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Multitarget Tracking Using Siamese Neural Networks

NA AN and WEI QI YAN, Auckland University of Technology

In this article, we detect and track visual objects by using Siamese network or twin neural network. The
Siamese network is constructed to classify moving objects based on the associations of object detection net-
work and object tracking network, which are thought of as the two branches of the twin neural network. The
proposed tracking method was designed for single-target tracking, which implements multitarget tracking by
using deep neural networks and object detection. The contributions of this article are stated as follows. First,
we implement the proposed method for visual object tracking based on multiclass classification using deep
neural networks. Then, we attain multitarget tracking by combining the object detection network and the
single-target tracking network. Next, we uplift the tracking performance by fusing the outcomes of the object
detection network and object tracking network. Finally, we speculate on the object occlusion problem based
on IoU and similarity score, which effectively diminish the influence of this issue in multitarget tracking.
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1 INTRODUCTION
Visual object tracking is a critical issue in the fields of computer vision and deep learning, which
have a rich assortment of applications such as intelligent surveillance, human action or behavior
analysis, and automated driving. Visual object tracking is comprised of single-target tracking and
multitarget tracking. The earliest single-target tracking algorithm was based on MOSSE (i.e., mini-
mum output sum of squared error) [1], which is measured by using the affinity between two groups
of visual signals through cross correlation. The classical work based on correlation filtering was
derived from MOSSE, which encapsulates KCF (i.e., kernelized correlation filters), DSST (i.e., dis-
criminative scale space tracking), C-COT (i.e., continuous convolution operator tracker), and ECO
(i.e., efficient convolution operators) [2, 3, 8, 10]. These tracking algorithms need to accommodate
CN (i.e., color names), HOG (i.e., histogram of oriented gradients), and visual features extracted by
using CNN or ConvNet (i.e., convolutional neural network) for model training. With the develop-
ment of deep learning methods, the single-target algorithms based on the Siamese neural network
are evaluated by using the affinity between visual objects.
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Although both SOT (i.e., single object tracking) and MOT (i.e., multiple object tracking) are
successful in object tracking, the algorithms have distinctions. SOT tracking algorithms cater to
the single class in Pattern classification, whereas MOT tracking methods appeal specifically to
tracking visual objects that have multiple classes simultaneously. In terms of video duration, the
former copes with short time frame sequences, whereas the latter generally deals with longer
videos, which encompass the appearance, occlusion, and disappearance of multiple objects.

Generally, the steps of the MOT algorithm consist of the follows: (1) identify visual objects based
on an input video; (2) with regard to each detected object, compute the visual and motion features;
(3) calculate the probability that two given objects belong to the same target; and finally, (4) assign
an ID to each target, which is the key step of affinity calculation and data association [5, 6]. SORT
(i.e., simple online and real-time tracking) [9] algorithms tackle the correlation in a frame-by-
frame way by using a Kalman filter through motion analysis, whereas the Hungarian algorithm
was employed to obtain the correlation according to the positions of the center point and the
moving speeds of a visual object. In 2017, SORT algorithms were updated by using Mahalanobis
distance as the affinity metric and cosine distance as the metric from inner product of two visual
features. The overall affinity is acquired by using weighted average of these two metrics [33, 35].

Since deep learning has been employed to solve the MOT problem, a method using a recurrent
neural network was proffered for target state prediction and data association, but its tracking
performance was curbed by exploiting advanced methods [51]. In 2018, a few new algorithms
were applied to deep neural networks to solve multitarget tracking, such as DMAN (i.e., dual
matching attention networks) [14], TBA (i.e., tracking by animation) [52], and TAMA (i.e., deep
temporal appearance matching association) [53]. However, there remains a big gap between these
methods and the traditional ones.

Generally speaking, SOT algorithms based on deep learning are comparable to the traditional
ones. Therefore, we utilize a SOT algorithm combined with an object detection algorithm to
achieve multitarget tracking in this work. Intuitively, object detection and tracking are two com-
plementary tasks, perfect tracking is able to upgrade missed detection, and excellent detection can
curtail the tracking errors from drifting. We thus offer SSD (i.e., single shot multibox detector) as
the object detection algorithm, which is one of the state-of-the-art methods in deep learning and
has been applied to real-time object recognition [4]. However, SiamRPN (i.e., Siamese-RPN) [5,
47, 48], as a tracker, has been trained offline and achieved exceptional performance over the most
advanced correlation tracking algorithms.

