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Abstract 

In recent years, Deep Neural Network (DNN) has achieved remarkable progression in 

solving many complex problems. Recurrent Neural Network (RNN) is suitable for 

dealing with the problems related to time series, such as speech recognition and natural 

language processing. Obviously, video motion detection as an instance is also time 

dependent. Appearantly, video dynamic detection needs to compare the current, previous 

and next frames of this video. If a change occurs, it determines whether a motion or a 

video event has occurred or not. 

In this project, video event capturing based on deep learning is implemented and our 

contributions effectively improve the accuracy of video dynamic detection and greatly 

reduce human labor compared to the traditional surveillance system. The contributions of 

this report are: (1) increase the correct rate to 96% compared to a Finite State Machine 

(FSM) based real-time video capturing. (2) By combining CNN and RNN (GRU), the 

training time has been greatly reduced as we expect. 
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Chapter 1 

Introduction 

 

 

This chapter is composed of five parts: the first part introduces the 

background and motivations, the second part includes the research question, 

followed by the contributions, objectives, and structure of this report. 
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1.1 Background and Motivation 

Surveillance systems are gaining increasing usages in our community. Previously, they 

were only applied to sensitive premises such as airport, banks, hospitals and so on. In 

contrast with the developoment of technology, surveillance cameras are widely mounted 

in public area (Petrushin, 2005; Popoola & Wang, 2012). Moreover, traditional 

surveillance based manual operations has several obvious disadvantages including 

expensive labour costs, limited number of target objects being monitored, and high errant 

rates associated with manual monitoring (Remagnin, 2011). On the contrary, an intelligent 

surveillance system is able to resolve these problems, such as reducing costs and 

improving working efficiency. 

Therefore, how to monitor a region in the event of an incident or accident with early 

alarming has become one of the hot topics in the field of video surveillance. In order to 

achieve better monitoring, the mastery of changes is a key factor for computing. As 

machine learning gains its viral popularity, research scientists in surveillance keep 

applying their algorithms to resolve these practical problems.  

More and more surveillance systems are developing rapidly as the price of cameras 

continue dropping off, this causes its wide usages in our daily life, the importance of 

developing video surveillance systems has never been necessary like today. Surveillance 

cameras working in public areas mainly take into account the security needs of reducing 

labor; for example, such a camera is usually controlled remotely via the Internet, therefore 

the camera has the ability to monitor and record any abnormal behaviors. 

It is said surveillance videos record events in the real world, events are able to enhance 

reusability and accessibility of a collection of media, an event is regarded as a function to 

detect abnormal human behaviors (Popoola & Wang, 2012). Therefore, in order to 

improve the efficiency of monitoring video and reduce our human labour, digital image 

processing and artificial intelligence have been widely applied to event capaturing, 

behavior recognition, alarm making and machine learning etc.  
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1.2 Research Questions 

As we mentioned, this report aims to use deep learning into consideration, complete the 

real-time video capturing and event recording, and improve the accuracy and efficiency. 

Therefore, the research questions of this report are, 

(1) What techniques can be implemented in real time for video capturing based on 

deep learning? 

(2) How does deep learning based real-time video capturing improve the accuracy 

compared to traditional methods? 

The core idea of this project is event based video capturing in surveillance using deep 

learning. Thus, a couple of appropriate techniques need to be chosen so as to implement 

the best result of video capturing and event recording. Furthermore, the methods that we 

adopted in this research project need to be evaluated. In terms of deep learning based 

video capturing, we need to train our data in order to get the best results. 

1.3 Contribution 

The focus of this project is on achieving real-time event capturing based on deep learning. 

According to the model of deep learning, we achieve high-precision and real-time event 

capturing which is compared with traditional methods. By the end of this report, we are 

able to, (1) use a simulation method to generate dataset; (2) process video in time series 

using RNN with GRU; (3) apply CNN to reduce the video size and extract critical 

information; (4) analyze the accuracy of video capturing. 

 

Moreover, the core method of this project will be compared with a simple method based 

on FSM (Finite State Machine), we will collect experimental data under various 

conditions, analyse and justify the advantages/ disadvantages of these two methods.    



4 
 

1.4 Objectives of This Report 

Firstly, a collection of dynamic methods in video capturing are introduced and evaluated. 

In addition, this project report will introduce a new dynamic method based on deep 

learning and compare it with the traditional ones. 

 

Secondly, a novel framework is proposed to achieve event recording, video capturing 

based on dynamic detection using deep learning. Hence, the objectives of this report are 

divided into time series based RNN (GRU), video data reduction and feature extraction 

based on CNN, algorithm implementation using Python and Matlab. Finally, in this report 

we will introduce two methods for the purpose of comparisons through analyzing the 

experimental results. 

1.5 Structure of This Report 

The structure of this report is described as follows: 

§ In Chapter 2, we will conduct a literature review and discuss the relevant studies 

of RNN for the variants of RNN (LSTM and GRU). Meanwhile, we will compare 

Hidden Markov Model with the RNN model, put forward the faults of HMM in 

this report. In addition, the knowledge of CNN will be depicted. 

§ In Chapter 3, we will introduce the research methods. Experimental design and 

resultant comparisons will be present in this chapter. 

§ In Chapter 4, we will implement the proposed algorithms, collect experimental 

data and demonstrate the research outcomes in the form of figures and tables. 

Additionally, the limitations of these proposed methods will be detailed. 

§ In Chapter 5, we will summarize and analyze the experimental results. 

§ We will draw the conclusion and state our future work in Chapter 6.                          
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Chapter 2 
Literature Review 

 

 

The focus of this report is on event capturing based on dynamic motion 

of deep learning, this chapter will introduce a plenty of traditional methods 

and the relevant knowledge of deep learning.  
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2.1 Introduction 

With the increasing of global security problems, intelligent surveillance is gaining its 

attention from the public. The demands of surveillance for public security are soaring, 

such as security in banks, shopping malls, airports and markets, etc. Meanwhile, a 

growing number of residents are paying their close attention to privacy protection of their 

homes. 

2.2 The Dynamic Detection 

Moving object detection is the basis of target tracking and recognition. Intelligent 

monitoring has a broad range of real applications, these include the usages in industrial, 

telemedicine, military, and etc. The fast and accurate detection of moving objects has 

become a hotspot in the field of video surveillance (Han, 2015). 

    Surveillance system based on FSM is used to monitor patient movement (Noorit, 

2014). The FMS-based activity capturing plays a pivotal role in the applications of human 

detection and recognition. The FSM has been employed to model, extract and capture the 

movements of any persons and identify the relevant motion characteristics. The 

experimental results show that FSM-based monitoring has a superior performance in 

video capturing and event recording. 

    Background subtraction based statistical model is a good method for moving target 

detection. When using statistical models for background training, we have to differentiate 

the background model from a single or multiple modes. For the single-mode background 

model, the colour distribution of these spots is relatively concentrated, we thus describe 

it by using a probability distribution model. However, for the multiple-mode background 

model, the colour distribution is relatively dispersed so that we use several distribution 

models to describe it properly. (Liu, 2012). 

    The motion energy method (Wildes, 1998) has been applied to various environment 
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which can eliminate the disturbing pixels from the complex background. Highlighting 

moving objects in a direction is possible, but there exist problems that cannot separate 

objects accurately. The neighbour frame difference algorithm and the background 

subtraction method (Collins & Wixson, 2000) are easy to be implemented and have high 

real-time capability (Anderson, 1985). However, they are affected by external conditions 

such as lightings, background updating, etc. 

    The existing motion detection methods include background subtraction and frame 

difference. However, there are shortages in frame difference method that are difficult to 

construct a background model by using background subtraction. Therefore, the test results 

could not reach the ideal state (Yang, 2013). 

    In summary, there are deficiencies in traditional methods. Hence, a new dynamic 

detection method based on deep learning will be implemented in this project. We will 

compare the new model with the traditional one under various experimental conditions. 

