
Automated Glaucoma Diagnosis
Using Deep and Transfer Learning:

Proposal of a System for Clinical Testing
Mohammad Norouzifard1, Ali Nemati2, Hamid GholamHosseini1, Reinhard Klette1,

Kouros Nouri-Mahdavi3, and Siamak Yousefi4

1 School of Engineering, Computer, and Mathematical Sciences
Auckland University of Technology (AUT), Auckland, New Zealand

2 School of Engineering and Technology, University of Washington, Tacoma, USA
3 Department of Ophthalmology, University of California Los Angeles, Los Angeles, USA

4 Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, USA

Abstract—We developed a deep learning algorithm for iden-
tifying glaucoma on optic nerve head (ONH) photographs. We
applied transfer learning to overcome overfitting on the small
training sample size that we employed. The transfer learning
framework that was previously trained on large datasets such as
ImageNet, uses the initial parameters and makes the approach
applicable to small sample sizes. We then classified the input
ONH photographs as “normal” or “glaucoma”.

The proposed approach achieved a validation accuracy of
92.3% on a dataset of 277 ONH photographs from normal
eyes and 170 ONH photographs from eyes with glaucoma. In
order to re-test the accuracy and generalizability of the proposed
approach, we re-tested the algorithm using an independent
dataset of 30 ONH photographs. The re-test accuracy was 80.0%.

Index Terms—Glaucoma diagnosis, Deep learning, Image clas-
sification, Transfer learning, VGG19, Inception-ResNet-V2

I. INTRODUCTION

Glaucoma, the second leading cause of blindness in the
world, is a group of optic neuropathy disorders that lead
to loss of vision if left untreated [1], [2]. It is estimated
that there will be approximately 80 million people worldwide
affected by glaucoma by 2020 [1]. In 2010, glaucoma affected
more than 2.7 million Americans age 40 and older, which
is approximately 2% of the population [4]. Glaucoma is the
third cause of blindness in New Zealand [5]. According to the
census of the Glaucoma New Zealand website, glaucoma is the
leading cause of blindness in New Zealand and it is estimated
that approximately 91,000 New Zealanders have the disease
but are not aware of it [6].

Because of the rapid increase in aging populations, accurate
diagnosis is critical for making treatment decisions to preserve
vision and maintain quality of life [3]–[8]. Stereoscopic disc
photos provide an appropriate record of the optic nerve,
independent of the specialized viewing instrument [5], [6], [9],
[11], [15], [16].

Stereoscopic disc photos remain one of the most widely-
used and accepted methods for documentation of the optic
nerve head [9], [10]. However, due to its subjective nature,

assessment of optic disc photographs for presence of glaucoma
is labor-intensive and prone to interpretation errors. From a
clinical perspective, many eye care specialists prefer to have
access to more objective analyses for glaucoma diagnosis. Five
rules for assessment of fundus stereo-photographs to identify
glaucoma and monitor its progression over time have been
described by Fingret et al. [11], [12].

Recent advances in artificial intelligence and a significant
growth in available data have enhanced identification of ocular
disorders including glaucoma diagnosis. In particular, deep
learning techniques can identify highly complex patterns to
detect various ocular pathologies [13], [14].

Identifying glaucomatous optic neuropathy (GON) based
on ONH photographs is one of the standard methods used
for glaucoma diagnosis [12]. This process is labor-intensive
and biased by reader variations. In this paper, we propose an
automated technique based on deep learning and transfer learn-
ing that can differentiate between normal eyes and those with
glaucoma using ONH photographs. We selected the regions of
interest within the ONH photographs, namely regions which
included the cup. In fact, the cup-to-disc ratio (CDR) is one

Fig. 1: ONH photographs from UCLA dataset. Left: ONH
photographs from a abnormal eye, Right: ONH photographs
from an eye with glaucoma.



major parameter for identifying glaucoma [11]; see Fig. 1.
Convolutional neural networks (CNNs) have been widely

used for image segmentation and classification [17]–[20].
Transfer learning is widely implemented in developing deep
learning frameworks to address restrictions due to the limited
number of input samples as well as computational resources
for running deep learning techniques. Transfer learning em-
ploys the weights and parameters that were learned from
previous large labeled datasets and applies them to the new
task [21].

The remainder of this paper is organized into sections
as follows: in section II we will describe the datasets, in
section III we will explain the deep learning frameworks,
Inception-ResNet-V2 and VGG19. In section IV we will
present the results and finally, we will conclude the paper in
section V.

II. MATERIALS

We used two independent datasets as described below, from
universities in the USA and in Germany/Czech Republic.

The first dataset was obtained from patients with normal
eyes and those with glaucoma who visited the glaucoma clinic
at the University of California Los Angeles (UCLA). There-
fore, the ONH photographs in this dataset have a diagnostic
label of either normal or glaucoma. The collection of these
ONH photographs followed the tenets of the Declaration of
Helsinki, Health Insurance Portability and Accountability Act
guidelines; the Human Research Protection Program approved
these studies. Written informed consent was obtained from all
study participants.