Overall, we propose the SSD detector in deep learning to detect visual objects. We successfully
implement the recognition of five classes of visual objects, namely cars, buses, pedestrians, bicy-
cles, and scooters. We calculate the affinity between visual objects by using Siamese networks.
Finally, the Hungarian algorithm is employed to find the best visual object matches.

Pertaining to the remaining parts of this article, we delineate our related work in Section 2, our
methods are elucidated in Section 3, our experimental results are demonstrated in Section 4, our
resultant analysis is presented in Section 5, and our conclusion is drawn in Section 6.

2 RELATED WORK
In object tracking, SOT algorithms based on the structure of the Siamese network have the capa-
bilities of object detection and recognition; MOT algorithms that use an SOT structure instead of
motion models or spatial models only have emerged one after another. For example, by exploiting
Bi-LSTM (i.e., bi-directional long-short term memory), DMAN implements feature extraction and
compares historical features of the observation frames and the target trajectory. Regarding data
association, both spatial and temporal attention mechanisms are carved out to handle the prob-
lems of object detection and object occlusion. Another multitarget tracking algorithm is STAM
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(i.e., spatial-temporal attention mechanism) [15], which takes advantage of CNN-based trackers
to extract motion features and spatial features, using a spatiotemporal attention mechanism to
highlight foreground targets so as to resolve occlusion problems by using data association. In
contrast, another algorithm [18] was designed for dissolving the occlusion problem, and the ba-
sic tracker is based on SiamRPN. A high-quality neural network was designed based on ResNet-
18 (i.e., residual neural network), which selects k features related to the target trajectory, and a
classifier was trained by using a regularized Newton boosting decision tree to achieve the data
association.

FAMNet [62] is another Siamese network–based MOT algorithm. The appearance and location
information of visual objects were extracted by using the Siamese network, and the visual fea-
tures were compared based on the response graph. An R1TA power iteration layer was employed
to reduce the complexity of continuous multiframe association and enhance the continuous mul-
tiframe tracking. In addition, UMA (i.e., unified object motion and affinity model) [60], which is
akin to the DMAN algorithm, utilizes SOT to achieve the acquisition of apparent features and mo-
tion information, and attain online matching and association. UMA uses SiamFC as the tracker and
AlexNet for feature extraction. For data association, the occlusion is estimated through the changes
of affinity similarity and IoU. Moreover, the KCF [61] algorithm encapsulates the instance-aware
SOT tracker, which uses multicut to correlate the SOT results. To solve the occlusion problem,
KCF makes use of time distance, position shape, IoU, histogram, and so forth as visual features for
classification through SVM to achieve cross-frame matching.

However, a Siamese symmetric network [11] was proffered to learn the affinity of epigenetic
features, and the affinity between motion features and epigenetic features was attained based on
a gradient descent algorithm. A fully connected network was designed, and its output is based on
spatial features and 6D motion contextual features associated with relative changes of object size,
position, and speed. Throughout the gradient descent algorithm, multitarget tracking results are
exported by using linear programming optimization.

In addition, historical trajectory information is crucial to judge the target state in multitarget
tracking. It is feasible to design a network structure that is able to store the historical information
and match the similarity based on historical information [58]. A feature fusion algorithm was pro-
posed based on the long short-term memory (LSTM) network, which calculates the matching
similarity between trajectory history information and current detection [59]. LSTM is treated as
the historical information model.

The deep learning model in the proposed algorithm was originally from a convolutional
network [64, 65]. Since object tracking has applied historical trajectory information to determine
a new state of the object, the model thus is able to store the historical information and find the
matches by using the affinity of historical information. A fusion algorithm was designed based
on an LSTM model of the recurrent neural network to learn the affinity between historical and
current trajectory information by calculating three features: Apparent feature, motion feature,
and interactive mode feature. All three features are facilitated based on the LSTM. The final
classification score is treated as the affinity [12, 54]. A multiview hash model was set forth [55]
to enrich the multiview information by using deep neural networks, utilizing view stability to
actively explore the relationships among multiple views.