2.3 Hidden Markov Model  

The most important goal of machine learning is to estimate and speculate on unknown 

variables (such as category tags) of interest based on the observed evidence, such as 

training samples. The probabilistic model provides a descriptive framework, the learning 

work is attributed to the probability distribution of computational variables. In a 

probabilistic model, using known variables to speculate the distribution of unknown 

variables is called inference. The core of this model is to infer the conditional distribution 

of unknown variables based on observable variables. For instance, assume the variables 

of interest are set to 𝑌 , an observable set of variables is 𝑂 , the collection of other 

variables is 𝑅, the generative P(𝑌, 𝑅, 𝑂), and discriminative P(𝑌, 𝑅|𝑂). Given a set of 

observations of variable values, conditional probability distributions is set to 𝑃(𝑌|𝑂). 

Hidden Markov Model, abbreviated as HMM (Baum, 1968) is one of the simplest 

dynamic probability models, which is mainly used in time series for data modelling and 
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widely applied to voice recognition and natural language processing. 

Shown as Figure 1, variables in HMM are divided into two groups. The first group 

states variables {𝑦!, 𝑦"…𝑦#}, 𝑦$ ∈ 𝑌 indicating the states of the system in the moment 𝑖 . 

The state variable is usually assumed to be hidden and not observable, hence, the state 

variable is also known as the hidden variable. The second group is observational variables 

{𝑥!, 𝑥", 𝑥#… , 𝑥$}, 𝑥% ∈ 𝑋 representing the observed value of time 𝑖 . In HMM, there are 

multiple state transitions {𝑠!, 𝑠", 𝑠#, … , 𝑠&} between systems. Therefore, the value range 

of the observed variable 𝑌  is usually a discrete space with 𝑁  possible values. An 

observational variable 𝑥% is a discrete variable and may be continuity. Here we assume 

that the observable state is discrete, the value range 𝑋 is {𝑜!, 𝑜", … , 𝑜'}. 

 

Figure 2.1. Hidden Markov Model 

Figure 2.1 shows the dependency among variables. The value of observation 

variables depends on state variables only；𝑥( is determined by 𝑦( and it is unrelated to 

the value of other state variables and observations. At the same time, the state at a time t 

depends only on the state 𝑦()! at time 𝑡 − 1 and it is unrelated to the rest of states. 

Based on this dependency of “Markov Chains”, the joint consideration of all variables is 

distributed as,   

P(𝑥!, 𝑦!, … , 𝑥$, 𝑦$) = P(𝑦!)P(𝑥!|𝑦!)P(𝑥"|𝑦")…P(𝑦$|𝑦$)!)P(𝑥$|𝑦$) =
P(𝑦!)P(𝑥!|𝑦!)∏ P$

%*" (𝑦%|𝑦%)!)P(𝑥%|𝑦%)              (2.1) 

To determine an HMM, we also need the following three sets of parameters: 

(1) State transition probability. The probability transition shown in different states 

is usually recorded as a matrix A = <𝑎%+>&×& 
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𝑎%+ = 𝑃?𝑦(-! = 𝑠+@𝑦( = 𝑠%A. 1 ≤ i, j ≤ N           (2.2) 

(2) Output observation probability: The probability of each observation in the 

current state is usually recorded as a matrix.B = *𝑏$%,&×(. 

𝑏%+ = 𝑃?𝑥( = 𝑜+@𝑦( = 𝑠%A,  1 ≤ i ≤ N, 1 ≤ j ≤ M            (2.3) 

(3) Initial state probability. The probability that appears in each state at the initial 

moment is usually recorded as a vectorπ = (𝜋!, 𝜋", … , 𝜋&). 

𝜋% = 𝑃(𝑦! = 𝑠%), 1 ≤ i ≤ N                   (2.4) 

In video dynamic detection, we consider that the model has two hidden states Y =

{𝑠!, 𝑠"} , where 𝑠!  indicates that the scenery in the video has not changed and 

𝑠"represents that the scenery has changed. The observations are the images captured 

currently. Because of its dispersion of this image, we still consider the observational 

variables as discrete variables. Its pixels of the captured image are 	w × h , w	and	h 

represent the width and the height of the image, respectively. Considering that the input 

image is an RGB image with 256 colors, the observed variable state space has a possible 

value of 256#./  (Sotirios, 2011). 

In order to apply HMM to video dynamic detection, we need to resolve the following 

two problems in the sequence (Eickeler, Muller, 1999) 

(a) Training to get model parameters	ρ = [𝐴, 𝐵, ]. Because the artificially specified 

model is difficult to get the ideal effect, firstly we estimate the optimal model 

parameters using a set of training videos so as to achieve the maximum probability 

𝑃(𝑥|𝜌) on the training dataset. 

(b) Given test video observation sequence 𝑥 = {𝑥!, 𝑥", … , 𝑥&}, we calculate the most 

matched status sequence 𝑦 = {𝑦!, 𝑦", … , 𝑦&} so as to determine whether the video 

current frame is changed or unchanged according to the training model 𝑙 =

{𝐴, 𝐵, 𝑃}. 

p
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There are limitations of this model (Rabiner, 1989). In the HMM, the current state 

is determined only by the state of last moment. In the process of video dynamic detection, 

the adjacent two frames may be identical in a period of time when the model is in the 

motion state. At this time, it is not enough to consider only the state change based on two 

adjacent moments. Although the HMM can be extended to the current state and the first 

m states, but under this assumption, the calculation of HMM will become more complex. 

In summary, though HMM has been widely used in time series such as speech 

recognition and natural language processing, its computational complexity makes it 

unsuitable for directly applying to video dynamic detection. Currently, Deep Neural 

Network (DNN) has obtained very good results in learning. Among them, Recurrent 

Neural Network (RNN) has achieved better results in time series. Convolutional Neural 

Network (CNN) has also been widely used in the field of digital image processing. 

Therefore, this project will combine RNN and CNN in deep learning together to complete 

the mission of video dynamic detection. 

2.4 Recurrent Neural Network 

Comparing with Hidden Markov Model, RNNs represent the most general and powerful 

method of sequence processing that are not limited to discrete internal states but rather 

than continuous and distributed sequence. 

    Recently, Recurrent Neural Networks (RNNs) have been successfully introduced in 

language modelling for Automatic Speech Recognition (ASR), e.g. Mikolov et al. (2010), 

Mikolov et al. (2011) and Hori et al. (2014). The RNN Language Model (RNNLM) adopts 

the complete word history by recursively propagating the activation vector through its 

hidden layer with its own loops (Schwenk, 2007). 

    In 2012, Krizhevsky uses Deep Neural Network to reduce the errant rate of the 

classification to 15.3% in the ImageNet Large Scale Visual Recognition Challenge, while 

the traditional method is only at 26.2%. Clearly, the use of deep learning to extract image 

features far exceeds the traditional methodology.  

    Recurrent Neural Network (RNN) has been employed to model the inverse dynamics 
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of human body, and the RNN is one of the best ways to model dynamic networks with 

high nonlinearities (Narendra, 1990). The experimental data will be automatically 

generated by using machine learning to simulate the dynamics of human motion 

(Abdulrahman, 2014).  

    RNNs have been applied to languages models, but with the time lags increasing, the 

problem of gradient vanishing will be an issue (Zhang, 2016). In order to resolve this 

problem, special structures of RNNs are presented such as LSTM and GRU, these 

structures have “forget” units, given the memory cells having the ability to determine 

when to forget information. LSTM was first introduced to the language model in 1997 

(Hochreiter & Schmidhuber, 1997). The solution based on LSTM needs a long time to be 

completed due to its computational complexity, hence, GRU is a variant of LSTM (Chung, 

2014). 