The UCLA dataset includes 447 fundus images; 170 fundus
images from eyes with glaucoma and 277 images from normal
eyes. Eyes were defined as glaucomatous or glaucoma suspect
if there was evidence of localized or diffuse neuroretinal rim
loss or retinal nerve fiber layer loss based on the review of the
ONH photographs by a glaucoma specialist (KNM) regardless
of the visual field findings. Otherwise, eyes were considered as
normal. The IRB at UCLA approved the original study and all
the patients consented prospectively. All procedures adhered
to the Tenets of the Declaration of Helsinki.

The second dataset is the high-resolution fundus (HRF)
dataset that is publicly available. This dataset is provided by
the pattern recognition laboratory in the Department of Oph-
thalmology of the Friedrich-Alexander University Erlangen-
Nuremberg in Germany in collaboration with the Department
of Biomedical Engineering at the Brno University of Technol-
ogy, in Czech Republic [22]. This dataset included 15 ONH
photographs from the normal eyes and 15 ONH photographs
of eyes with glaucoma.

III. METHODOLOGY

We use deep learning along with transfer learning to detect
glaucoma from ONH photographs. Transfer learning (trans-
ferring the pre-trained parameters and weights to a new deep
learning model) is a state-of-the-art machine learning tech-
nique that is used widely to train deep learning approaches.

Fig. 2: Overall approach for automated glaucoma diagnosis

Using this approach, deep learning frameworks are trained
using a large standard, like ImageNet [26], then weights and
parameters are saved to be used for another task. Thus, we
transferred the pre-trained parameters as the initial setting of
the deep learning framework and then tuned the parameters
using the ONH photographs from the UCLA dataset for
glaucoma diagnosis.

Basically, it is challenging to train a robust model with a
limited number of input images without transfer learning. In
another words, transfer learning can serve as prior knowledge
for measuring the difference between glaucomatous signs
manifested in ONH photographs of eyes with glaucoma and
those from normal eyes.

The block diagram in Fig. 2 represents our proposed
approach to automatically diagnose glaucoma using ONH
photographs. Training and validation data of UCLA dataset
were entered as input images. Then, all images were cropped
as the pre-processing step. Afterwards, data were fed into
VGG19 and Inception-ResNet-V2 models, then hyperparame-
ters (features on deep learning models that should be initialized
such as learning rate, and batch size, and so forth) were tuned
to have accurate and tuned classifiers. Finally, the test and
retest datasets were entered into the tuned classifiers to detect
normal and glaucoma eyes.

In this work, we use two deep learning models; VGG19 and
Inception-ResNet-V2, which are discussed below.

ONH photographs were entered into both VGG19 and
InceptionResNet-V2 models. We kept the initial parameters of
these two models and trained them using UCLA ONH pho-
tographs. Different layers of these two models extract features
(related to glaucoma symptoms) at different resolutions.

We used 447 ONH photographs from the UCLA dataset that
included 277 images from normal eyes and 170 images from
eyes with glaucoma. We randomly selected 70% of the images
for training, 25% for the validation and 5% for testing.

We also used the HRF data for re-testing the model and
assessing its generalizability. The region of interest of each



Fig. 3: Schematic block diagram of Inception-ResNet-V2 [25].

Fig. 4: Schematic block diagram of VGG19 [29].

image (optic disc) was cropped manually and fed to the
models.

A. InceptionResNet-V2

InceptionResNet-V2 is a very deep convolutional network
(825 layers [23]) that has been employed in different image
recognition tasks in recent years. InceptionResNet has multiple
layers including input, output, convolutional, pooling, residual,
concatenate, dropout, and fully connected layers. The default
image input size is 299× 299 in color format [24].

In our study, we required most of the parameters to be
trainable and only a small fraction were selected as default. In
order to optimize the training computational complexity, we
used a cloud-based graphics processing unit (GPU).

Figure 3 shows details of InceptionResNet layers.

B. VGG19

VGG19 [27] has been widely used for different applica-
tions. As its name implies, VGG19 has 19 layers, with 16
convolutional layers and three fully connected layers [28].

VGG19 accepts a default input size of 244×244 for a color
image. In this research, the input size is modified to 299×299

and the number of layers is extended to 25 layers to address
the overfitting problem. Similar to InceptionResNet, most of
the parameters are trainable and a small fraction is kept as
default.

VGG19 has three fully connected layers at the end and all
hidden layers use rectifier units (ReLU) activation function.
VGG19 provides a flexible architecture for different tasks.

Similar to InceptionResNet, we used data augmentation in
training. Figure 4 represents the architecture of the VGG19
model.

IV. RESULTS AND EVALUATION CRITERIA

This section presents our results when applying the
Inception-ResNet-V2 or the VGG19 model.