3 OUR METHODS
3.1 Our Algorithms
The proposed model consists of SSD and a modified SiamRPN neural network. The raw frames
from a video were imported into SSD so as to detect visual objects. With regard to the template
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Fig. 1. The architecture of the proposed model.

frame, the detected objects were cropped from the input image and fed into SiamRPN for feature
extraction and similarity evaluation. Regarding the detected frame, the whole image is fed into
SiamRPN for feature extraction and affinity calculation between the template objects in the tem-
plate frame and the predicted objects in the detected frame. The affinity score from SiamRPN is in-
put into the Hungarian algorithm so as to acquire the best match. If the affinity score is higher than
a given threshold, the tracking is successful. The architecture of this model is shown in Figure 1.

SiamRPN consists of a Siamese subnetwork for feature extraction and a region proposal net-
work (RPN) for classification [17, 18]. The RPN was proposed as a part of Faster R-CNN [7]. RPN
generates region proposals for visual object detection, which has a classification branch for object
detection and a regression branch for location prediction.

In this work, the proposed Siamese network as a classifier predicts the probability of a region
proposal for target tracking. Suppose that there are k anchors in total, and each anchor needs
to be classified into foreground or background; thus, the number of classes is 2k. Each anchor is
given by using four parameters: x and y coordinates of the location (x, y), width w, and height
h. For any given images, a scale is related to the size of the given image, and an aspect ratio is
the proportion between the corresponding width and height of this image. If we choose three
scales and three aspect ratios in total, then nine proposals are generated. For the whole image, the
number of anchors is w × h × k.

We assume that the i-th frame has j objects and the (i+1)-th frame has l objects. F [i][j] denotes
the j-th object of the i-th frame, which corresponds to the template frame in the original RPN;
therefore, F [i + 1][l] is the l-th object of the (i+1)-th frame in RPN. The RPN network for object
classification is shown in Figure 2.

The RPN classification network is based on binary classification. Firstly, we segment the input
image into w × h × k regions, where k denotes the number of anchors, h is the height of a feature
map, and w is the width of the feature map. We need to determine whether the anchor is foreground
or background by comparing the overlapping area between this anchor and the associated ground
truth, then assign each anchor with a label of foreground or background.

The proposed method is to treat the correlation layer as a convolutional layer so that the num-
ber of features is 2k by adjusting the shape of the convolution kernel. For a template frame, the
convolutional layer is responsible for the dimension of feature maps and the number of features
is increased to 2562k . To maintain alignment, the detected frame has an additional convolutional
layer, as shown in Figure 3.
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Fig. 2. The RPN network for object classification.

Fig. 3. The process of object classification.

The correlation operation is conducted to get the final classification [37]. The correlation is
operated by calculating the affinity of each position in the form of sliding windows. The affinity
is defined as

f (z,x ) = ∅(z) ∗ ∅(x ) + b, (1)
where z is the template frame, x is the detected frame, and b represents the score of each position.
Equation (1) treats ∅(z) as a convolution kernel that conducts convolutions with ∅(x ).

Amid tracking, the search image centered on the previous frame of target position is accom-
modated to calculate the corresponding score. While the window is sliding, the position with the
largest score is collaborated with the step length to determine the target position. Thus, RPN is
trained to have the ability to classify any inputs as one of the classes, namely foreground or back-
ground [36].

An image with the resolution M×N is fed into the deep learning model, and this image is resized
as (M / 16) × (N / 16) before imported into the RPN network. We define w =M / 16 and h = N / 16.
The image size w × h is imported for 1 × 1 convolution. Then, a reshape layer is followed by the 1 ×
1 convolution; we see that the output is 9 × w × h × 3, which corresponds to the possibilities of 9 ×
h × w anchors being classified as the class foreground or background. The outputs are the labels of
anchor classes, and we compare this with the ground truth to get the classified loss. A feature map
has 9×w× h anchors, and each corresponds to nine anchors. These nine anchors have three aspect
ratios—1:1, 1:2, and 2:1—and thus each feature map has three sizes. The loss function is defined as

L({pi }, {ti }) =
(

1
Ncls

)
·
∑

Lcls (pi ,p
∗
i ) +

(
λ

Nr eд

)
·
∑

p∗i · Lr eд (ti · t∗i ), (2)

where i is the index of anchors, pi is probability of the i-th anchor that contains an object, ti is
the vector of predicted bounding box, p∗i represents the ground truth of the i-th anchor, t∗i is the
vector of the bounding box of the ground truth, and Lcls (·) and Lr eд (·) stand for logarithmic loss
function over two classes. p∗i in Equation (2) ensures that if a visual object is identified, only the
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regression loss will be counted; otherwise, p∗i = 0, and the regression item will become zero in the
cost function. Ncls and Nr eд are normalization constants, and λ = 10 by default is assigned to scale
classifier and regressor.

