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Abstract 

This report introduces blind spot warming of vehicles that uses cameras mounted to 

reduce traffic accidents. In recent years, there have been many new blind spot warning 

systems designed for vehicles which mainly use radar technology. These warming 

systems monitor and detect moving object information based on analog signals. In this 

project, blind spot monitoring using cameras was developed along with clear and intuitive 

indications. It is generally acknowledged that when driving, observation of blind spots is 

vital, especially for long and heavy vehicles such as buses. If a bus has several cameras 

pointed in the blind spots, the driver can view the road clearly in real time.  

This report will firstly describe the reason why intelligent surveillance systems need to 

be used so as to observe blind spots of vehicles through several cameras. This will be 

followed by the definition and importance of blind spot detection and its technical 

background. Next, an example will be used to explain based on histogram and SIFT 

algorithms in blind spot monitoring and HMM is employed to calculate the probability of 

accidents occurring in the blind spots. After that, RNN will be used as a model of deep 

learning to predict the cars that will turn up in the blind spots. Finally, the limitations of 

this technology will be explored and future work will be briefed. 

 

Keywords: Blind spot detection system, intelligent surveillance systems, cameras and car 

accidents, histogram, SIFT, HMM and RNN.   
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Chapter 1 

Introduction 

 

This chapter is composed of five parts: the 

first part introduces the background and 

motivations; the second part includes the 

research question, followed by the contributions, 

objectives, and structure of this report.  
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Nowadays, cars have become a more necessary transportation than walking due to 

its great importance in daily lives. However, whilst cars provide a great 

convenience, they easily cause traffic accidents, affect our ordinary lives and threat 

property security. In recent years, global number of cars has risen unsustainably 

and the number of traffic accidents has also increased; both have become a social 

issue around the world. According to an investigation conducted in 2008, the 

number of accidents between vehicles and motorcycles has increased by 20% from 

DGT. A large number of these accidents were caused by drivers who paid not 

enough attention to their blind spots and possessed no pedestrian awareness (Twisk 

et al., 2013). It is quite easy for lorry drivers to overlook vehicles in their blind 

spots when moving between lanes on the road; this is the main motivation for 

developing a blind spot detection system (BSDS), stated by Blanc, et al. (2007). To 

reduce the number of accidents effectively, several cameras need to be installed in 

the blind spots of the lorry so that the intelligent surveillance system can monitor 

all events in real time. In this way, drivers cannot forget their blind spots, which 

can lead to traffic accidents. Sotelo and Barriga (2008) put forward a blind spot 

warning system (BSWS) based on direct vision. 

In this report, we will mainly focus on our research of developing a blind spot 

detection system based on direct vision to detect whether there are any vehicles in 

the blind spot of another vehicle. This will include the calculations of the 

occurrence through probability by using HMM. From this, the cars that will enter 

blind spots can be predicted according to the data collected using RNN.  

1.1 Research Questions 

1. What techniques can be implemented in real time for a BSWS based on cameras? 

2. How does blind spot detection based on vision improve the accuracy compared to 

traditional methods? 
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1.2 Contribution 

1. High accuracy. This BSWS uses digital cameras to detect a vehicle in a quick, 

accurate and effective manner when compared with systems that use radar or 

sonar technologies, which easily make mistakes,  

2. Development. It is generally acknowledged that a BSWS is an important part 

of an autopilot system. If the BSWS could be developed and used correctly, the 

autopilot system would follow very quickly after. 

1.3 Objectives Of This Report 

The main objective is to create a system to reduce the number of accidents resulting 

from a lack of observations of blind spots. The BSWS will be developed to monitor the 

blind spots of drivers in real time by installing cameras and calculating the probability 

of an incident concerning the blind spots. 

1.4 Structure Of This Report 

The structure of this project report is as follows: 

§ Chapter 2 will consist of a literature review, a discussion about related studies 

and research of BSDSs based on different principles. 

§ Chapter 3 will introduce the research methods, including the design of 

experiments and how the results will be compared. 

§ Chapter 4 will implement the proposed algorithms, collect experimental data 

and demonstrate the research outcomes in the form of figures and tables. 

Additionally, the limitations of these proposed methods will be explored in 

detail. 

§ Chapter 5 will summarize and analyze the experimental results. 

§ Chapter 6 will conclude the research project and discuss possible future work. 
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Chapter 2 
Literature 

Review 

 

 

The topic of this report is to develop a 

prototype for blind spot warning based on vision, 

and this chapter will introduce a number of 

traditional methods and the relevant research 

outcomes of blind spot monitoring. 
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2.1 Introduction 

With the rapid development of economies and technology, cars have become one of the 

most common vehicles used instead of walking. At the same time, traffic accidents 

caused by cars show a continuously increasing trend. To reduce the number of accidents 

effectively, there have been many kinds of BSWSs developed in current years.  

2.2 The Blind Spot Detection 

Today, a growing number of traffic accidents have attracted the public’s attention in 

safe driving and assistance systems, it is generally considered that most accidents are 

caused by the mistakes of drivers (Liu et al., 2017; Kim et al., 2015). Therefore, vehicle 

advanced driver assistance systems have become quite popular. These systems include 

forward collision avoidance systems, parking assistance and blind spot warning 

systems.  

Recently, more and more manufactures are including a blind spot warning system in 

their cars to avoid vehicle collision due to ignore blind spots, like Daimler AG and 

BMW. There are many kinds of blind spot warning, such as radar-based, ultrasonic-

based and camera-based detection systems (Ra et al., 2018). However, a radar-based 

system, considered by Klotz and Rohling (2000), easily caused errors as it was not 

sensitive enough to the surrounding environment of the car and sometimes even ignored 

smaller vehicles like motorcycles. Ultrasonic-based BSDS have relatively low costs, 

but the detection range tends to be very short and it needs more time to detect cars when 

in use, its angular resolution is also quite low (Mahapatra et al., 2008). Compared with 

other systems, a vision-based system is more sensitive to the surrounding environment 

and the number of false detections will decrease whilst the lateral resolution will 

increase (Alonso et al., 2008; Blanc, Steux & Hinz, 2007).  

