuo, Hariharan, & Malik, 2015). As we know, the output of the 

model in YOLO family is a set of boundary boxes and each box contains one box 

confidence score. The objectness is equivalent to the confidence score, which determines 

how accurate the boundary box is.  

    Classification accuracy (CA) is defined as the number of correct predictions divided 

by the total number of predictions. The following expression is used to calculate this score: 

                                        𝐶𝐴 =
𝑡𝑟𝑢𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑡𝑟𝑢𝑒_𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
                                     (3.8) 

   Precision is a metric that justifies the performance based on the specific class, 

especially when the distribution of dataset is unbalanced. This metric is regarded as a 

supplementary of CA due to the weakness of CA performing on uneven data. Precision 

is defined as 

                                       𝐴𝐶𝐶 =
𝑡𝑟𝑢𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                                   (3.9) 

    Recall is another important metric that indicates accuracy of the model. It refers to 

the percentage of the results correctly categorized by the model. Recall is expressed by 

                                      𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒_𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
                        (3.10) 

    Mean Average Precision (mAP) is the modified version of Average Precision (AP), 

which is one of the most popular method for measuring the performance of object 

detectors such as YOLO, Faster R-CNN and SSD, etc. It is computed by the mentioned 
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metrics Precision and Recall (Henderson & Ferrari, 2016). The general definition of AP 

is searching for the area under the precision-recall curve. The range of recall and precision 

is always between 0 and 1, which makes the value of AP is within (0, 1).   

                                                                 𝐴𝑃 = ∫ 𝑝(𝑟)𝑑𝑟                                                     (3.11) 

The mAP just simply takes the mean of average precision, which is finally expressed by  

                               𝑚𝐴𝑃 =
1

𝑐
∑

𝑡𝑟𝑢𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

                    (3.12) 

where c is the class number that is 7 in this case. Generally, IoU is set to larger than 0.5. 

The mAP with multiple IoU in this experiment is employed. The IoU thresholds increase 

from 0.5 to 0.95.  
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Chapter 4 

Results 

In this chapter, our experimental results will be 

demonstrated. In addition, a comparison between two 

chosen model will be conducted based on the accuracy of 

them for recognizing traffic signs in NZ.  
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4.1 Data Description 

After initially removed the redundant and poor-quality images, the total number of our 

dataset (NZ Traffic Signs 3K) is 3,439 of the 7 classes. All the images in the dataset are 

in pixel size 1080×1440. The distribution of all the classes are illustrated in Figure 4.1. 

 

Figure 4.1 The distribution of seven classes in our dataset  

    In Figure 4.1, we see that the distribution of the data is relatively satisfactory except 

the class “Stop” that has the minimum number of instances comparing to other classes in 

the dataset. A balanced distribution across all the classes could not only benefit the 

performance of two models over all the classes but also the effectiveness of the 

comparison results between two models.  

   In Chapter 1, one of our main objectives in this project is to evaluate the performance 

of neural networks on recognizing the traffic signs in small sizes. Hence, we concerned 

more about the various sizes recognition of traffic signs in NZ. More clearly, we used a 

scatter plot to show the density of different sizes of traffic signs in our dataset.  
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Figure 4.2 The density of different sizes of traffic signs in our dataset 

   Each dot in the scatter represents a traffic-sign sample in the dataset and (𝑥, 𝑦) is 

practical pixel location in the corresponding image. As we see, most of pixel sizes are 

gathering in the pixel size of (200,200) , which is expected for training the chosen 

models to recognize smaller size objects. Besides, the positions of all the samples in the 

images are shown in Figure 4.3. 

Figure 4.3 The positions of all samples in the images 
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    In the training phase, we split our data into two parts 80% for training and 20% for 

validation.  

Figure 4.4 The distribution of our data for training and validation 

4.2 Experiment Results of Faster R-CNN 

In this experiment, we used the model Faster R-CNN as the detector and VGG16 as the 

classifier to perform the traffic-sign recognition task. The experimental results are 

provided in Table 4.1. We evaluate the performance of the Faster R-CNN with VGG16 

mainly using three measures, including Precision, Recall and Mean Average Precision 

with IoU 0.5 (𝑚𝐴𝑃@0.5). Fortunately, the accuracy of predictions is relatively good 

across seven classes.  

Table 4.1 Experimental results for Faster R-CNN across seven classes 

    The Faster R-CNN has shown an obvious strength in predicting traffic signs. It is 

worthy to mention that almost all the evaluation measures are over 0.9 except the 

prediction of Keep Left with the Precision score 0.899. The two classes with the highest 

precision score are Stop and Road Diverges, which is mainly due to the extremely distinct 

features exist in the design of these types of signs.  

mailto:𝑚𝐴𝑃@0.5
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    In order to evaluate the performance of the model on smaller traffic signs, we also 

performed another experiment and justify the results from this perspective. The same 

measures are applied to estimate the prediction results.  