In the RPN network, throughout the classification branch for object detection, we get the
affinity score of the detected object, and the location prediction of the detected object is obtained
by using the regression branch of the RPN network. Thus, we merge the results of object
detection based on SSD to improve the tracking accuracy. If the affinity score is greater than a
given threshold, and the IoU between the tracking bounding box and the detection bounding box
is greater than the given threshold, the matching is considered successful. We take the union of
the two bounding boxes as the bounding box of the visual object, and the feature information of
the template object is thus updated.

In MOT, the tracking branch of the Siamese network needs to match the tracking targets within
the given frames, whereas SSD does not provide any matching targets in a given frame. If a target
is successfully matched in the historical frames, then we assign an object ID to the target and
update the feature map of the template object. In the case of occlusion, we observe the IoUs and
affinity scores. If the two indicators continuously are rising and the tracking target cannot be
found within the video frames, it is considered that the occlusion occurs. At this time, though the
target matching is successful, the feature map of the template object is not updated.

ALGORITHM: Multitarget tracking algorithm based on the Siamese network
Initialization: templist = extend2dimension(ssdResults)
For each image in the list, do

If the image is the first frame, do
Init each bounding box with box ID and count
Else do

for each object in object list of pre-frame, do
feature(object) = GetFeature(object)
score(object) = GetScore(feature(object))
if score(object) < threshold

templist.append(object)
end
for each template object in templist, do

feature(object) = GetFeature(object)
score(object) = GetScore(feature(object))
scorelist.append(score(object))
if score(object) < threshold

template object count + 1
end
for each template object in templist, do

if template object count > threshold
remove object from template list

end
trackers =MatchID(scoreMatrix)
for each tracker in trackers, do

tracker.updateID()
tracker.updatePos()

end
end
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4 RESULTS
4.1 Dataset
We took a total of 1-hour video footage and chose 3,000 frames as our own dataset—approximately
600 images for each class. Additionally, for the tracking, we took advantage of our own dataset and
the MOT16 dataset [56]. The MOT16 dataset was employed to evaluate the multitarget tracking
method of the MOT Challenge Series proposed in 2016. The dataset is comprised of 14 videos, and
the videos were selected to extract features from natural scenarios without editing or postprocess-
ing, with a quality that is the same as that of a handheld camera. The selected video frames of our
training dataset are shown in Figure 4.

Figure 5 illustrates the tracking results using our test videos. During object tracking, we assign
an ID to the same target in different frames. The labels on the top of the bounding boxes are
the class tags of the target, and the labels at the bottom of the bounding box are the target IDs.
We assess our model based on the MOT16 challenging benchmark [19]. The MOT16 dataset was
presented in 2016 to measure multitarget trackers that are specifically used for pedestrian tracking.
In the MOT16 dataset, seven videos were employed for training and the others for test; all of them
are with static or moving cameras in an unconstrained environment.

4.2 Tracking Accuracy of Siamese Networks
In our experiment, we used the AlexNet-based SiamRPN as the single object tracking network.
The average MOTA is 33.2%, and the MOTP is up to 72.9%. Compared with the benchmark of
the MOT challenge [46], this result is acceptable. We assume that the deeper the neural net-
work is, the higher the accuracy of object tracking will be, because deeper neural networks
extract visual features effectively. We therefore accommodate ResNet-50 as the backbone to ob-
serve the tracking accuracy based on various CNN models. The average MOTA based on the MOT
dataset is 31.3% and MOTP is up to 73.4%, which is akin to the performance of the AlexNet-based
tracking network. The object tracking could not benefit from the deeper neural network, and there-
fore we substitute SiamRPN with SiamFC to observe the tracking results. Meanwhile, the outcomes
from the SiamFC-based tracking model resemble the AlexNet-based tracking network. The aver-
age MOTA of the SiamFC-based tracking network is 31.6%, whereas it is up to 33.2% using the
AlexNet-based network. The average accuracy rates of the two deep learning models are 72.0%
and 72.9%, respectively. In Figure 6, we compare the tracking performance of various Siamese
networks.

