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Abstract

Fairy circles are circular patches of barren soil forming
large clusters in the arid grasslands of Southern Africa (es-
pecially in Namibia) and Western Australia. Fairy circles
are clearly visible in aerial images shown in applications
such as Google Maps, and they can be recorded using
sensors mounted on drones in very high image and video
resolution for ecological studies aiming at understanding
the origin of these patterns. Traditional analysis of fairy
circles is done by manual digitising and counting. We also
showed recently that, despite being challenging, traditional
computer vision methods enabled the detection of fairy
circles. To improve fairy circle detection and localization
automatically in aerial images, we here present the use of
a convolutional neural network (CNN). The results suggest
that new methods using CNNs outperform other methods
in terms of accuracy.

I.. Introduction

Fairy circles are still one of the unsolved natural
mysteries of our planet. Until their recent description
in the Australian outback [5], fairy circles were thought
to be endemic to the Namib desert dune and gravel
plain. Image data has been used to analyse their spatial
distribution shape, area, distribution and to estimate their
lifespan [8][1][4]. Satellite imagery, obtained with Google
map and/or Apple map, clearly show fairy circles at low

resolution. In contrast, Unmanned aerial vehicles (UAVs
or drones) can capture high spatial and spectral resolu-
tion imagery depending on the sensor used. And, once
the imagery has been processed into orthomosaics, fairy
circles are generally manually digitised as their automatic
detection has mainly been unsuccessful [1].

Previous computer vision publication aiming at detect-
ing FCs, have followed the traditional approach of image
processing, segmentation, and subsequent classification
of the obtained segments [1]. These methods not only
detect FCs but also can draw their contours. The results
obtained were evaluated based in the comparisons of miss
rate and false-positives per image. They showed that the
performance these detection methods were site-dependent
and were also influenced by lighting conditions and image
resolution. In short, automatic fairy circle detection is not
yet accurate, scale-able or repeatable.

Due to the complex environmental and ecological con-
ditions that give rise to FCs, as well as the fact that they
occur on different soil substratum (e.g., dune and gravel
plain in the Namib Desert [10]), their appearance on digital
images can vary in colour, shape, size or distribution.

Furthermore, in Namibia, the contrast between soil
and the plants is low as they typically present similar
color, brightness and texture. The scattered plants spread
in the background (i.e. the area around the fairy circles)
also increases the noise for detection. These are primary
obstacles especially when using distance transform, aerial
segmentation techniques, and other traditional detection
methods. Furthermore, the existing research used a filter



TABLE I. Top. Structure of ConvNet, where k denotes kernel
size (width×height×#channels). Bottom. Structure of fully-
connected layer.

Layer k Output size Receptive field size

1 conv1 3× 3× 64 40× 40× 64 3× 3
2 pooling1 2× 2 20× 20× 64 4× 4
3 conv2 1× 1× 32 20× 20× 32 4× 4
4 conv3 3× 3× 32 20× 20× 32 8× 4
5 pooling2 2× 2 10× 10× 32 10× 10
6 conv4 3× 3× 64 10× 10× 64 18× 18
7 pooling3 2× 2 5× 5× 64 22× 22

Layer Input Output

1 FC1(input) 1600 256
2 FC2(hidden) 256 128
3 FC3(output) 128 3

of fixed size for FC detection in the last step, and this can
be improved by adding a stronger “reasoning procedure”
like a logic layer for further judgment.

II.. Proposed Method
This section describes the steps that were used for

detecting FCs in this study.

Data Preparation. For a deep learning approach the
initial amount of data must be significant. The samples
used in this study are high resolution RGB images taken
by UAVs at 2 sites in Namibia. Firstly, FCs were manually
labeled and a new contour binary image was generated in
the orthomosaic. For further processing, the orthomosaic
was then resized into 707 × 643 and the original RGB
data was extracted. Since every orthomosaic was generated
from geotagged images, the exact location of each FC was
known.

Figure 1 shows the general steps performed to extract
and prepare data. In total, 445 samples from the dune site
and 284 from the gravel plain one have been collected. To
increase the accuracy, data augmentation was implemented
by doing horizontal reflections and rotation and 45 degree
rotation of each image 8 times. As a result, at the end of
this process, our dataset comprised nearly 9000 images,
i.e., was enhanced 16 times.

Recognition of Fairy Circles. We used a deep learning
approach to detect FCs. The proposed network in this
paper used 40 × 40 gray-scale images as input and had
four convolutional layers followed by three fully connected
layers. All convolutional layers used a 3 × 3 kernel with
’SAME’ padding. Max pooling layers used a kernel size
of 2×2, and stride 2. Table I shows the network structure.