 

According to many studies, sensors and radars are always used in BSDSs to improve 
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detection accuracy. For example, Wong and Qidwai put forward a system that used six 

ultrasonic sensors and three cameras mounted on a car for collecting data of its 

surroundings in 2005. This system would predict whether a vehicle collision would 

happen after the data collected was processed. Visual cameras are adopted mostly which 

are installed under the wing mirrors on both sides of the vehicle to detect moving 

objects (Jung, Cho & Kim, 2010). In addition, multi-range radars and cameras are often 

used to detect different obstacles (Jia, Hu & Guan, 2011). In 2012, a vision-based 

system was proposed by Milos, and Jan, a vehicle detection system could detect 

possible vehicles through feature extraction from images collected from the cameras 

installed in the car. This would help the driver discover potential dangers in blind spots 

when changing lanes and avoid vehicle collision. Wu, et al. (2013) also supported this 

by stating that intelligent driving systems can be beneficial in protecting the driver and 

avoiding accidents as far as possible. Their study described a BSWS which could be 

used effectively and smoothly no matter when the time of day or night is. The BSWS 

needs only two cameras installed below the rear-view mirrors on both sides of the car. 

This intelligent surveillance system could obtain all the road conditions in real time and 

observe whether there were any vehicle accidents happening near the experimental car. 

Fernández, et al. (2013) considered blind spot monitoring could be aided by using 

systems based on passive sensors, like video cameras or active sensors, including radar 

and laser sensors. In addition, blind spot detection can cover a zone of 20 meters in 

length behind cameras and 4 meters across on both sides. In 2014, Tseng et al. 

developed a BSDS based on motion and static features, in which the ground detection 

zone was divided into four main regions. Baek, et al. (2015) also conducted a vision-

based object detection along the sides of a vehicle blind spot, which adapted a HOG 

cascaded classifier to detect vehicles. To improve the accuracy of the camera-based 

detection system, Dooley et al. (2016) came up with a new idea, in which the image is 

divided into three parts and a different algorithm was used to detect objects in each part. 

According to the investigation of Hane, et al. (2017), cars can be surrounded by several 

cameras so that the BSWS monitors a full 360 degree field-of-view. Fisheye cameras 
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were thought to be the most suitable cameras as they are always applied to pedestrian 

detection and parking assistance systems (Bertozzi et al., 2015). Furthermore, multiple 

cameras can be beneficial for 3D mapping, visually locating and detecting obstacles 

(Ray & Teizer, 2013). The aim of their study was to build sparse 3D maps for visual 

navigation, then locate the car and generate an accurate yet dense map that could detect 

obstacles.  
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Chapter 3 
Methodology 

 

 

This chapter mainly introduces the research 

methods, which are used in this report. It mainly 

contains the details of research methodology for 

blind spot detection using histogram, SIFT and 

HMM, which will be explained in details clearly 

in this chapter. 
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As we have known, the main four blind spots of a car are located in the front-below 

zone, the behind-below zone, the left-below zone and the right-below zone. It is 

therefore reasonable to install four cameras to monitor these blind spot zones 

individually. Because a car driver sits in a higher driving position, it is quite difficult to 

observe the surrounding environment which can cause serious crashes (Cheng et al., 

2016; McCarthy & Gilbert, 1996). In this scenario, the front-blow zone is considered 

as the blind spot zone 1. Blind zone 2 refers to the rear-blow zone, Zone 3 and 4 

represent the left-blow zone and the right-blow zone, respectively. The right turn for a 

car can be especially dangerous, even at a low speed, because of its length and different 

radii of inner wheels, there is a high possibility of crashing into other vehicles and 

pedestrians which are located in this blind spot (Zhang, Liu & Ma, 2015). As a result, 

once something occurs in these zones, the cameras could detect them, at the same time, 

the warning system should warn the driver to take any necessary actions as soon as 

possible. The most important factor of blind spot detection is speed; otherwise, the 

BSDS will be of no use. So, there are two main aims of this report, one is to test whether 

the BSDS can detect obstacles as soon as they occur in the blind spot zones; the other 

is to test whether the time span of blind spot detection is long enough so that the driver 

can find the potential danger in time to avoid an accident. 

If there are any vehicles, pedestrian or cycle riders in the blind spot zones, the BSWS  

should detect them and warn the driver using the cameras installed. 

To find the most suitable algorithm, four videos were captured from different blind 

spots including the front, rear, left and right blind spot. To reach the aim of detecting 

cars in the blind spot zones, there were several steps taken for the system to implement 

this function: 

(1) Find the blind spot zone of the driver and mark it with a rectangle. 

(2) Detect whether there are any cars in the blind spot zone of the driver by using 

different algorithms. 

(3) Calculate the number of cars in the blind spots of the driver in real time. 

(4) Calculate the probability of the occurrence of accidents when there are several cars 
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in the blind spots by using HMM. 

(5) Predict the number of cars in the blind spots in the future according to experimental 

data. 

 

3.1 Histogram 
Nowadays, image enhancement technology has many different uses such as in traffic 

and medical technologies as well as others (Gonzalez and Woods, 2010). Histogram 

transform is a common method of image enhancement technology which was used in 

this project to solve the relative problems. From the view (Li, Zhang & Zhang, 2014), 

a histogram is defined as a statistical function between the greyscale levels and the pixel 

intensity, which is often used to reflect the occurrent times or frequency of different 

greyscale levels in one image. A histogram is always shown as a two-dimensional image, 

in which the abscissa represents the grey-scale levels, while the ordinate displays the 

occurrent times or frequency of the grey-scale levels (Sonka, Hlavac & Blyle, 2003).  