Because deeper neural networks do not attain higher tracking accuracy, our focus is on other
aspects of the network rather than simply raising the network depth. SiamRPN calculates affinity
based on the correlation, which has two constraints. First, the neural network needs to satisfy strict
translation equivalence, which means that when the target moves within the video frames, the
tracking position will also shift accordingly. Second, the neural network needs to have symmetry,
namely the calculated affinity should be unaltered, because the affinity has the symmetric attribute
[24, 26].

If we deepen the structure of SiamRPN, it may lead to the following problems. First, using
ResNet as a backbone network will inevitably introduce padding. The padding damages the trans-
lation equivalence of the neural network because the response at the margin of a video frame will
be shifted, which results in dissatisfaction of translation equivalence. Second, SiamRPN will be
imposed to the regression of position offsets and classification scores. The calculation of these two
variables is not a symmetric process. Therefore, the neural network will lose symmetry [27].

SiamRPN++ was proposed to solve the problems by using the optimized deep learning model
ResNet-50. Since the padding in ResNet has triggered the deep learning model to lose translation
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Fig. 4. The selected frames from our dataset (a) and MOT16 (b).
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Fig. 5. The comparations of object tracking algorithms by using multiple Siamese networks.

Fig. 6. The success plot and the precision plot of multiple Siamese networks.

equivalence, the model will learn position preference amid model training [25]. Therefore, if the
padding is enabled in a deep neural network, the positive samples are located in the center of the
training image, which means that the network has the location preference due to the distribution of
the training samples. With regard to the prediction preference, no matter where the target moves
in the image, the network will only predict locations of the object around the central area. This is
the why tracking performance could not be updated after deepening the network with ResNet.

SiamRPN++ allows the network to learn the position preference from a training dataset by
using the positive samples uniformly distributed in various positions within the image so that
the tracking performance of the network will not be abated in the deepened neural network.
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Additionally, SiamRPN++makes use of depth-wise cross correlation to solve the asymmetric prob-
lems. Throughout convolutions, the feature map is not channel upscaled but is fine tuned for the
two groups of feature maps. Furthermore, to integrate the feature maps with multiscale, semantics,
and resolutions, SiamRPN++ enables a multilevel cascading method and fuses the feature maps
after multiple convolutions so as to expand the receptive field of the feature maps. The stride is
also shrunk to gain an accurate positioning prediction. In this article, we replace SiamRPN with
SiamRPN++. Compared with SiamRPN, the MOTP of SiamRPN++ is not significantly improved,
but the average MOTA has grown 8%, which means that SiamRPN++ finds more matched objects.

4.3 Tracking Accuracy of Multiclass Visual Objects
The proposed model is able to detect and track visual objects from five classes. To verify perfor-
mance of the deep learning models in practical applications, we utilize the precision plot and the
success plot to evaluate the models based on our own dataset. In the plots [20], the success plot
reflects the successful rate, whereas the overlap score (OS) is calculated by using the bounding
box that is acquired by using the tracking algorithm and another bounding box that is provided
by the ground truth.

With regard to the single-target tracking algorithm, if the OS of a frame is greater than a pre-
defined threshold (usually 0.5), the tracking is considered successful. In our experiment, the suc-
cessful object detection is also defined if the OS of this object is greater than the given threshold.
The successful rate of object detection is defined as the ratio between the number of visual objects
that are successfully detected and the total number of the objects.

The precision plot reflects the deviation of object positioning. Location error is the distance be-
tween the center point of the bounding box estimated by using the tracking algorithm and the
location of ground truth. In the single-target tracking algorithm, the successful rate is the percent-
age of video frames, whose location errors are less than an assigned threshold to the total number
of video frames [34]. In our experiment, the percentage represents the ratio of the number of visual
objects to the number of total objects, whose location errors are less than a given threshold.

The success plot and the precision plot for each class are shown in Figure 6. Pedestrian tracking
has the highest success rate among the five classes in four Siamese networks that achieve an
average rate of 0.75, whereas the scooter tracking has the lowest one 0.53. The success rates of other
three classes are acceptable. The location error of pedestrian tracking is the lowest one among the
five classes. Conversely, the car tracking has the highest location error. The location errors of bus
tracking and bicycle tracking are similar. The scooter tracking has the lowest success rate, but
the position deviation is acceptable. However, though the success rates of car tracking and bus
tracking are closer, the deviation of car positions is much higher than that of buses.