    Long Short-term Memory (LSTM) is a novel efficient method that is based on 

gradient (Felix, 2000). LSTM aims to overcome the problem of vanishing error. 

Truncating the gradient where this does not work, LSTM bridges the minimal time lags 

in excess of 1000 discrete time steps by enforcing constant error flow through “constant 

error carrousels” within special units. So far, LSTM has led to successful operations 

involving artificial data, distributed, and real-valued problems and learned faster. LSTM 

also solves the complex artificial problems of long-time lag that previous algorithms 

never solved. Therefore, LSTM is offered in a myriad of practical applications such as 

speech recognition and language separation form prosody (Cummins & Schmidhuber, 

1999).  

    The LSTM structure is proposed to resolve the problem of gradient vanishing 

(Pascanu, 2012). Not only can we learn the short-term dependency of time series, but also 

successfully get across the long-term dependency of time series. Therefore, LSTM is 

widely employed in RNN. The fundamental difference between LSTM and RNN units is 

that a long-term memory item 𝑐()! is introduced on the basis of current input 𝑥( and 

the last output	ℎ()!, so that the long dependency can be stored. From the perspective of 

mapping, the RNN provides a mapping from 𝑥( , ℎ()! to	ℎ(.  
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RNN: (𝑥( , ℎ()!) → ℎ(                       (2.5) 

    While the LSTM has the mapping from 𝑥( , ℎ()!, 𝑐()! to ℎ( , 𝑐( 

LSTM: (𝑥( , ℎ()!, 𝑐()!) → (ℎ( , 𝑐()                  (2.6) 

    LSTM structures take effects in various specific learning. In fact, there are more than 

10,000 kinds of LSTM structures. This report takes the LSTM model used by Google 

Brain's Zaremba (2014) and others as an example to improve the LSTM's dropout strategy 

and the basic structure of LSTM. The model is also a model implemented by Basic LSTM 

Cell in Google’s Deep Learning Frame - Tensor Flow. 

    An LSTM unit consists of four gate structures: Input Gate-i, Input modulation gate-

𝑔, Forget gate-𝑓, and Output gate-𝑜. The equations are, 

i = sigmoid(𝑊0%𝑥( +𝑊/%ℎ()! + 𝑏%)                  (2.2) 

f = sigmoid?𝑊0%𝑥( +𝑊/1ℎ()! + 𝑏1A                 (2.3) 

o = sigmoid(𝑊02𝑥( +𝑊/2ℎ()! + 𝑏2)                 (2.4) 

g = tanh?𝑊03𝑥( +𝑊/3ℎ()! + 𝑏3A                   (2.5) 

𝑐( = 𝑓 ⊙ 𝑐()! + i⊙ g                    (2.6) 

ℎ( = 𝑜⊙ tanh	(𝑐()                      (2.7) 

    The most critical part of the LSTM model is a storage unit 𝑐(. Forget Gate uses the 

Sigmoid function as the activation function, the range of this sigmoid function is between 

(0, 1) which is used to represent the model's Forget Rate (Gers, 2001; Schmidhuber, 2002; 

Chen, 2015).  

    LSTM units have more than 10,000 variants, most of them are similar but differ only 

from selection of the activation function. There are also special variations, such as the 

concept of peepholes proposed by Gers (2000) etc., that is, the memory unit is also 
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involved in calculation of the Gate.  

   Gated Recurrent Unit (GRU) model based on the LSTM is a big change (Cho, 2014) 

as Forget gate is integrated with input gate and turns them into a single update gate. Mixed 

with cell states, hidden states, and other changes, the final model is simpler than the 

standard LSTM model. 

    LSTM is used to model the video (NG, 2015) which connects its output of the 

underlying CNN as the input at the next moment, obtains 82.6% recognition rate on the 

UCF database. A long-term recurrence convolution network combines CNN, reaches 

82.92% accuracy rate (Donahue, 2014). 

    An energy decomposition model based on depth learning using GRU as the basic 

unit of RNN trains the model (Kim, 2016). Its model with the GRU as the basic unit is 

compared with the original RNN, and the accuracy is 89% ~ 98% and 81% ~ 98%. GRU 

is applied to question detection based on GRU to establish RNN and Bidirectional RNN 

(Tang, 2016). The result shows that the special advantage of GRU is that it can determine 

a ime scale to extract high-level contextual features which make the result better than the 

baseline method. Meanwhile, the RNN with GRU is applied to natural language 

processing and improve the effectiveness of its architecture (Zhang, 2016). The data show 

new models can achieve competitive performance compared with the state-of-the-art 

technologies. 

2.5 Convolution Neural Network 

The human neural system consists of billions of neurons. In computer science, Artificial 

Neural Network (ANN) simulates the computational model of animal nerual system, 

allows the computer to interact like our human brain. Fukuhima (2016) proposed a neural 

cognition machine that could model the central part of our visual system. In 1989, LeCun 

et al. applied the convolution neural network to pattern recognition using a training 

method based on the error gradient. 
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    Convolution Neural Network (CNN) (Matsugu & Kaneda, 2003) is based on deep 

learning theory. It mainly uses weight sharing to resolve the problem of parameter 

expansion in the ordinary neural network. Hubert and Wessel (1962) proposed a 

convolutional neural network model, which reduces its complexity of the feedback neural 

network effectively. Now, the CNN has been developed and become an effective method.  

    A multi-resolution convolutional neural network is offered to extract video features 

by using 3D CNN (Varol et al, 2016; Karpathy, 2014). The input video was divided into 

two sets of data streams: low-resolution data streams and raw data streams. The streams 

contain convolution layers, regular layers, and extraction layers. 

    Senior and Beaufays (2014) also made use two convolutional neural networks for 

video behavior identification, which divided a video into static-frame data streams and 

interframe dynamic data streams. Static-frame data streams take single frame data whilst 

interframe dynamics of the data stream works with opticalflow data, so each data is used 

in the depth of convolution neural network for feature extraction. 
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Chapter 3 
Methodology 

 

 

The main content of this chapter is to clearly articulate research 

methods, which satisfy the objectives of this report. The chapter mainly covers 

the details of research methodology for video dynamic detection using deep 

learning which will be clearly introduced with the confident and imaginative 

use of the feature description methods.  
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3.1 Recurrent Neural Network 

In recent years, Deep Neural Network (DNN) has achieved remarkable results on a great 

deal of complex issues. Recurrent Neural Network (RNN) is suitable for handling the 

time series related issues, such as speech recognition and natural language processing.  

The basic RNN unit is described as Figure 3.1. As we see, in an RNN unit, 𝑥(	is input 

and ℎ(means output. Not only 𝑥), but also the output of last moment ℎ()!	will be needed 

to calculate ℎ(. In Figure 4, the iterative arrows in the RNN unit indicate that the current 

output is stored as the next input. 
 

 
                                            

Figure 3.1 The basic unit of RNN 
 
    The RNN unit model is expressed as, 

 
ℎ( = 𝑓(𝑥( , ℎ()!)                          (3.1) 

 
    This model is expanded as, 

 ℎ5 = 𝑓(𝑥2 , 0) 

ℎ! = 𝑓(𝑥!, ℎ5) = 𝑓?𝑥!, 𝑓(𝑥2 , 0)A = 𝑔(𝑥5, 𝑥!) 