 

To find the image with cars in the blind spot zone, a picture without any cars was chosen 

and its histogram was acquired to compare with others. There were three possible ways 

to observe the blind spot using a histogram where the inner product, entropy and HOG 

are calculated. 

 

3.1.1 Inner Product 
In order to detect the conditions of blind spots, the inner product of two vectors needed 

to be calculated first. An image without any cars in the blind spot zone was selected, as 

shown in Figure 3.1. This image was transformed into a greyscale image to obtain its 

histogram, then its vector I0(x0, y0) was determined, so that the length (L0) could be 

calculated through equation (3.1). 

 

L0= sqrt(sum(I0'·I0))                        (3.1) 
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Figure 3.1: The four blind spot zones of the car 

 

Following this, we read the video frames and the vector of each frame was set to Ii, i is 

the frame number; therefore, Ii can be inserted into equation (3.1) to obtain the length 

(Li) of this vector: 

Li=sqrt(sum(Ii' ·Ii)) 

 

Thirdly, the inner product can be calculated through equation (3.2) 

IP=dot(I0, Ii)                          (3.2) 

 

According to equation (3.3), 

dot(I0, Ii)=L0·Li·cos𝛼                      (3.3) 

the value of cosα can be calculated by using equation (3.4): 

cos𝛼 = dot(I0,Ii)L0·Li                          (3.4) 

 

Finally, the value of cos𝛼 of a different frame could be observed to obtain a specific 
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scope [a, b]. If cos𝛼 ∈ [𝑎,𝑏], it means that there were cars in this blind spot zone; 

otherwise, there was nothing in the blind spot of the driver. 

 

3.1.2 Entropy 
Shannon proposed the concept of information entropy, which allows the measurement 

of the information content of a given sequence. Miśkiewicz (2016) raised the point that 

entropy, as a significant parameter representing the state of the system in statistical 

physics, is defined for a system by a discrete and continuous probability distribution 

function (PDF), which is based on histogram. It is quite similar to the way the driver’s 

blind spot was detected by using an inner product. After chosen a suitable histogram 

image (I0) without any cars in the blind spot zone, it was very important to calculate the 

entropy of this image (H0) through the following equation (3.5):  

Hi = ∑ 𝑃𝑖 log2 𝑃𝑖
255
0                         (3.5) 

In equation (3.5), Pi is defined as the probability that a certain greyscale value occurs 

in this image. Then, the frames of the video were read so that the entropy Hi could be 

calculated according to equation (3.5). H0 and Hi were compared to detect whether there 

were cars in the blind spot of the driver. 

 

3.1.3 HOG And SVM 
In 2005, Dalal and Triggs designed a system which combined the HOG algorithm and 

SVM classifier together. But at that time, the HOG algorithm needs complex 

computations, so it was time consuming. As an alternative, many researchers began 

looking into more reliable classifiers and proposed different algorithms to extract the 

same features with the aim of improving the accuracy and speed of this system. These 

changes followed the design of an accurate pedestrian detection system using modified 

HOG and LSVM (Kalshaonkar & Kuwelkar, 2017). There were six steps needed to 

finish the experiment by using HOG and SVM: 
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Step 1. Obtain a positive sample set and calculate the HOG feature vector to gain the 

descriptors. As an example of vehicle detection, the feature descriptors of a 

vehicle could be extracted from a sample set of vehicles, such as in Figure 3.3. 

Step 2. Obtain a negative sample set and calculate the HOG feature vector to gain the 

descriptors. The images of negative samples could be randomly cut form the 

images without any detection targets, as Figure 3.2 shows. 

            

Figure 3.2 No car                   Figure 3.3 Car turn-up 

(From images cut from videos) 

Step 3. SVM could be used to focus on the positive and negative samples and obtain 

individual models. 

Step 4. Hard-negative mining by using a model to detect the negative samples from 

different scales in a focusing set. If the classifier detected images without 

targets, the images would be put into negative samples. 

Step 5. Take the hard-negative samples into account and run the model again. 

Step 6.  Detect the test set by using the final classifier model and sliding scans for each 

image in a different scale, then extract the descriptors and make a classification 

by using a classifier (Žemgulys, et al., 2018). If the target was detected, it 

would be marked by a box. After scanning the image, NMS (non-maximum 

suppression) could be used to eliminate the overlapping superfluous targets. 
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3.2 SIFT 
David Lowe put forward the scale-invariant feature transform (SIFT) and improved it 

in 2004. SIFT is an algorithm based on computing versions used to detect and describe 

local features. It can calculate the extreme points in the spatial scale and extract their 

positions, dimensions and rotation invariants. In other words, SIFT can be used to detect 

a particular object for image matching (Youying & Tadahiro, 2018). SIFT can be 

widely applied to image registration, there are many different applications of SIFT 

including object recognition, gesture recognition, image tracking, 3D modelling and 

machine manipulation and navigation (He, et al. 2018). 

 

The description and detection of local image features could be used to identify objects. 

The features of SIFT were based on local interest points of the object and have no 

connection with image size and rotation (Wei, et al., 2018). The accuracy of the 

detection of partial object occlusion could be very high by using SIFT feature 

descriptions; sometimes, even only 3 or more SIFT object features could help calculate 

the position and orientation. SIFT is an algorithm that is quite suitable for fast and 

accurate computations of massive databases. 

 

3.2.1 Features 
There are some main features of SIFT as follows: 

(1) SIFT could locate a key points in the image and maintain its invariance and rotation, 

scale brightness changes, and keep a certain degree of stability for viewing angle 

changes, refine transformations and noise. 

(2) SIFT is very good at distinguishing individual details in large amounts of 

information and is very suitable for fast and accurate computing of massive 

databases because of its large amounts of information. 

(3) Expandability. It could be quite convenient for the SIFT algorithm to combine with 

other forms of feature vectors. 