Table 4.2 Prediction results of various sizes of the traffic signs based on Faster R-CNN 

 

    In Figure 4.2, we collected a large percentage of small size traffic signs in our dataset. 

Such amount of data guarantees the performance of the Faster R-CNN on recognizing 

small size objects in this experiment. The model achieves the highest precision for 

recognizing the traffic signs in pixel sizes [200, 400]. Although the lowest accuracy score 

appearing while recognition the traffic signs in smaller sizes (<=200 pixels), the score of 

this size category is still over 0.9, which is an impressive result of a CNN for recognizing 

objects.  

    After illustrating the specific results across different categories from the two 

perspectives, we also performed the Faster R-CNN on the whole dataset rather than solely 

training it according to different categories. The five measures mentioned in Chapter 3 

(GIoU, Objectness, Classification, Precision, Recall and mAP with multiple IoU) are used 

to estimate the overall performance of the model. Those metric scores both in the process 

of training and validation are shown in Figure 4.5.  

    After trained 200 epochs, an obvious trend of convergence both shown in the process 

of training and validation for the losses of GIoU, Objectness and Classification. In terms 

of GIoU loss, the final score of it converges to less than 0.02. Incorporating the GIoU loss 

can improve the model performance on datasets (Rezatofighi et al., 2019). The objectness 

loss is 0.005 during the training, and even reaches to zero while validating the model. 
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Impressively, the Classification loss almost reaches zero both in the processes of training 

and validation.  

Figure 4.5 Three types of losses for Faster R-CNN 
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    In Figure 4.6, the Precision-Recall curves are consistent, which means the scores of 

Precision increase along with the increase of Recall scores. The consistence between two 

curves affirms the good performance of the Faster R-CNN in the traffic-sign recognition. 

Moreover, the scores of mAP with 0.5 threshold of IoU are significantly converging to 1.  

 

The mAP values with multiple IoU also converge to an impressive value 0.8. Finally, we 

tested the performance of the Faster R-CNN on several images. The predicted results are 

shown in Figure 4.7 and Figure 4.8.  
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Figure 4.7 Several tested images with class index 

Figure 4.8 Several tested images with confidence scores 

4.3 Experimental Results of YOLOv5 

In this experiment, we chose YOLOv5 to perform with and it is a newly released end-to-

end network that is different from the Faster R-CNN. Similarity, we conducted the model 

training based on the categized of all seven classes in our dataset (NZ Traffic Signs 3K). 

The experimental results are provided in Table 4.3.  



45 
 

Table 4.3 Experimental results for YOLOv5 across seven classes 

 

    In Table 4.3, the recognition result of Stop signs remains a high accuracy (0.952), 

even though it has a minimum number of samples in the dataset. Surprisingly, the 

predicted accuracy of Keep Left has a slightly increase (0.02) comparing to its accuracy 

rate reached by the Faster R-CNN. As for the rest of traffic-sign recognition, the output 

of the YOLOv5 maintains a high level of accuracy rate and impressively all the results 

are over 0.9.  

Table 4.4 Prediction results of various sizes of the traffic signs based on YOLOv5 

 

    In the interest of exploring the performance of networks on recognizing small size 

of traffic signs, we similarly performed an experiment according to various sizes of traffic 

signs. While predicting the traffic signs with less than 200 pixels, the YOLOv5 still 

achieved a fairly good performance. The YOLOv5 outputs the best results (0.976) while 

recognizing the traffic signs with medium sizes [200, 400] in this case. The accuracy rate 

has a slightly decrease comparing to the Faster R-CNN, but it is still over 0.88.  
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   An overall performance of the YOLOv5 also was justified in this case. The 

distribution of training and validation sets are invariant, 80% for training and 20% for 

validation. The evaluation is conducted according to the same measures as the Faster R-

CNN, including different losses, Precision and Recall as well as the mAP with multiple 

IoU.  

Figure 4.9 Three types of losses for YOLOv5 

    On the one hand, comparing to the results of the Faster R-CNN, there is no big 

difference between the losses of the Faster R-CNN and YOLOv5 except the loss score of 

Objectness. The loss of Objectness is around 0.005 which is much lower than the loss 

(0.025) achieved by the Faster R-CNN. The objectness loss is defined to evaluate how 

bad our model identifies the positions and object class during the processes of training 

and validation (Kong et al., 2017). In this case, the YOLOv5 gains a better result than the 

Faster R-CNN.  
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Figure 4.10 The metrics for evaluating the overall performance of YOLOv5 

Figure 4.11 Several tested images with class index 
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    On the other hand, Precision score is slightly lower that the Faster R-CNN but the 

curve of it has more fluctuation, which means the trend of convergence is not stable. In 

other words, we can say that the Faster R-CNN achieved a better prediction on 

recognizing the traffic signs in our dataset. Finally, there is no big difference in mAP 

scores between the two models. At the end of the experiment, we use some of images to 

test the overall performance of the YOLOv5. The details are shown in Figure 4.11 and 

4.12. 