┋ 
ℎ( = 𝑓(𝑥( , ℎ()!) = 𝑔(𝑥5, 𝑥!, … , 𝑥()               (3.2) 

 

    We have that the RNN model interprets the state 𝑥( at the time 𝑡	into a function of 

all the previous input	𝑥5, 𝑥!, … , 𝑥(. An RNN unit is expanded vividly in Figure 4. Clearly, 

𝑥5, 𝑥!, … , 𝑥(  is a function of ℎ). Therefore, the RNN is regarded as the promotion of 

HMM, which considers not only the influence of the previous one on the current state, 

but also the impact of all the previous states of the current one. In the course of video 

dynamic detection, the RNN determines its motion state of the current frame by 

comparing the current frame 𝑥( with all the previous frames 𝑥5, 𝑥!, … , 𝑥()!. 

xt RNN ht
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Figure 3.2 RNN unit expansion 

    The most commonly used RNN units are shown in the following form, 

 ℎ( = 𝑓(𝑊0𝑥( +𝑊/ℎ()! + 𝑏), 𝑓 ∈ {𝑠𝑖𝑔𝑚𝑜𝑖𝑑, 𝑡𝑎𝑛ℎ}      (3.3) 

    Both input 𝑥(  and output ℎ(  are vectors; 𝑊0 ,𝑊/ are the weight matrices of 

𝑥) , ℎ)*!, respectively. The activation functions are sigmoid functions and tanh functions,  

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = !
!-6!"

                       (3.4) 

tanh(𝑥) = 6")6!"

6"-6!"
                        (3.5) 

    The sigmoid function maps the real numbers to the range, and the tanh function maps 

the real numbers to the range; the images are shown in Figure 3.3 

 

Figure 3.3 The sigmoid and tanh functions 

    Theoretically	ℎ( = 𝑓(𝑥( , ℎ()!) = 𝑔(𝑥5, 𝑥!, … , 𝑥(), the RNN tackles any length of 

dependency. In practice, RNN may not be able to successfully learn this knowledge. 

x0

RNN

h0

x1

RNN

h1

xt

RNN

ht搽搽

搽搽xt

RNN
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Bingio (1994) conducted an in-depth study of this problem, because almost all the RNNs 

currently adopt a gradient-dependent algorithm (gradient descent method, Adam 

algorithm, etc.) to carry out the model training, they are dependent on the results of 

gradient calculation. Long dependencies of the gradient tend to reach 0 because of the 

limitations of traditional RNN expression that makes the training algorithm ineffective. 

The LSTM structure is offered to solve this problem (Hochreiter, 1997). 

3.2 GRU 

Zaremba (2015) has extensively tested 10,000 variants of LSTMs and concluded that 

GRU is the best one in most cases, initializing the offset of forget gate to a larger value 

for other LSTM variants is used to get a similar result as the GRU. In general, these LSTM 

variants have almost the same effect. 

    However, the GRU model has less parameters than LSTM, the model will converge 

earlier in the training. Also, the GRU does not require a deliberate initialization operation 

to achieve good results, hence we choose GRU as the basic unit of RNN. 

    Gated Recurrent Unit (GRU), as a relatively successful variant of LSTM, its 

parameters are smaller than average LSTM, and it is easier to achieve better results. 

Therefore, this report will adopt GRU as the basic unit of RNN. The update equations of 

GRU are as follows, 

                    (3.6) 

Assume that the input and output vectors are n-dimensional vectors, the parameter GRU 

requires are n × 2n	matrices, and the total number of parameters is 6𝑛". The LSTM unit 

in the previous section requires 8n × n	weights matrices and 4 n-dimension offset vectors, 

the total amount of parameters is 8𝑛" + 4𝑛. Therefore, the number of GRU parameters 

is less than the ordinary LSTM model. Combined with Zaremba (2015) et al., the results 
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of 10,000 LSTM structures are tested. GRU, even with less parameters, can achieve better 

results.  

3.3 Convolutional Neural Network 

If a RNN is used directly in training, we consider the input vector is a 80´60 grayscale 

image, a GRU unit requires 1.4 × 10+. While this is calculable, the training time will be 

very long due to the computing limitations.  

    On the other hand, because the input appears only a part of the image rather than the 

whole image, inputting the entire image directly will produce more redundancy. Thus, 

most of the image information is preserved despite the image resolution is smaller. 

    Convolutional Neural Network (CNN) achieves better results in image-related fields. 

A CNN unit typically consists of a convolutional layer and a max pool layer. The 

convolution layer mainly uses convolution to extract different features from the image 

species. The pooling layer is implemented by subsampling and further reduces the input 

scale of the image. 

    Convolution is a partial operation on the image, given a convolution matrix W, for 

the input image I, its output image O satisfies, 

O(i, j) = ∑ 𝑊(𝑢, 𝑣)𝐼(𝑖 + 𝑢, 𝑗 + 𝑣)7,9              (3.7) 

Table 3.1 Convolution operator and convolution effects. 

Description Convolution operator Effect 

original 

picture 
}
0 0 0
0 1 0
0 0 0

~ 

 

Boundary 

extraction 1 
}
1 2 1
0 0 0
1 −2 −1

~ 

 

Boundary 

extraction 2 
}
0.4038 0.8021 0.4038
0.80210 −4.8233 0.8021
0.4038 0.8021 0.4038

~ 
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In traditional image processing, the convolution operator is assigned manually. In CNN, 

each element of the convolution matrix is obtained by training. Generally, for the same 

input image, multiple convolution operators are used to obtain the corresponding features; 

the convolution layer of a CNN is shown in Figure 3.4 

 

Figure 3.4 CNN convolution layer 

    Pooling is also a partial operation, whilst the most commonly used is the max pooling 

operation, of course, we also can use mean pooling in some cases. The Max Pooling is 

divided the input image into m× n units. The maximum value is selected to represent 

each cell. Figure 3.5 shows the operations of Max Pooling with 2 × 2 matrix. After the 

pooling operation, the image is condensed greatly. 

 
Figure 3.5 Maximum pooling 

    The general CNN structure is shown as Figure 3.6. A CNN first has multiple 

convolution layers, each of them is followed by a polling layer. After multi-layer 

convolution, the obtained feature is expanded into a vector, which is an input of Full 

Connected Feedforward Neural Network, then the final output of CNN is obtained. 

Input Image

Convolution 1 Feature 1

Feature 2

Feature n

Convolution 2

Convolution n
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Figure 3.6 CNN diagram  

    In addition to a fully connected neural network, adding a dropout operation can 

effectively avoid the over-fitting problem of artificial neural networks. In the training 

process, random deletion of nodes will make the training results much stable and easy to 

avoid overfitting shown as Figure 3.7 

 

Figure 3.7 dropout diagram 

    In summary, because CNN can effectively reduce its size of the model parameters, 

it achieves better results on the image-related issues. The RNN is also suitable for dealing 

Input Image

Convolution 1

Max pooling 1

Convolution n

Max pooling n

Flatten

Full Connected
Feedforward Network

Output

搽搽
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with time series related issues. Hence, this report will combine CNN with RNN in one 

model together. 

3.4 Video Dynamic Detection Model Based on Deep Neural 

Network 

In this section, we will combine CNN and RNN together to construct a DNN so as to 

complete video dynamic detection. The model is shown as Figure 3.8. 

 

Figure 3.8 Video Dynamic Detection Based on Deep Neural Network 

    The model uses 80 × 60grey image as input, the first convolution layer is a 

5 × 5	 convolution template, extracting 32 features, then using 4 × 4  max-pooling 

operation. The second layer is convoluted with a 5´5´32´64	convolution template and 

max-pooling (5 × 5). Eventually get N = 4 × 3 × 6 = 768 dimensional output. After 

the output of the CNN part is expanded into a 768-dimension eigenvector, the result of 

RNN part is obtained by using a GRU unit, which is still a 768-dimension eigenvector. 

This feature vector represents the overall difference between the characteristics of the 

current frame and that of all previous frames. 

    Finally, after a full connection layer using a dropout strategy, a two-dimensional 
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output is achieved. The two-dimensional output vector, after the Softmax operation, can 

be converted into a probability vector; each component represents the corresponding 

possibility of the output results. The Softmax is calculated as follows: 

𝑝% =
:;<	(0#)

∑ :;<	(0#)$
#%&

                     (3.8) 

    The Softmax normalizes the input vector 𝑥 to a probability vector 𝑝 so that each 

component of 𝑝 is positive and the sum of the components is 1. Therefore, the value of 

each component indicates the corresponding classification possibility of the output results. 