(4) Substantiality. A few objects could produce many SIFT feature vectors. 
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3.2.2 Applications 
SIFT could help deal with the issue of image registration and target tracking which was 

affected by the state of the target object, the environment which the scene was located 

in, and the image characteristics of the imaging equipment. There were some problems 

that SIFT could solve to a certain degree: 

(1) Rotation, scaling and translation (RST) of the target; 

(2) Image Affine and viewpoint transformation; 

(3) Illumination effect; 

(4) Target occlusion; 

(5) Clutter; 

(6) Noise. 

 

3.2.3 Main Steps 
The main point of using SIFT was to find the corners on different scales of space. These 

feature points, or key points, found by SIFT were all very specific; not being affected 

by illumination, Affine and noise, like corner points, edge points, luminous spots in 

dark areas and dark spots in bright areas. Lowe (2004) divided his SIFT algorithm into 

four main steps, which spends 99.8% of the time that the SIFT algorithm needs to 

implement the total process as the following shows (Lalonde et al., 2007): 

 

(1) Scale-space extremum detection. Find out the image locations on all scales and 

use a Gaussian differentiation function to extract the potential interest point for scale 

and rotation invariance. Firstly, we should build the Gaussian pyramid. The Gaussian 

pyramid is always divided into two parts:  

(a) Gaussian blur on different scale;  

(b) (b) Dot interlace sampling. 

 

A Gaussian convolution kernel is the only linear kernel to attain the scale transformation 
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(Lindeberg, 1994). The Gaussian blur is an image filter that uses a normal distribution 

function to calculate the blur model, 

G(x, y, ∂) = /
012!

𝑒3(4!56!)/02!               (3.6) 

and uses this model to perform a convolution with the original image I(x, y). The scale 

space of an image is defined as Gaussian convolution kernel of the variable, described 

in equation (3.7) as follows: 

L(x, y, ∂) = G(x, y, ∂) ∗ I(x, y)                (3.7)  

where ∂ is the standard deviation of the normal distribution, with the increase of ∂, 

the image becomes more smooth. Then, we will build the Gaussian difference pyramid. 

This is the difference between the two Gaussian pyramids. 

 

Finally, we can detect the extreme points. The extreme value is detected by comparing 

the intensity value with the 26 neighboring pixels including the previous image and the 

next one and its corresponding neighboring pixels. 

 

(2). Key point location. At each candidate location, the point and the scale can be 

determined by a best fit model. The selection of the key points is based on their degree 

of stability. The extreme points detected are often discrete, but ternary quadratic 

functions can be used for fitting to determine the position and scale of key points to 

achieve sub-pixel accuracy. If a desired point is set as the center, the second Taylor 

expansion of the scale space function 𝐷 = (x,	y,	intvl) is expressed by equation (3.8). 

D(X) = D+ ∂D
T

∂X
X+	 1

2
XT ∂

2D
∂X2

𝑋                 (3.8) 

In equation (3.8), D is the grayscale value of the desired point, X=(x,	y,	intvl)T is the 

offset center of this point as D(X) is discrete so its derivative can be calculated by 

differentiation. When D'(X)=0, the offset 𝑋$ can be obtained, shown in equation (3.9). 

𝑋: = − ∂2D
∂X2

28
24

                         (3.9) 

If 𝑋$>0.5 in any dimension, this meant that the extreme point was closer to another 

point, so the key point was set to one closer to the extreme point. After moving to a new 
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point, the same operation was performed. If the position did not converge after 5 

iterations, it means that this point was not a key point. In addition, the points at the edge 

of the image were not considered key points. In this experiment, the feature points of 

one car in a blind spot are shown in Figure 3.4. 

 

Figure 3.4: Feature points 

 

To locate the key points, we should remove the points with low contrast firstly. 

Equation (3.10) could be used to determine whether a point was extreme. 

D=𝑋:> = D + /
0
28"

29
XA                    (3.10) 

If |D=𝑋:>|<0.4/s, this point was not considered to be an extreme point. Through this 

process, the information of the extreme points was saved as data to prepare for a feature 

construction. 

   

Then we can relieve the edge response. The Gaussian difference function has a strong 

edge response; therefore, it was important to remove the points which are located at the 

edge of the image. The feature of these points was to have a large principal curvature 

in a certain direction and have a small principal curvature in a vertical direction. If r is 

the ratio of the big principal curvature and the small one, H is the Hessian matrix of the 

key points, equation (3.11) is obtained. 

 𝑇𝑟(𝐻
2)

𝐷𝑒𝑡(𝐻) =
(𝑟+1)2

𝑟 																								(3.11)    
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If equation (3.11) meets the following condition: 

𝑇𝑟(𝐻2)
𝐷𝑒𝑡(𝐻) <

(𝑟𝑡 +1)
2

𝑟𝑡
 

where rt is a threshold and here rt=10. It means that r was considered to be quite small, 

so it could not be in the edge, otherwise this point was removed. 

 

(3) Direction determination. It is based on the local gradient direction of the image 

with location of each key point having one or more direction. According to the local 

feature of the key points, each key point could be allocated a direction with rotation 

invariance. The local feature of the key points could be calculated when detected key 

points in the Gaussian pyramid image were near the Gaussian difference pyramid image. 

The gradient could be calculated and directional distribution at neighborhood window 

of the key points by using equation (3.12) and equation (3.13). 