  

Figure 4.12 Several tested images with confidence scores 
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 Chapter 5 

Analysis and Discussions 

In this chapter, a comprehensive analysis and discussion will be 

conducted according to the experimental results for the two 

models. The pros and cons of the two models for traffic-sign 

recognition will be identified. Besides, the limitations of this 

project will be also clarified at the end.  
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5.1 Analysis and Discussion 

After comparing the results of two models, we concluded that the Faster R-CNN has 

achieved a higher accuracy rate than the YOLOv5 for recognizing the traffic signs in NZ. 

The conclusion was summarized according to the loss scores and precision related metrics. 

The Faster R-CNN has achieved lower loss scores while gaining higher precision related 

scores, such as the consistent changing trend of Precision and Recall scores and mAP 

values.  

    However, in the testing phase, we noticed that the end-to-end model YOLOv5 is 

more efficient when it was processing the data of inference. The test video in the inference 

is composed of 2,074 frames. The processing time for per frame of the YOLOv5 is only 

around 0.011 seconds but the time consumption for the Faster R-CNN (37 seconds) is so 

much longer than the YOLOv5. From the perspective of time consumption, the YOLOv5 

is a more reasonable choice for performing recognition tasks.  

    In summary, the Faster R-CNN is a much accurate model for recognizing traffic 

signs without considering the time consumption. The YOLOv5 is a better one when the 

tasks concern more about the data processing time. 

5.2 Limitations of This Project 

The limitations of this project are mainly reflected in four aspects. Firstly, our dataset 

does not cover all the classes of traffic signs in New Zealand, which is mainly due to the 

limited time and physical resources. Thus, only seven the most common used traffic signs 

are contained in our dataset for training networks for recognition tasks. The practicability 

of this project will suffer from the partial types of traffic-sign data and the project 

temporally stuck in the experimental phase.  

    Secondly, though the experiments in this project were performed both on the two-

stage and on-stage neural networks (Faster R-CNN with VGG16 and YOLOv5), there are 
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still a lot of models that are worthy to be estimated so that a more comprehensive results 

will be summarized and the conclusions will be more instructional in this field. 

    Thirdly, there are only several metrics used to evaluate the performance of the two 

models. Several meaningful measures, such as F1 score and the areas under Precision-

Recall curve, could be considered as the additional measures to help us choose 

appropriate models for recognizing traffic signs. 

    Lastly, we only explored this problem from a limited researching angle. There are a 

lot of real-world difficulties while recognizing traffic signs like we mentioned at the 

beginning of this report, including illuminant issue, rotations, partial occasions and 

physical damages, etc. However, in this project, we only focused on tackling with the 

problem of recognizing smaller size of traffic signs. There are still a lot of researching 

spaces in this field to be mined.  
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Chapter 6 

Conclusion and Future Work 

In this chapter, we will draw a conclusion for the project based 

on our experimental results and analysis. In addition, the future 

research directions will be pointed out. 
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6.1 Conclusion 

One of the objectives of this report is to propose a customized benchmark for recognizing 

the traffic signs in NZ since there is no benchmarks that can fit into traffic-sign 

recognition tasks for all counties. Our dataset consists of 3,436 images in total and 

contains seven classes of traffic signs of NZ. The distribution of these classes is more 

even comparing to the most popular benchmark, German Traffic Sign Recognition 

Benchmark (GTSRB), which is an improvement directly contributed to the distinct 

performance of the two chosen models. Most importantly, we trained CNN models to 

recognize small size traffic signs, thus there are sufficient instances in smaller sizes in our 

dataset. The results of two models which performed based on our dataset are promising 

and impressive.  

    Another objective of this report is to evaluate the neural networks for this task. We 

evaluated the performance of a one-stage model (YOLOv5) and a two-stage model 

(Faster R-CNN with VGG16). According to the comparison between the two models, we 

concluded that the Faster R-CNN is a better option for TSR without considering the time 

consumption as the higher-level accuracy reached by it. YOLOv5 is more sufficient and 

important there is a slightly degrade of accuracy rate comparing to the Faster R-CNN. 

6.2 Future Work 

    Recently, there is redundant research work emerging for recognizing traffic signs for 

handling with the real-world problems. On the one hand, in future, we will complete our 

benchmark by covering more types of the traffic signs in NZ so that we can make this 

project more instructional in this field. On the other hand, more object recognition 

techniques will be employed into TSR. For example, recognizing objects utilizes 

heatmaps methods. Finally, more evaluation measures also should be used to estimate the 

performance of different models.  
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