In this proposed model, its probability vector of the output is only two dimensions: the 

first dimension represents the probability when the current frame is static and the second 

dimension represents the probability when the current frame is dynamic. In the prediction, 

the probability of a large state is taken as the prediction result. In addition, the cross-

entropy is a loss function in the model training. The cross-entropy is defined as, 

L = −∑ 𝑞%𝑙𝑜𝑔	𝑝%$
%*!                         (3.9) 

where 𝑝% is the model prediction and 𝑞% 	is the real result. If the current frame is a static 

frame, then q = [1,0]. If the current frame is a dynamic frame, then q = [0,1]. The 

smaller the value of the cross entropy is, the more the prediction result will be. For the 

DNN model in this project, the total number of parameters is 3,592,842, which is much 

less than that of the RNN model. 

    In summary, CNN is used to extract the feature of the current frame of a video, 

correspondingly the parametric size is reduced. Then, GRU is used as the RNN unit to 

obtain the difference between the current frame and the previous frame. Finally, through 

a fully connected neural network with dropout strategy layer, after calculating the 

Softmax to get the current frame, the final prediction of the current frame outputs the 

motion. 
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3.5 Training Data 

When the DNN model is determined, its predictive effect depends on the training data set. 

Therefore, in order to achieve good results, appropriate data sets should be chosen. In the 

process of video dynamic detection, the dataset we need is a series of videos, each frame 

of them marks the motions of this video. It is hard to find such datasets and manually 

labeling is also a troublesome work. Hence, a simulated method is adopted to generate 

the training dataset in this project. In addition, the training data generated in this way can 

help us analyze the prediction accuracy of the proposed model in different situations. 

Therefore, firstly we generate the model of a single object and then the model of multiple 

objects will be discussed based upon the generation model of a single object. 

    For the model of dynamic motion detection of a single object, the following points 

are important: 

(1) Shape of the moving object. In the process of video motion capturing, there are 

many kinds of moving objects which are represented by shapes. To simplify the 

problem, we generalize the shapes as a rectangle and suppose its aspect ratio is	α. 

(2) Area of the moving object. The effect of different objects on a video is different. 

The larger the area of the moving object is, the easier it is to be detected; the 

smaller the area is, the harder it is to be detected. Assuming the ratio of the region 

of the moving object in the screen is 𝐴, the pixel of the whole picture is S	the 

length and width of the object are  l = �𝑆𝐴/𝛼,w = α�𝑆𝐴/𝛼 respectively. 

 

(3) Position of the moving object. The position of the moving object can be 

determined by (𝑥, 𝑦, 𝜃) , (𝑥, 𝑦)	is the coordinates of the bottom-left corner of 

the object, is the angle between the length of the region and the horizontal 

direction of the video. 

(4) Object motion. The impact of the same object is also different because of the 

different directions in object moving. We only consider moving between the 

uniforms for the sake of simplicity. We set the speed as 𝑣 pixels per frame, angle 

between the velocity direction and the horizontal direction as	𝜑, the components 

q
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of velocity in horizontal and vertical directions are, 𝑣0 = 𝑣𝑐𝑜𝑠𝜑, 𝑣@ =

𝑣𝑠𝑖𝑛𝜑	respectively. The location of the object is simply denoted by (𝑥, 𝑦). 

(5) Color of the moving object. We consider that the moving objects only have a 

single color 𝑐 ∈ [0, 1]. 

(6) Movement time. We set the total length of a video as 𝑇, the time at which an 

object start moving is 𝑡 and the duration is 𝑑, then [𝑡, 𝑡 + 𝑑] [0, 𝑇]. 

. 

 
Figure 3.9 Single object motion model 

    The model of a single moving object is shown in Figure 3.9 A moving object is 

uniquely determined by the parameter (𝐴, 𝛼, 𝑥, 𝑦, 𝜃, 𝑣, 𝜑, 𝑐, 𝑡, 𝑑). Based on a single object 

movement model, we see that the factors that affect the video are: 

(1) Noise. If there exist noises in a video, the results of two video shots on the same 

object may be different. In general, the noise may be related to brightness and 

edge of the scene. In this report, we assume that the noise is White Gaussian noise.  

(2) The number of background objects. Assuming there are, 𝑀	background objects, 

the model of a single object can be used to generate 𝑀	moving objects with a 

velocity of 0 as the background object. The set of parameters is denoted as 𝑆'. 

(3) The number of moving objects. In the same video screen, there may be multiple 
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moving objects. Assuming 𝑁moving objects, the set of their parameters is 

denoted as 𝑀&. 

(4) Video duration. In addition, we need to specify the video duration 𝑇. 

    To sum up, a video is uniquely identified by the quadruple (𝑇, 𝜎, 𝑆' , 𝑀&). We 

use the above method to generate multiple videos according to different parameters. 

Part of the generated dataset should be employed for training the model and the rest 

for the validation. Since the parameters of this model are known, we therefore analyze 

the accuracy changes of our proposed model under different parameter conditions. 

 

Figure 3.10 Training video examples 

    Using the method described, we generate complex scenes to simulate the real 

video. As shown in Figure 3.10, there are three moving objects marked with a red 

frame in the scene, the thumbnails mark the current frame number at the top left corner.  

Figure 13 depicts a scene with three moving objects: the bright white rectangle 

moving upward vertically (object 1), the long grey rectangular block moving 

horizontally to the right (object 2), the tilted rectangular block moving to the up-left 

direction (object 3). This shows that our model has the ability to describe multiple 

objects of different movements. Object 1 is located at the lowest position and 
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occluded by a dark grey rectangle at the upper part of this image. Object 2 is located 

on the top layer of the object 1. Object 3 is located at the uppermost layer which shows 

that our model is able to tackle the actual relationship of mutual occlusion in the video. 

In addition to the three motional rectangles, five rectangular blocks with different 

colors are introduced in the video. 

3.6 Program Implementation 

Because of its excellent performance in video capturing, image processing, and data 

analysis, MATLAB is employed to achieve our goal of this project. Although Python can 

also fulfil this mission, it has to rely on multiple third-party libraries and its 

documentation is not perfect. Additionally, we are not familiar with the Python language 

and MATLAB also has the interface to call Python, so we chose mixed programming 

model of Python and Matlab to achieve our program. Our programming framework is 

shown as Figure 3.11. 

 
Figure 3.11 Program framework 

    Although MATLAB can call the functions of Python, it has some limitations and 

does not support all Python syntax. In addition, MATLAB and Python data transmission 

has limitations, the data representations are also different. Therefore, in Python and 

MATLAB, there are two interface files VCRNN.py and VCRNN.m, respectively, to 

achieve the call the functions of MATLAB by using TensorFlow DNN model. These two 

TensorFlow Matlab

VCRNN.py

__init__()
train()
predict()
save()
close()

VCRNN.m

VCRNN()
train()
predict()
save()
close()

BuildGraph.py

GenData.m

VideoRecord.m

TrainData.mat

DNN Model Realtime Video Data
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files achieve a function to manage the structure, training, prediction, preservation, and 

other functions of DNN model. The Python interface is responsible for packaging the 

TensorFlow model, provided a convenient calling interface; the MATLAB interface is 

responsible for calling Python interface and mutual data transformation between 

MATLAB and Python. In Python, VCRNN.py is an interface, the specific DNN model is 

implemented in BuildGraph.py.  

    In MATLAB, GenData.m is responsible for generating training data and saving it to 

TrainData.mat. When training the model, the relevant data is read from TrainData.mat 

and passed by VCRNN.m to Python for training. VideoRecord.m is responsible for 

implementing a video recording and dynamic monitoring of the demo, and then transmits 

the captured real-time video frame to the VCRNN.m and calls TensorFlow DNN model 

to determine the status of the video frame. 