In our experiments, the performance of SiamRPN (AlexNet), SiamRPN (ResNet-50), and SiamFC
networks has not been changed too much. This is inconsistent with our hypothesis that the deeper
the neural network, the better the tracking performance. However, the average tracking accuracy
and location error of SiamRPN ++ have been uplifted a lot. By using the MOT16 dataset as the
benchmark, the tracking performance of our model is acceptable. In our dataset, the tracking result
is significantly upgraded, as we have mingled the results of the detection network and tracking
network together, and the detection network provides a more accurate position in object tracking.
In addition, we retain historical trajectory information of the tracking target. The tracking net-
work corrects the missed instances from the detection network by using the historical trajectory
information. Among the five classes, namely pedestrian, car, bus, bicycle, and scooter, pedestrian
has the best tracking result, whereas scooter has the worst result. The reason is that we have many
pedestrian samples and few scooter samples in our dataset.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 17, No. 2s, Article 75. Publication date: May 2021.



Multitarget Tracking Using Siamese Neural Networks 75:11

Fig. 7. The feature maps of multiple Siamese networks.

5 ANALYSIS
5.1 Feature Extraction
In our experiment, we take advantage of deep neural networks as the backbone of SiamRPN and
SimaRPN++ for feature extraction. The performance of the SiamRPN-based tracking network has
not significantly increased, whereas the SiamRPN++ related network successfully ameliorates the
performance by overcoming the barrier that SiamRPN loses translation equivalence in ResNet due
to padding.

In Figure 7, we compare the Gradient-weighted Class Activation Mapping (Grad-CAM) [41, 42]
of SiamFC, SiamRPN (AlexNet), and SiamRPN (ResNet50) for feature extraction. Figure 8 shows
the “important” regions after feature extraction. The three networks clearly mark off the shapes
of bicycle wheels. The distinction is that the feature maps extracted by using SiamFC are coarse.
Compared with SiamRPN (AlexNet), SiamRPN (ResNet-50) has a larger region of feature maps.

5.2 Affinity Measurement and ID Assignment
In this article, we treat multitarget tracking problem as an issue of affinity measure between visual
objects. The Siamese neural network has two subnetworks or channels that share weights. The
similarity between two input vectors are measured using cross correlation. Therefore, the affinity
measures of SiamFC, SiamRPN, and SiamRPN++ are all based on cross correlation [43].

SiamFC takes advantage of cross correlation as the affinity measure to calculate the similarity
at each position of two feature vectors so as to acquire a score map [28]. We assume that the
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Fig. 8. The affinity measures between template frames and detected frames.

feature vectors of the template image and the detected image are x and y, respectively. The cross
correlation is calculated using Equation (3).

S = cov (x, y)
√
var (x)var (y)

, (3)

cov(x, y) = E ((x − µ ) (y − γ )) = E(xy) − µγ , (4)
where cov(x, y) is covariance of x and y; var(x) and var(y) are variances of vectors x and y, re-
spectively; and E(•) is mathematical expectation. A sliding window is employed to calculate the
affinity measure between the template image and the detected image. Then, a 17 × 17 score map is
generated as the output [29, 30]. We assume that feature vector x of the training object and feature
vector y of the test object have the same dimension n, and we apply the cosine function or inner
product to calculate the affinity measure of two vectors as Equation (4).

cos(θ ) =
| |x | | | |y | |
| |x | | | |y | | =

∑n
i=1 xy

√∑n
i=1 xx

2
√∑n

i=1y
2
, (5)

where y = cos(θ ) is a monotonic function within the interval [0, 1.0]. The larger the cos(θ ), the
smaller the angle between the two vectors. If the two vectors are parallel, cos(0) = 1.0, which
means that the two objects are the same; if the directions of the two vectors are perpendicular,
cos(90◦) = 0, which indicates that the two objects are completely different.

SiamFC applies the cross correlation to obtain a single-channel response map, whereas SiamRPN
extends the cross correlation to a higher level by adding a convolutional layer to scale the channels.
However, the up-channel module makes the parameters very unbalanced [31]. The dimension of
feature maps of the template image is 2k times or 4k times the dimension of feature maps of the
detected image, which makes SiamRPN training very difficult.