Figure 5 presents accuracy versus loss in the training and
validation stages of the Inception-ResNet-V2 model. Figure 5a
shows how accuracy improves on both training and validation
with an increase in the number of epochs. Figure 5b illustrates
how loss decreases for both training and validation with an
increase in the number of epochs. Accuracy and loss scores
are totally converged into each other. The test and retest results
show that this model is working accurately.



(a) Accuracy scores (b) Loss scores

Fig. 5: Scores of accuracy and loss function for training and validation stages on Inception-ResNet-V2 model.

(a) Accuracy scores (b) Loss scores

Fig. 6: Scores of accuracy and loss function for training and validation stages on VGG19 model.

Figure 6 demonstrates accuracy versus loss in the train-
ing and validation stages of the VGG19 model. Figure 6b
illustrates the loss of training and validation with increas-
ing numbers of epochs. Figure 6a describes the accuracy
trend on training and validation with increasing numbers
of epochs. Similar to the Inception-ResNet-V2 model, the
accuracy and loss functions are consistent for training and
validation datasets in the VFGG19 model, but the test and
retest results show that VGG19 could not overcome overfitting
problem. It might be two reasons; lack of data for training, and
inadequate depth for glaucoma detection.

All in all, Figs. 5 and 6 indicate that scores of both VGG19
and Inception-ResNet-V2 models converged into each other,
but the results on the test and retest datasets show that the
VGG19 model has an overfitting problem. Figures 5 and 6
show that the record of epochs is between 0 to 30.

Tables I and II show more detailed results on training,
validation, testing, and re-testing for all datasets. We recorded
the outcome of the models on epochs five to 50, for every five
epochs.

As can be seen, the loss of training decreases consistently

with an increase in the number of epochs, except for the 15th
epoch in the InceptionResNet-V2 model (Table I). The best
result is achieved on the 30th epoch, in that all normal images
and 90% of glaucoma cases are identified correctly. Moreover,
in this epoch, the system detected 93.3% of the normal eyes
and 66.7% of glaucoma eyes correctly.

Table II shows the outcome of the VGG19 model. The
accuracy of this model on both test and re-test datasets is
not acceptable which indicates that this model suffers from an
overfitting problem.

V. CONCLUSIONS

We developed a deep learning model for detection of glau-
coma from retinal fundus images using InceptionResNetV2
glaucoma and compared it to VGG19, another widely used
model.

We used transfer learning to overcome the overfitting prob-
lem caused by the limited number of input images. We used
two independent datasets for training and re-testing of the
model to assure generalizability of the proposed model.

We showed that while VGG19 is unable to provide a gener-
alizable framework, InceptionResNet-V2 provides acceptable



TABLE I: Results of InceptionResNet-V2 model.
- “VAL” indicates validation, “ACC” is accuracy, “N” is normal, and “G” is glaucoma or suspected.
- Bold data belongs in the best epoch for the proposed method.

Results on UCLA dataset Results on HRF dataset
Epoch Train loss Train ACC (%) VAL loss VAL ACC (%) Test N ACC (%) Test G ACC (%) Retest N ACC (%) Retest G ACC (%)
5 0.40 81.88 0.61 71.15 70 100 86.67 60
10 0.26 90.00 0.31 86.54 80 90 86.67 40
15 0.16 93.13 0.26 92.31 80 100 66.67 40
20 0.12 96.88 0.17 92.37 80 90 93.33 20
25 0.11 96.25 0.28 91.35 70 100 73.33 40
30 0.06 98.44 0.22 92.31 100 90 93.33 66.67
35 0.05 97.81 0.23 89.42 70 100 53.33 53.33
40 0.03 99.06 0.19 92.31 100 90 93.33 40
45 0.02 99.37 0.16 92.31 90 100 66.67 66.67
50 0.05 98.75 0.07 96.15 90 100 86.67 53.33

TABLE II: Results of VGG19 model.
- “VAL” indicates validation, “ACC” is accuracy, “N” is normal, and “G” is glaucoma or suspected.

Results on UCLA dataset Results on HRF dataset
Epoch Train loss Train ACC (%) VAL loss VAL ACC (%) Test N ACC (%) Test G ACC (%) Retest N ACC (%) Retest G ACC (%)
5 0.39 82.19 0.34 84.62 100 0 100 0
10 0.19 91.25 0.19 93.27 100 0 100 0
15 0.20 93.12 0.20 90.38 100 0 100 0
20 0.08 96.88 0.13 94.23 100 0 100 0
25 0.08 96.88 0.14 95.19 100 0 100 0
30 0.03 98.13 0.42 89.42 0 100 40 90
35 0.05 98.44 0.07 96.15 100 0 100 0
40 0.02 99.37 0.12 96.15 100 0 100 0
45 0.06 97.81 0.20 91.35 100 0 100 0
50 0.01 99.69 0.01 99.04 100 0 100 0

accuracy for validation, test, and re-test datasets. The average
specificity and sensitivity of InceptionResNet-V2 on test and
re-test datasets were over 100%, 90.1%, 90.9% and 93.3%
respectively.

The proposed framework could be used clinically and in a
research setting for automated glaucoma diagnosis.
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