    In this Chapter, we will describe how to use TensorFlow to implement our DNN 

model, and describe what the difference is between the actual implementation of the DNN 

model and the theoretical model. 

    In addition, using the DNN model of TensorFlow, visualization can be easily realized 

through TensorBoard. For example, the visualization results are shown as Figure 3.12. 

The Conv1 and Conv2 in the figure represent Convolution Layer 1 and Convolution Layer 

2, respectively. GRU represents our RNN layer, the “forward” represents the fully 

connected network layer with dropout strategy, the “train” refers to the relevant model for 

training; the “valid” indicates the relevant validations; the “save” means the relevant 

saving operation of the model. “rnn” is the specific implementation of GRHC unit and it 

is automatically created by TensorFlow. The composition and function of the relevant 

structure is illustrated as well. 
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Figure 3.12 DNN model of TensorBoard visualization 

    In the first convolution layer, we define a weight variable W1 whose size is [5, 5, 1, 

32], representing a four-dimensional tensor consisting of 25 (=5´5) convolution templates. 

After the input data is changed from [batch_size, 4800] to [batch_size, 60, 80, 1], it is 

convoluted with convolution template W1, and a tensor of [batch_size, 60,80,32] is 

obtained. After the 32 bits are extracted by convolution, the input is added to a bias b1 and 

then output by the activation function ReLU. The output is max pooling according to the 

4 ´ 4 grids, and its size of the output is changed to [batch_size, 15, 20, 32]. The 

mathematical expression of ReLU is, 

𝑅𝑒𝐿𝑈(𝑥) = �𝑥, 𝑥 ≥ 0
0, 𝑥 < 0                      (3.10) 

The reason why the ReLU function rather than Sigmoid or tanh function is used as the 

activation function is that the ReLU function does not have the problem of gradient which 

can guarantee the effective training of the model. 
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Figure 3.13 First convolution layer 

    After Convolution Layer 1 is developed, the result in Figure 3.13 is obtained. In 

Figure 3.13, the image node is used as input; the shape is changed through the reshape 

node, and then convoluted by Conv2D and convolution template weight. The result is 

added by the node and the bias. After the ReLU node is used as the activation function, 

the maximum pooling is carried out, and its output of the convolution layer 1 is finally 

obtained. TensorBoard is used to display of the convolution layer 1 network structure 

vividly. 

    We use the GRU unit to construct the RNN, the Tf.contrib.rnn.GRUCell is employed 

to declare a GRU unit. First, we expand the output of convolution layer into a Batch GRU 
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vector, and then use the feed function to expand Num Steps to get the output of RNN. 
gru_size = 4 * 3 * 64 

num_steps = 5 

with tf.name_scope('GRU'): 

    cnn_output = tf.reshape(pool2, [-1, gru_size], name='cnn_output') 

    gru_cell = tf.contrib.rnn.GRUCell(gru_size) 

    (gru_output, output_state) = feed_rnn( 

        gru_cell, cnn_output, num_steps, gru_size) 

    Amongst them, the actual RNN model needs to be carried out according to the 

concrete steps. If we expand any length, we cannot compute the relative gradient of the 

RNN unit, so that the model cannot be optimized. The specific implementation of the feed 

function is as follows, 
def feed_rnn(cell, x, num_steps, rnn_size): 

    with tf.name_scope('expand'): 

        x_pre = [tf.reshape(x[0, :], [1, rnn_size]) 

                 for k in range(num_steps - 1)] 

        x = tf.concat([*x_pre, x], axis=0) 

        input_ = [] 

        for k in range(num_steps): 

            if k < num_steps - 1: 

                input_.append(x[k:(-num_steps + k + 1), :]) 

            else: 

                input_.append(x[k:, :]) 

    out, state = tf.contrib.rnn.static_rnn(cell, input_, dtype=tf.float32) 

return out, state 

To invoke the Tensorflow tf.contrib.rnn.static_rnn function, we need to convert the 

original input x into a list with Num Steps elements. The simplified RNN model is, 

 𝑦 = 𝑓(𝑥()$7A'()*'-!, … , 𝑥()!, 𝑥()             (3.11) 

    To make the dimensions of the output and the number of dimensions of the output 

equal, we fill in a number of  to populate the subscript less than or equal to zero. 

    Finally, we take its output of the RNN as input of the fully-connected neural network 

layer, and the matrix multiplication by the weight matrix, plus the bias vector B3 to get 

the final output. In addition, by using Tf.nn.dropout function, a Dropout operation can be 

added to avoid the problem of overfitting. 

    After defining the DNN model, we also need to specify the loss function and training 

0x
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algorithm to train the model. We use the cross entropy as the loss function of the model 

and the ADAM algorithm as the optimization algorithm. 

3.7 Evaluation Methods 

In this project, the evaluation was fulfilled by comparing different methods in video 

capturing. Before the experiment, we first need to generate the experimental data. In this 

Section, we will describe how to generate these experimental data, and indicate the range 

of parameters. 

    First of all, we capture a unified video length 𝑇 = 50 indicating a total of 51 frames 

starting from frame 0. If the FPS equals 10, the video duration is 5 seconds. In order to 

analyze the standard deviation between the proposed algorithm and the given noise, 

the relationship between the number of background objects 𝑀	and the number of moving 

objects 𝑁, and s={0,0.125,0.025}, M={0,1,2,3,4,5}, N={1,2,3,4,5}. For the Cartesian 

Product, it is a total of 3´6´5 =90 sets of parameters. Each set of parameters generates 10 

random samples, a total of 900 test videos and 45,900 images. Other parameters are 

randomly generated within the specified range; the specific values are as shown as Table 

2. 

Table 3.2 Parameter range of values 

Parameters Ranges 

Area ratio  (0.01,0.1) 

Width to length ratio (0.1,1) 

Coordinate  
(0,80) (0,60) 

Tilt angle  (0, p/2) 

Speed size  (1,10) 

Speed direction angle  (0, 2p) 

s

A

( ),x y

q

v

j



33 
 

Color  (0.1,1) 

 

Before we test our algorithm, a benchmark algorithm, Simple Threshold Method (STM), 

is introduced. At time 𝑡, a frame of video 𝑆(  is a h´w matrix, the matrix element is 

between {0,1}. The STM decision method, given a threshold , calculates the difference 

between two adjacent video frames, 

  ∆𝑆( =
!
/.
∑ ∑ (𝑆((𝑖, 𝑗) − 𝑆()!(𝑖, 𝑗))".

+*!
ℎ
%*!              (3.12) 

Where ∆𝑆( > , the video frame is dynamic; when ∆𝑆( < , the video frame is static. 

The 0-1 delta function d (·) is shown as, 

𝑓(𝑡, ) = �
0, ∆𝑆𝑡 <
1, ∆𝑆𝑡 ≥

                      (3.13) 

    We calculate the prediction accuracy of the model by using, 

acc = !
B-!

∑ 𝐼(𝑓?𝑡; A = 𝑦()B
(*5              (3.14) 

Using the simple threshold method to test data generated in the above test, we get the 

relationship between the threshold and the correct rate as shown as Figure 3.14. When the 

threshold is 7´10-4, the prediction accuracy is about 91.9%, which reaches its maxima. 

 

Figure 3.14 The relationship between threshold and accuracy 

c

d
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Figure 3.15 Comparison of the maximum correct rate and the minimum correct rate of 

the video 

    Comparing the video prediction accuracy between the highest and the lowest, we get 

the results shown as Figure 3.15. The figure shows time-varying curves of two 

videos. Because the background noise is large, when the video that the blue line represents 

is in a static state, the difference is 0.5´10-3. When it starts to move, the difference exceeds 

our optimal threshold 0.7´10-3; hence, its predictive accuracy is 100%. While the noise 

of the video that the red line represents is 0, the actual moving time is between the 4 ~ 11 

frame and 18 ~ 51 frame. But because the changes are smaller when it moves and most 

of them are lower than the overall optimal threshold, the accuracy is very low. 