 

m(x, y) = J[𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦)]0 + [𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1)]0  (3.12) 

θ(x, y) = tan3/{[𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1)]/[𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦)]} (3.13) 

    

In equation (3.12) and equation (3.13), the positive direction of x is right and that of y 

is up. L is the greyscale value of the key point after the precise positioning described 

above. m(x, y) is the amplitude of the gradient, 𝜃(𝑥, 𝑦) is the radian of the gradient 

and the key point is located in (θ(x, y) ∈ (−𝜋, 𝜋]). Then the direction of 360° was 

divided into 36 bins, and the range of the first area was %35𝜋36 ,
37𝜋
36 &, and the others were 

divided in a counter clockwise direction. For m(x,y), Gaussian distribution of σ was 

weighted in the neighboring window to obtain a 36-direction histogram. After being 

smoothed twice, the histogram weighed each 3 consecutive bins twice with the size of 

0.25, 0.5, and 0.25. The direction of the maximum of the histogram was the main 

direction of the key point. If other peaks were greater than or equal to 80% of the main 

direction value, one direction was assigned. Therefore, a key point may have many 

corresponding directions; a feature is defined as the key points with directions; a key 
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point may also have had many features. As the first octave was a double-sized image, 

the coordinates and scale of the feature were converted to the octave where the original 

image was located. Finally, the parabolic interpolation could help accurately locate the 

direction of the feature.   

 

(4) Feature descriptor. Measure the local gradient of the image on the selected scale 

within the neighbouring pixels around each key point. It often takes 18.75% of the time 

needed for the descriptor generation according to the survey of Huang et al. (2012). 

From the views of Lowe (2004), the SIFT descriptor is a 4 × 4 × 8 = 128 

dismensional vector. In this report, ℎ(𝑥, 𝑦, 𝜃) was the SIFT descriptor, x and y were 

the locations of the 4 × 4 = 16 images, 𝜃 was the gradient direction, with only 8 

values. Therefore, the value of ℎ(𝑥, 𝑦, 𝜃)  was the gradient in the direction of 𝜃 

calculated from the image (x, y). 

 

For the aim of descriptor generating, the histogram array was sorted initially and then 

converted it into a 128D vector. To reduce the influence of any illumination variance, 

this vector was normalized. Nonlinear illumination variance may have a great effect on 

the gradient amplitude but have a slight impact on the gradient direction. So, the 

gradient amplitude was set over the threshold of 0.2 and then normalized. The 

descriptors were sorted according to the scale of the corresponding Gaussian pyramid 

images. The four images from Figure 3.5 display the comparison of the key points at 

different times. 
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(a)                               (b) 

  
(c)                              (d) 

Figure 3.5: Feature comparison 

3.3 Calculate The Number Of Cars In The Blind Spot Zones 
The aim of BSWS was not only to detect whether there were any cars in the blind spot 

zone of the driver, but also to tell the driver the number of cars in the blind spots. As 

there were four cameras in total to observe the blind spots there were 4 videos to be 

analyzed. The BSWS designed should have counted the cars that moved into any blind 

spot area and subtract the ones that drove away, so that the number of the cars in the 

driver’s blind spot zones could be calculated in real time. Figure 3.6 mainly shows the 

method to calculate the number of the cars in the left blind spot zone.  
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Figure 3.6 Number Calculation 

 

Figure 3.7 mainly provided us the detailed information about the blind spots of the 

driver clearly. The green rectangle represented the blind spot zones of the driver, and 

once there are any cars driving into these zones, this BSDS would display the red words 

to warn the driver and calculate the total number of the cars in the blind spots at the 

same time. At this moment, there were two cars driving into the left blind spot and the 

right blind spot respectively and there was no car in the front blind spot and the behind 

blind spot, so this BSDS could warn the driver after calculations that the number of the 

cars in the blind spots is two now.  
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Figure 3.7 Image cut from the video analysis 

 

3.4 HMM 

A hidden Markov model (HMM) was firstly put forward by Baum and Petrie (1966). It 

is a statistical model and often used to describe a Markov process with unobserved 

states (Yusuf, Brown & Mackinnon, 2015; Toselli et al., 2016). The Markov model is 

described by five main parameters: 

(1) N is the number of the states in this model. If 𝑞F is the state of this model at a 

certain time (t) then 𝑞F ∈ {𝑆/, 𝑆0, … , 𝑆G}, S represents the state. 

(2) M is the number of possible observable objects in each state. If M is the 

observable values then 𝑉/, 𝑉0, … , 𝑉H , and 𝑂F  is the observable value at a 

certain time (t) then 𝑂F ∈ {𝑉/, 𝑉0, … , 𝑉H}.  

(3) A is a state transition matrix with size N×N. It is defined as the transition 

probabilities of different states. A=(𝑎IJ)K×K, 𝑎IJ  is the transition probability 

from 𝑆I at t to 𝑆J at t+1, 𝑎IJ = 𝑃(𝑞F5/ = 𝑆J|𝑞F = 𝑆I). 

(4) B is an observed state probability matrix. B=(𝑏JM)K×H, 𝑏JM  is the probability 

to obtain 𝑉M  at 𝑆J, 𝐸JM = 𝑃(𝑂F = 𝑉M|𝑞F = 𝑆J). 

(5) π is a matrix of the probability of the original states. 𝜋 = (𝜋/, 𝜋0, … , 𝜋K), 
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(𝜋I = 𝑃(𝑞I = 𝑆I) , 1 ≤ 𝑖 ≤ 𝑁 ) , which is used to describe the probability 

distribution of different states of the observable sequence at t=1. 

In this experiment, according to the assumption that if a car moves into a blind spot, 

flag=1; if a car left the blind spot, flag=0. There were four blind spots so in total there 

were 63 conditions as Table 1 shows.  

 

Table 1 The transition table 

From Table 1, the conditions are marked with a “√” and the condition is marked with a 

“×”. If a car left the front blind spot, it means that it was directly in the line of sight of 

the driver, this condition was removed. 

 

Figure 3.8 State Transition 

It was difficult to record four videos of four blind spots at the same time, therefore, for 

convenience only two states were taken into consideration at a time. Figure 3.8 

represented a state with cars and one with no cars, represented by 1 and 0 respectively. 