Depth-wise correlation was proposed in SiamRPN++ to reduce computational cost and memory.
The feature maps of the template image and detected image, in the regression branch and the
classification branch, are firstly fed into a convolutional layer to obtain the same spatial resolution
and channel dimension. The convolutional layer of SiamRPN++ is different from the layers in
SiamRPN. SiamRPN++ does not increase the dimension of feature maps but fine tunes the two
feature maps to make them symmetrical. After passing through the convolutional layer, depth-wise
correlation based on the feature maps of the template image and detected image takes effect on
the components of each channel and outputs the same number of score maps. Finally, for the score
maps of the same resolution and channel, output by different network branches, a 1× 1 convolution
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Fig. 9. Comparisons of the matched results of various affinity measures.

kernel is used for dimension adjustment to obtain the dimensions of output. The output of the
classification branch has 2k times the size of the channel dimension, and the regression branch
correspondingly outputs 4k times the size of the channel dimension.

Each feature point on the feature maps corresponds to k anchors in a receptive field of the
original image. For the regression branch, each channel is given as the quadruple (x ,y,w,h) for k
anchors. For the classification branch, the output value of each channel is the classification score of
the k anchors. In this way, the number of parameters of template object tends to balance, resulting
in a very stable training process. In Figure 8, we compare the tracking results based on cross
correlation and depth-wise correlation, which are thought of as the affinity measures.

The rows in Figure 9 show the results of cross correlation, and we see that the targets were
identified but not matched. At the same time, there is also a target that switches its ID when
re-identified [40]. In contrast, the tracking result based on depth-wise correlation for similarity
measurement is better. Only one object in these seven frames is recognized but not matched, and
there is not an ID switch that occurs when this object is re-recognized.

Because the template images are like the detected images in multitarget tracking, we feed the
affinity measure into the Hungarian algorithm to obtain the best matching result. The Hungarian
method is a combinatorial optimization algorithm that solves the assignment problem. For exam-
ple, in two consecutive video frames, there are many-to-many matches if we set the threshold
to 0.6. We get the affinity measure between the template frame and detected frame through the
Siamese network as follows.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.921 0.003 0.001 0.001 0.001 0.001
0.001 0.890 0.001 0.001 0.001 0.001
0.001 0.001 0.934 0.563 0.001 0.001
0.001 0.001 0.761 0.864 0.001 0.642
0.001 0.001 0.001 0.001 0.957 0.001
0.001 0.001 0.637 0.609 0.001 0.827

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6)

We import the score matrix as the affinity measure into the Hungarian algorithm [44] and find
the maximum match. Given a nonnegative matrix, we have to find an assignment of the targets to
the objects such that each object is assigned to one target and each target is assigned one object.
The key steps of the Hungarian algorithm are as follows. In step 1, each value is subtracted with
the minimum value in the row; this procedure is repeated for all rows and all columns. In step 2,
by searching for the matches, only the elements with a value of zero are matchable. In step 3, if
the maximum number of matches is n, the current match is the best one; otherwise, go to next
step. In step 4, we replace all zero values in the matrix with the smallest one in the row and the
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column; we select the smallest element of the nonzero submatrix or block matrix; we subtract the
smallest element from all elements of the new block matrix; and then we return to step 2 [32].
After completing all iterations, we will get the best matches.

6 CONCLUSION
Data association is a key step in the pipeline of multitarget tracking. Most of the existing MOT
methods are based on traditional machine learning algorithms [57]. In this article, we employ a
new SOT algorithm in which SiamRPN is combined with SSD to solve the issue of data association.
As a single-target tracking algorithm, SiamRPN cannot discriminate multiple objects with similar
characteristics in the same frame. Therefore, the Hungarian algorithm is utilized after the Siamese
network to get the best matches between visual objects and tracking targets [63].

For the occlusion problem, we speculate on the occurrence of occlusions based on IoU and simi-
larity scores of historical trajectory information, and we retain the original features if an occlusion
occurs to lessen the impact. Overall, the main contributions of this article are as follows:

• Different from single-target tracking methods that can only track one class of targets, our
proposed model achieves multiclass and multitarget tracking simultaneously.

• In this work, we proposed a novel method that achieves multitarget tracking by combining
a SOT algorithm with an object detection algorithm.

• The proposed model resolves the problems of disappearance of tracking targets and appear-
ance of new ones by mingling SSD and the Siamese network together. In addition, through-
out fusion of the results generated from the detection network and the tracking network,
the accuracy of object tracking is uplifted.

• We analyze the IoU and similarity scores of the detected objects and the template objects
to determine the occlusion and disappearance issues of tracking targets.
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