    Therefore, we see that the main reason for the limited effect of the simple threshold 

method is that the noise of the different videos may be different, make it impossible to 

correctly judge all the videos with a simple threshold. In addition, the difference within 

the range of different video frames is one of the reasons for the above problems. 

  

tSD
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Chapter 4 

Results 

 

 

The main content of this chapter is to collect video data and 

demonstrate the experimental results. In the end, this chapter will also discuss 

the limitations of the project. 
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4.1 Data Collection and Experimental Environment 

In the previous section, we pointed out that the difference between noise and pixel 

intensity limits the simple threshold method. In the DNN model, we use the convolution 

for image denoising in CNN. In RNN, we achieve more results of calculation than the 

direct reduction. Hence, the actual effect of the DNN model is verified. After training the 

model, our accuracy rate reaches 96.64%, which is better than the STM method. The 

accuracy distributions of the two methods are shown in Table 4.1. 

Table 4.1 STM and DNN accuracy rate distribution table 

Accuracy 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
STM 0.0067 0.0056 0.0200 0.0167 0.0267 0.0511 0.0722 0.8011 
DNN 0.0000 0.0011 0.0011 0.0067 0.0089 0.0089 0.0367 0.9367 

 

    The k-th data in Table 4.1 indicates the ratio within the correct rate in the range of 

(𝑎C)!, 𝑎C], and the first column of data indicates the proportion of the samples with the 

correct rate in the range of [0, 𝑎!]. 

    The DNN correct rate is less than STM in the range of [0, 0.9] and the correct rate 

is greater than the STM in the range of (0.9, 1.0). Therefore, DNN not only improves the 

prediction accuracy as a whole, but also reduces the possibility of the emergence of low-

accuracy results. 

    In addition, comparing with the results of the STM and DNN, we get the results 

shown as in Figure 4.1. The difference between the correction rate of DNN and STM is 

plotted. For most cases, the correction rate of DNN is greater than that of STM. The 

increase of correction rate is between [0.0.7] and, for some samples, the correct rate of 

DNN is lower than that of STM. Most of the declining ranges are around 0.02, and only 

a few examples have dropped by 0.1. Therefore, the DNN algorithm improved the 

accuracy rate of most samples greatly with the exception of a small number of samples.  
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Figure 4.1 Correct rate of DNN and STM paired comparison diagram 

 

 

Figure 4.2 The difference curve of the sample with the correct rate raising most 

 

    Figure 4.3 shows the most accurate samples. We see that there are two moving 

objects, and there is not a big difference between the colors and difference between 

backgrounds of two moving objects. Figure 4.2 shows the difference curve of the samples, 

and it shows that the change between the samples is small, results in a lower accuracy: 
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27.45%. Meanwhile, the DNN is less affected by the colors of the moving object and it 

extracts the video motion information correctly as the correct rate reaches 98.04%. 

 

 

Figure 4.3 Most accurate samples 

    Figure 4.5 shows the samples of the lowest correct rate, with only one moving object 

in the sample and the duration is shorter. Figure 4.4 shows the differential curve of the 

sample. It shows that the samples have three peaks after a short movement and since the 

peak is less than the optimal threshold of STM, the predictive accuracy of STM is 100%. 

DNN sees the three small peaks as motion and the total length is five frames, so the 

correction rate decreased around 10%. After the verification, because of the boundary 

smoothing algorithm of MATLAB in drawing rectangle and the impact of random noise, 

there are three boundaries offset of 1 pixel, which rises to 3 peaks in the differential curve 

and an increase in DNN mis-judgement rate. 
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Figure 4.4 Differential curve of the sample 

 

Figure 4.5 The samples of the lowest correct rate 

    Now, we analyze the difference of correction rate between STM and DNN 

algorithms under different parameters. First, we analyze the effect of noises. As we see 

from Table 4.2, under different variances, the part of accuracy rate of DNN algorithm 

under 0.9 is less than that of STM, meanwhile the proportion of the correction rate above 

0.9 is more than that of STM. With the increase of noises, both STM and DNN algorithms 

are achieving satisfactory results. The proportion of the accuracy below 0.9 decreases and 

the proportion of the accuracy above 0.9 increases. DNN is less affected by the noises 
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than that of STM. 

Table 4.2 Effect of noises on accuracy rate 

Accuracy       
STM DNN   STM DNN  STM DNN 

0.5 0.0500 0.0033   0.0333 0.0033  0.0133 0.0000 
0.6 0.0233 0.0067   0.0133 0.0100  0.0133 0.0033 
0.7 0.0300 0.0100   0.0300 0.0100  0.0200 0.0067 
0.8 0.0733 0.0133   0.0567 0.0100  0.0233 0.0033 
0.9 0.0833 0.0400   0.0967 0.0400  0.0367 0.0300 
1.0 0.7400 0.9267   0.7700 0.9267  0.8933 0.9567 

 

   

Figure 4.6           Figure 4.7     Figure 4.8  

 

    Figures 4.6 ~ 4.8 show the samples with the biggest improvement in accuracy under 

three different noise backgrounds. When s=0, there is no noise in the picture; when s 

=0.0125, we have to enlarge the picture to see the noise; and when s=0.025, each color 

block has a lot of visible noises. 

    In Figure 4.9, we have the differential curves in three cases. In these cases, there is 

an amount of exercise time and the difference is below the optimal threshold, which 

results in poor STM effects, but DNN can acquire better results. 

    Then, the influence of the numbers of moving objects are analyzed and the results 

are shown in Table 4.3. Overall, the DNN algorithm always satisfies different numbers of 

moving objects. The proportion of the correction rate below 0.9 is less than that of STM, 

and the proportion of the correction rate above 0.9 is greater than that of STM. With the 

increase of moving objects, the correction rate of both DNN and STM algorithms 

decreases gradually, but the descent rate of STM is larger and the decrease of DNN is 

smaller. 

0s = 0.0125s = 0.025s =

0s = 0.0125s = 0.025s =



41 
 

 

Figure 4.9 Difference curves under different noises 

Table 4.3 The influence of the number of moving objects on the accuracy 

Accuracy 
1  2  3  4  5 

STM DNN  STM DNN  STM DNN  STM DNN  STM DNN 

0.5 0.03 0.00  0.05 0.00  0.04 0.01  0.02 0.00  0.02 0.00 
0.6 0.01 0.01  0.02 0.01  0.02 0.01  0.02 0.01  0.01 0.01 
0.7 0.02 0.01  0.01 0.02  0.04 0.00  0.03 0.01  0.03 0.01 
0.8 0.04 0.01  0.03 0.01  0.07 0.02  0.07 0.01  0.05 0.00 
0.9 0.02 0.02  0.07 0.03  0.07 0.04  0.07 0.04  0.13 0.04 
1.0 0.88 0.96  0.82 0.93  0.75 0.93  0.78 0.92  0.77 0.94 

 

   
                  Figure 4.10                      Figure 4.11 
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                Figure 4.12                        Figure 4.13 
                  

                     
                                Figure 4.14 

    Figures 4.10~4.14 show the samples with the biggest improvement in accuracy with 

a number of moving objects. Figure 4.15 shows the differential curves for these samples. 