Then there were four conditions including 0→0, 0→1, 1→0 and 1→1. Using calculated 

results from the experiment, the transition probabilities could be obtained: a00 = 0.7524, 

a01= 0.2496, a10= 0.7020, a11= 0.2980. 

Hence, the transition state matrix A: 
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A=%0.7524 0.2496
0.7020 0.2980& 

 

Figure 3.9 provides information about the whole structure and the connections between 

states. According to the Auckland Transport, from 5pm to 7pm in the city center in 

December, the probability of accidents occurring was 0.28, and the probability of no 

accidents occurring was 0.72. This is the original state probability matrix π	= p0.720.28q.  

 

Figure 3.9 HMM Structure 

 

After data collection and calculation, the probabilities of accidents resulting from 

different conditions in different blind spots could be found from Figure 3.9, which is 

B= p0.18 0.26
0.27 0.29	

0.31 0.25
0. .21 0.23q. 

 

Next, there were two algorithms to deal with the problem:  

I. Viterbi algorithm 

TRANS: is a transition state matrix, TRANS=A; 



31 
 

EMIS: is a corresponding symbol generated matrix, can also be called emission 

matrix, which is used to observe symbol probability distribution.   

The following functions will be used: 

(1) Hmmgenerate is used to generate a sequence of states and emissions from a 

Markov model, which can give a random sequence, seq of emission symbols 

and a random sequence states of states, e.g.,  

[seq, states] = hmmgenerate (length, TRANS, EMIS); 

(2) Hmmviterbi is used to calculate the most probable path for a hidden Markov 

model. If the transition matrix (TRANS) and the emission matrix (EMIS) are 

known, the most likely sequence of states can be calculated by using the Viterbi 

algorithm, e.g.,  

likelystates = hmmviterbi (seq, TRANS, EMIS); 

(3) P is the result of dividing number of times that the word part of likely state 

marked as states in the training corpus by the total number of times that likely 

state appears in the training corpus, which can be calculated in the experiment 

using equation (3.14) 

P = sum(states)/100´100%            (3.14) 

Finally, the probability of car crashes in the city center in December could be calculated 

under the condition that some cars were in blind spots by using the function of Viterbi 

algorithm. 

 

II. Baum-Welch algorithm 

The Baum-Welch algorithm is a member of the unsupervised learning models (Yang, 

Wainwright & Balakrishnan, 2017) and the aim of unsupervised learning is to calculate 

the model parameter λ to attain the maximum of the probability of P(O|𝜆) under this 

parameter. That is the maximum likelihood estimation, but it does not mean that P(O|𝜆) 

is isolated; on the contrary, it is associated with its hidden states. 
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Using the test data, the observed sequence was set as the observed data O and the state 

sequence was set as the hidden data I, under the condition of including S observed 

sequences {𝑂/, 𝑂0, … , 𝑂N}, of which the size was T without the corresponding state 

sequences. Therefore, HMM was a probability model with hidden probabilities 

according to equation (3.15). 

P(O|λ) = ∑ 𝑃(𝑂|𝐼, 𝜆)𝑃(𝐼|𝜆)O                    (3.15) 

There are three main steps of Baum-Welch algorithm: 

(1) Initialization 

Setting n=0, returns 𝑎IJ
(P), 𝑏J(𝑘)(P)and 𝜋I

(P), which then obtains the model: 

𝜆(P) = (𝐴(P), 𝐵(P), 𝜋(P)) 

(2) Recursion 

When n=1, 2, … 

𝑎IJ
(G5/) =

∑ 𝜉F(𝑖, 𝑗)Q3/
FR/

∑ 𝛾F(𝑖)Q3/
FR/

 

𝑏J
(G5/)(𝑘) =

∑ 𝛾F(𝑗)Q3/
FR/,S$RT%
∑ 𝛾F(𝑗)Q
FR/

 

𝜋I
(G5/) = 𝛾/(𝑖) 

(3) Termination 

The model parameter was calculated to be 𝜆(G5/) = (𝐴(G5/), 𝐵(G5/), 𝜋(G5/)). 

According to calculation, the range of λ was approximately 0.31 to 0.40. 
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Chapter 4 

Results 

 

 
This chapter shows the experimental results 

analyzed by using RNN based on deep learning. 

It will also make a discussion in terms of the 

limitations of this report. 
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4.1 Data Collection And Experimental Environment 

4.1.1 RNN 

Recurrent neural network (RNN) is one method of deep learning which is now applied 

to many different aspects widely as its unique network structure is quite helpful and 

beneficial when dealing with sequence data (Wang & Zhang, 2018). In 1986, Rumelhart, 

Hinton and Williams proposed the definition of standard RNN firstly. In this project, 

the deep learning model based on RNN encoder and decoder was used to analyze the 

related data of the experiments and predicted the number of faults in assess software 

reliability. 

 

The RNN structure has the current Hidden layer connected to that of the next step. 

Compared with other traditional multilayer sensor systems, RNN can be impacted over 

time, so the next step can be affected by the current time, as stated by Graves (2012). 

To explain in more detail, there is an unidirectional flow of information from the input 

unit to the hidden unit, whilst there is another unidirectional flow of information from 

the hidden unit to the output one (Park & Yoo, 2017). However, under some conditions, 

RNN will break these restrictions and force the information flow from the output units 

back to the hidden units, which are known as back projections. In addition, the input of 

the hidden layer also contains the state of the previous hidden layer; the nodes of the 

hidden layer can be self-connected or interconnected (Wang et al., 2016), this is LSTM 

(Long Short-Term Memory). Hochreiter and Schmidhuber firstly introduced the 

definition of LSTM in 1997. LSTM is to avoid the long-term dependency problem. 

 

If X is the input layer, O is the output layer, t is the number of times, s is the hidden 

layer and V, W and U are all weights, the state of the hidden layer at a certain time can 

be calculated according to equation (4.1)  

𝑆F = 𝑓(𝑈 ∗ 𝑋F +𝑊 ∗ 𝑆F3/)                    (4.1) 
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If there was a sequence of inputs 𝑥/, 𝑥0, ……., 𝑥Q, each in  𝑅G, and the sequence of 

hidden states calculated by the network was ℎ/, ℎ0, ……., ℎQ, each in 𝑅U, and the 

sequence of predictions was 𝑦/�, 𝑦0�, …….,	𝑦Q� , each in 𝑅M , the following equations 

could be obtained through iterating the equations below (Martens, J., & Sutskever, I., 

2011): 

 

𝑡I = 𝑊V4𝑥I +𝑊VV𝑥I3/ + 𝑏V                   (4.2) 

ℎI = 𝑒(𝑡I)                           (4.3) 

𝑠I = 𝑊6VℎI + 𝑏6                         (4.4) 

𝑦W� = 𝑔(𝑠I)                           (4.5) 

 

where 𝑊V4 , 𝑊VV  and 𝑊6V  are the weight matrices; the sequence of 𝑡I  represents 

the inputs to the hidden units, and the sequence of 𝑠I represents the inputs to the output 

units; 𝑏V  and 𝑏6  are bias vectors; 𝑒  and 𝑔  are the pre-defined vector valued 

functions. 

 

4.1.2 Results  

In this experiment, Matlab R2018a was used to run the Time Series Forecasting method 

by using deep learning to predict the sequence of the numbers of the cars in the blind 

spot zones (Sorkun, Paoli & Incel, 2017), which can be searched in the latest official 

website of MathWorks, and the results are as follows: 

 

As discussed, when flag=1, there was a car moving into the blind spots, and when 

flag=0, there were no cars in the blind spots. LSTM was used to analyze the number of 

cars in the different blind spots from the four videos. 

 

The four pictures (Figure 4.1, Figure 4.2, Figure 4.3 and Figure 4.4) mainly provide the 

information about the analysis of the number of cars in the left blind spot.  

Figure 4.1 describes the training progress that the RMSE (root-mean-square-error) kept 
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the trend of decline slow after two fluctuations when the number of iterations was less 

than 25, while it saw a small rising fluctuation and then finally decreases. The loss trend 

is quite similar to that of RMSE, but its peak is only about 0.5 while that of RMSE is 1.  

 

Figure 4.1 Training process of the left blind spot 

 

Figure 4.2 displays the sequence of the observed numbers at each second and the 

forecast numbers at the final 50 seconds. According to the previously observed numbers 

in 450 seconds, the following trend of the number of the cars in blind spots could be 

estimated. 
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Figure 4.2 Forecast Sequence of the left blind spot 

 

Figure 4.3 compares the observed sequence and the forecast sequence and calculates 

the error of each second and obtains the RMSE of 0.23764.  
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Figure 4.3 Compare the forecast sequence of the left blind spot 

 

If the network state was reset after initializing it to avoid the effect from previous 

predictions, the new sequence could be predicted. Comparing with Figure 4.4, the 

RMSE is only 0.12146, approximately half of the upstate. 

 

Figure 4.4 Comparison of the forecast sequence with updates of the left blind spot 

 

Figure 4.5, 4.6, 4.7 and 4.8 show the related data about the right blind spots. In Figure 

4.5, there are three relatively sharp fluctuations in this training progress, except for a 

steady trend of both RMSE and loss. As a result, the RMSE is always fluctuating around 

0.87, peaking at 1.4 when the number iteration is 15, and the value of loss is fluctuating 

around 0.4, with a peak of 1 at the same progress of iteration. 
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Figure 4.5 Training process of the right blind spot 

 

According to Figure 4.6, it is clear that the observed numbers of cars in the blind spots 

fluctuate around 1 and 2. The forecast sequence is predicted to be around 2. 

 
Figure 4.6 Forecast Sequence of the right blind spot 
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In Figure 4.7, the errors between the observed values and the forecast number are very 

small, less than 0.04; the RMSE is only 0.013759, much less than that in the left blind 

spot. 

 
Figure 4.7 Comparison of the forecast sequence of the right blind spot 

 

However, once the network state was reset and the sequence was predicted again, the 

errors increased to 0.9; from Figure 4.8, the RMSE became 0.02526 as twice as much 

before the updates in Figure 4.7.  
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Figure 4.8 Comparison of the forecast sequence with updates of the right blind spot 

 

The conditions of the front blind spots are shown below in the four charts of Figure 4.9, 

Figure 4.10, Figure 4.11 and Figure 4.12. From Figure 4.9, the RMSE shows a falling 

trend, but there are three relatively big waves, in the three iteration ranges ([60, 80], 

[210, 230] and [235, 250]), respectively. The final value of the RMSE is 0.4 and that of 

loss is 0.08. 
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Figure 4.9 Training Process of the front blind spot 

 

In Figure 4.10, the observed car numbers in the front spot fluctuates from 1 to 2, and 

the predicted car number is 2 at the beginning and then becomes 1. 

 
Figure 4.10 Forecast Sequence of the front blind spot 
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It is obvious that in Figure 4.11, after 6 seconds, the forecast sequence is as same as the 

observed one; therefore, the RMSE is very small, only 0.12462, and the range of errors 

is from -0.8 to 0.38. 

 
Figure 4.11 Comparisons of the forecast sequence of the front blind spot 

 

After initializing and resetting the network state, the new forecast sequence can be 

obtained in Figure 4.12, and the RMSE is 0.10331, a little less than before the reset. At 

the same time, it can also narrow the range of errors [-0.7, 0.05]. 
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Figure 4.12 Compare the forecast sequence with updates of the front blind spot 

 

The analysis of the results of the condition in the rear spot is shown in the following 4 

figures. In Figure 4.13, it obvious fluctuations occur before the iteration number is 80; 

after that, it steadily decreases. The RMSE ends at 0.39 and the error ends at 0.08.   
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Figure 4.13 Training Process of the behind blind spot 

 

Figure 4.14 illustrates that the numbers of cars in the behind spot are between 1 and 2 

according to the observed information, and it also predicts the following car numbers 

with a red mark.  