Since most of the differential values of these samples are below the optimal threshold, the 

STM accuracy is low. The accuracy of STM cannot be improved by simply adjusting the 

thresholds because even though the correction rate of these samples may be increased by 

the adjustment, the overall correctness is reduced. However, DNN can overcome this 

problem and it has better results in different situations. 
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Figure 4.15 The difference curves of the samples with the highest accuracy in the case 

of different moving objects 
 

    Then, the impact of the numbers of background objects on the accuracy is 

investigated. The results are shown in Table 4.4. Overall, the DNN algorithm is 

satisfactory even under the condition of many different background objects. The 

proportion of the correction rate below 0.9 is less than that of the STM, and the proportion 

of the correction rate above 0.9 is greater than that of STM. With the increase of the 

numbers of the background objects, the accuracy rate of STM and DNN algorithms 

remains essentially unchanged. So, the accuracy rate of the STM algorithm and the DNN 

algorithm is independent on the number of background objects. 
Table 4.4 The influence of the number of background objects on the accuracy 

Accuracy 0.5 0.6 0.7 0.8 0.9 1 

0 STM 0.03 0.02 0.01 0.05 0.07 0.81 
DNN 0.01 0.00 0.01 0.00 0.04 0.94 

1 STM 0.04 0.00 0.03 0.06 0.05 0.83 
DNN 0.00 0.01 0.00 0.01 0.04 0.95 

2 STM 0.01 0.05 0.02 0.03 0.06 0.83 
DNN 0.00 0.01 0.01 0.02 0.01 0.95 

3 STM 0.04 0.02 0.04 0.06 0.10 0.74 
DNN 0.00 0.00 0.02 0.01 0.04 0.93 

4 STM 0.03 0.01 0.01 0.05 0.07 0.83 
DNN 0.01 0.01 0.01 0.00 0.04 0.93 

5 STM 0.04 0.01 0.05 0.05 0.09 0.77 
DNN 0.00 0.02 0.00 0.01 0.05 0.92 
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    Figures 4.16-4.22 shows the samples of the biggest improvement in accuracy with 

several background objects. Figure 4.23 shows the corresponding differential curves of 

the samples. 

        

                     Figure 4.16                            Figure 4.17 

   

                Figure 4.18                            Figure 4.19 

       
                 Figure 4.20                           Figure 4.21 
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Figure 4.22 

 

 
Figure 4.23 The difference curve of the sample with the highest correct rate in the case 

of different quantity background objects 
 

    In addition, the color of moving objects is also one of the important factors affecting 

the accuracy rate. We analyze the samples with only one moving object and get the results 

shown as Table 4.5. The DNN algorithm is always satisfactory under the condition of a 

number of different background objects, the ratio of the correction rates below 0.9 is less 

than that of STM, and the correction rate above 0.9 is greater than that of STM. With the 

increase of the brightness of moving objects, the correction rate of STM and DNN 

algorithm is significantly increased. Therefore, the greater the difference between the 

moving object and the background is, the higher the correction rate of the STM and DNN 
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algorithm is. When c is above 0.3, the correct rate above 0.9 of DNN is 100%. 

Table 4.5. Effect of color of moving object on correct rate 

Accuracy 0.5 0.6 0.7 0.8 0.9 1.0 

0.1 
STM 0.10 0.10 0.05 0.15 0.15 0.45 
DNN 0.00 0.05 0.05 0.00 0.10 0.80 

0.2 
STM 0.07 0.00 0.00 0.27 0.00 0.67 
DNN 0.00 0.00 0.00 0.00 0.13 0.87 

0.3 
STM 0.00 0.00 0.00 0.00 0.00 1.00 
DNN 0.00 0.00 0.00 0.00 0.00 1.00 

0.4 
STM 0.06 0.00 0.00 0.00 0.00 0.94 
DNN 0.00 0.00 0.00 0.00 0.00 1.00 

0.5 
STM 0.00 0.00 0.00 0.00 0.00 1.00 
DNN 0.00 0.00 0.00 0.00 0.00 1.00 

0.6 
STM 0.00 0.00 0.10 0.00 0.00 0.90 
DNN 0.00 0.00 0.00 0.05 0.00 0.95 

0.7 
STM 0.00 0.00 0.00 0.00 0.00 1.00 
DNN 0.00 0.00 0.00 0.00 0.00 1.00 

0.8 
STM 0.00 0.00 0.04 0.00 0.00 0.96 
DNN 0.00 0.00 0.00 0.00 0.00 1.00 

0.9 
STM 0.04 0.00 0.00 0.00 0.00 0.96 
DNN 0.00 0.00 0.00 0.00 0.00 1.00 

1 
STM 0.00 0.00 0.00 0.00 0.00 1.00 
DNN 0.00 0.00 0.00 0.00 0.00 1.00 

 

4.2 Limitations of the Research 

(1) Because the data set is simulated, it may be limited in generalization, and the use of 

real dataset may make the model more accurate. 

(2) We only achieved a dynamic video capturing, the functionality is not strong enough, 

dynamic object tracking and event recognition should be considered in the project. 

(3) The reinforcement learning algorithms require a lot of data that is difficult to be 

implemented. 
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Figure 4.24 The difference curve of the sample with the correct rate of the moving 

object of different color 
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Chapter 5 

Analysis and Discussions 

 

 

In this chapter, the experimental results are analyzed and compared. 

Comparisons of results under different experimental conditions will be 

mentioned. 
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5.1 Analysis 

In summary, the overall accuracy rate of DNN algorithm reaches 96.64%, which is better 

than STM algorithm’s 91.93%. The DNN algorithm increases the proportion of high-

accuracy samples and reduces the proportion of low-accuracy samples. The DNN 

algorithm greatly improved the accuracy rate of most samples; only a small number of 

correction rate decreased slightly. Additionally, the DNN algorithm is more stable for the 

prediction of the videos of different parameters. The results of the analysis of different 

parameters are summarized as: the greater the difference between adjacent video frames 

is, the higher the accuracy rate of STM and DNN algorithm will be. 

5.2 Discussions 

In the experimental part, we compared DNN and STM two algorithms, and analyzed the 

performance of the two algorithms under different conditions. First, under different noisy 

conditions, through the data analysis we drw the conclusion: with the increase of noise, 

both STM and DNN algorithm are able to achieve satisfactory results, but DNN is less 

affected by noises than STM. Then, the impact of the numbers of background objects on 

the accuracy is probed. The results show with the increase of moving objects, the 

correction rate of both DNN and STM algorithm decreases gradually, but the descent rate 

of STM is larger and the decrease of DNN is smaller. The problem of STM cannot be 

improved by simply adjusting the thresholds because the correction rate of these samples 

may be increased by adjusting the threshold, but the overall correctness is reduced. 

However, DNN overcomes this problem and it has better results in different situations. 

Then, we run an analysis by the number of background objects, and we find that the 

accuracy rate of the STM algorithm and the DNN algorithm is independent on the number 

of background objects. Finally, the colors of moving objects are considered in our project, 

and a conclusion was drawn that with the increase of the brightness of moving objects, 

the correction rate of STM and DNN algorithm is significantly increased. 
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Chapter 6 

Conclusion and Future Work 

 

 

 In this chapter, we will summarize the subject and method of this 

project, and propose new research direction according to the result and 

insufficiency of the experiment, preparing for the future work. 
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6.1 Conclusion 

The purpose of this report is to propose a new dynamic capture method based on deep 

learning as we combine CNN and RNN to implement our model. In the report, we also 

show the contrast of dynamic motion capture based on deep learning and traditional 

methods, and successfully verify that dynamic motion capture based on deep learning has 

a great deal of advantages in different conditions. 

    With the RNN processing, we fully consider the continuity of time series. In addition, 

we have combined CNN and RNN together to greatly reduce the size of the video data 

and the time of model training. The results show that the accuracy of dynamic capture 

based on deep earning reaches 96.64%. The DNN algorithm is more stable for  dynamic 

video capturing and event recording. Finally, dynamic capture based on deep learning is 

less disturbed by external factors. 

6.2 Future Work 

We will collect a large number of real videos for the model training which will be more 
effective to help us improve the accuracy of the model. 
 
    We will not only focus on the dynamic motion capturing for videos, but also 
recognize the action of the objects.  
 
    The real-time tracking of moving objects will be considered in our future work. 
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