 
Figure 4.14 Forecast Sequence of the behind blind spot 

 

It is easy to see that the forecast data that follows the previous sequence is different to 

the observed data and that the errors between them steadily increase, reaching a 

maximum at 1 from Figure 4.15. In addition, the RMSE calculated is up to 0.3517, 

which is the highest among the four blind spots.  
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Figure 4.15 Compare the forecast sequence of the behind blind spot 

 

To avoid the influence of the previous sequence, the network was initialized and reset 

state to predict the sequence again. The errors were found in Figure 4.16 to steadily 

decrease with the range of the errors being -0.01 to 0.06, the RSME was only 0.028362, 

much less than the previous one. 

 
Figure 4.16 Compare the forecast sequence with updates of the behind blind spot 
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4.2 Limitations Of The Research 

4.2.1 Limitations of Histograms 

It is known that histograms are one of the most significant applications of digital images, 

which are effective and easy to implement. There are some limitations which are often 

found in histogram algorithms: 

(i) The actual intensity range of the output image is difficult to reach within the 

maximum greyscale range allowed by the image format. 

(ii) The greyscale level of the output image may be excessively merged, and the image 

information may be lost due to the phagocytosis of the grey scale. 

(iii) Although the histogram of the greyscale distribution of the output image is evenly 

distributed, its value may still have a large difference from the ideal value of 1/n, 

which is not an optimal value. 

(iv) For some images, such as those whose histograms have peaks, the contrast is 

unnaturally over-stretched after processing. 

(v) The greyscale level of the transformed image may be reduced because some details 

to disappear. 

 

4.2.2 Limitations of SIFT 

Although SIFT has many advantages including invariant feature extraction (Volckaert, 

et al., 2016), it still has many limitations as the follows:  

(i) The SIFT algorithm runs too slowly and it is a little difficult for SIFT to implement 

real-time blind spot detection. 

(ii) There are not enough feature points in some cases so it is hard to compare them. 

(iii) It is not easy to extract the feature points for the objects with smoothened edges 

accurately. 
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Chapter 5 

Analysis and Discussions 

 

In this chapter, experimental results are 

analyzed and compared. Comparisons of the 

results under various conditions will be 

mentioned.  
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5.1 Analysis 

In conclusion, HMM was used to calculate the probability of accidents under the 

condition that cars entered blind spots using data collected and experimental data from 

this project. The Viterbi algorithm and Baum-Welch algorithm were mainly employed 

to generate the results. RNN was used to predict the number of cars that would enter 

blind spots according to the previous sequence and the RMSEs of each blind spot was 

also calculated. The accuracy of the forecast data in the right blind spot was the highest 

because the RMSE value was the lowest one, only 0.013759. However, it seems that 

the most errors occurred in the rear blind spot as its RMSE values went up to 0.3517. 

5.2 Discussion 

In this report, the algorithms of histograms and SIFT were compared in order to detect 

whether there were any cars in blind spots. The histogram algorithm appears superior 

to the SIFT algorithm, as the latter runs too slowly and cannot be monitored in real time. 

Hence only the data from the histogram algorithm was used to calculate the probability 

of accidents happening when there were cars in the blind spots; this was done by using 

the two algorithms, Viterbi and Baum-Welch. According to the results of HMM, the 

probability of accidents occurring, when cars are present in blind spots, was not very 

high (less than 0.4), which is the average of the results obtained from the two HMM 

algorithms.  

 

To predict the number of the cars in the blind spots, RNN, a model of deep learning was 

adopted in this report. To obtain the forecast sequence and calculate the RMSE, the 

range of errors at the same time, two methods were used and compared. The first was 

to predict the following sequence by using the previous sequence and the other was to 

reset the network state and estimate the sequence from new. 
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Chapter 6 

Conclusion and Future 

Work 

 

 

In this chapter, we will make a summary 

about our subject and method of this project, and 

put forward the future research direction 

according to the results and limitations of the 

experiment. 
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6.1 Conclusion 

This report introduces a method to detect and alert a driver when cars appear in their 

blind spots, using videos from cameras installed in the car. In this report, two algorithms 

based on histogram were compared to detect the conditions of the blind spots. HMM 

was then used to obtain the maximum probability of this state occurring. After the data 

was collected, RNN was used to analyze the results, predict future sequences and 

calculate the RMSEs. 

The comparison between the Histogram and SIFT algorithm found that the former had 

the most advantages due to its high calculation speed. It would also allow to monitor 

blind spots, while the SIFT algorithm could not support this due to its slow speed. 

Finally, the analysis results of RNN showed that the RMSE is very low, ranging from 

0.013759 to 0.3517, which means the accuracy of this blind spot detection system is 

very high. 

6.2 Future Work 

Although this report proposed a BSWS and described an algorithm to reduce vehicle 

accidents, this blind spot monitoring system still has many aspects that required 

improvement. For further work, the most necessary and important tasks are as follows: 

(1) To improve the accuracy and the speed of this BSWS, it is better to use a tracking 

algorithm based on video analysis, which can provide the driver with enough time 

to take any actions to avoid an accident (Chen and Chen, 2009). 

(2) It is easy for this BSDS to ignore obstacles located in the edge of the image, 

creating false results.  

(3) It is quite significant for developers to pay attention to embedded algorithm 

performance optimization. 

(4) SIFT is a functional algorithm, but in this experiment, its calculation speeds were 

too slow. It is worthwhile considering how to accelerate feature detection using 
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SIFT in order to provide more accurate feature matching whilst reducing the 

number of outliers (Alhwarin et al., 2008). In other words, one should aim to 

improve the speed of SIFT. 
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