To avoid overfitting, L2 regularisation was applied for
the first two fully connected layers. The network simply
returned the likelihood of the presence of an object (i.e.,
FC, ground, track) in a given image. This process is
illustrated in Fig. 2. When using a 500 images dataset,

the average accurate prediction of the presence of an
FC following this approach was 81.9%. When ignoring
likelihoods below 50%, the average likelihood increased to
92.9% with an accuracy of 85%. An likelihood threshold of
85% was chosen based on these reported values to validate
FC detection.

Detection of Fairy Circles. A convolutional neural
network (CNN) is mainly designed to classify objects.
Further processing is needed to detect and localise them.
For this purpose, we applied two general methods; sliding
windows and selective search.

Sliding Window. We used a notation based on two
points to describe the sliding window: (x1, y1) and (x2, y2)
denote the top-left and bottom-right corners of the window,
respectively. While the window slides in the image of size
w × h.

In the ’normal’ sliding window method, the window
starts sliding from a location such that the top-left corner
of the window (x1, y1). The total number of window
positions is calculated as below

dw · l
s
e × dh · l

s
e (1)

where s is the step size and l = x2 − x1. Ultimately, the
remaining areas which were located around the image’s
border and that do not fill completely the sliding window
were ignored.

Fig. 1. Procedure of sample extraction and augmentation. Upper
Left. Ground truths of FCs, converted to binary images. Upper
Right. RGB image of corresponding FCs. Sub-images in purple
bounding boxes were not used as they were not complete or
centered. Middle Left. Sub-image extracted from RGB image.
Middle Right. The same image as on left side but rotated 45◦

for data augmentation. Lower. Each image was flipped once and
then rotated by 90◦ for three times.



Fig. 2. Likelihood that an image shows an FC as calculated by
the proposed CNNs.

Fig. 3. Start (top-left) and end (bottom-right) locations of a fixed-
size sliding window. Left. Normal sliding window. Right. Full
sliding window.

The ’full’ sliding window method solved the aforemen-
tioned edge problem, as well as the detection problems
encountered when increasing the numbers of windows.
The differences between the ’full’ and the ’normal’ sliding
window methods are their initial and end positions, as
shown in Figure 3. In the ’full’ method, we only considered
the image area completely inside the sliding window. A
non-square image at an edge and a smaller square at a
corner were uniformly mapped into the same input size of
40× 40. In this way, dw/se× dh/se sub-images could be
collected in a w × h image.

Selective Search. A sliding window approach may scan
the entire area of an image, however, it is time consuming.
Inspired by Region-Based CNN (R-CNN) [6] which uses
selective search [9] to generate region proposals, we de-
signed a similar method to produce potential objects. We
then used a region-proposal method, derived from [1], to
replace the sliding windows and to reduce the computation
time.

The selective search procedure to detect potential FCs
thus started with a non-local means denoising algorithm
[2] aiming at smoothing areas inside the FCs (see Fig. 4),
followed by a series of Gaussian and Laplacian opera-
tions, distance transforms and thresholding. We used three
Gaussian kernels of sizes 3 × 3, 7 × 7, and 11 × 11 to
extract different sizes. The bounding boxes around FCs

Fig. 4. Top. FCs before denoising. Bottom. FCs after denoising.

were then filtered by size. For eligible boxes, centre points
were labelled to create a centre map. The purpose of this
stage was to increase true positives while false positives
were further reduced using a CNN.

Refinement of Bounding Boxes. The detection of
potential FCs with the approaches described above may
lead to the observation of duplicated bounding boxes for
one object. Also, due to FCs’ appearance, multiple objects
might be merged in one bounding box. In many algorithms,
bounding boxes are confirmed by adding anchor box
and offset as outputs in CNNs and by then calculating
Intersection over Union (IOU). In this paper, we used a
simple method which works on the centre point generated
in the previous detection step.

As the size of an input image is much larger than
the CNNs input (i.e. it may contain many FCs), it is
first demagnified from 707 × 643 to 303 × 321. We then
applied a series of sliding windows with side lengths of
100, 80, and 60, and a step size of 5, to detect potential
FCs. A threshold 85% was used to filter the results and
confirm their corresponding location. Possible bounding
boxes were defined by using these locations.

The sliding window step provided with the centres of
all the bounding boxes. To allocate those centres to their
corresponding FC, grouped them based on their distance
to one another. A centre is grouped by the eight centre
points surrounding it (four corners and four edges), and it
is separated from other centres. So, the expected distance
between two centres is larger than the distance from a
centre to its corner points but smaller than twice the
distance to edge centres (between

√
2s and 2s where s

is the step size of the sliding window). We then use

r = d
√
2

2
· se (2)

as the radius to draw a solid circle on top of all centres
on a new image, called the centre map. The radius was
4 when we set a step size of 5. Subsequently, centres
with a distance smaller than 8 will form a larger region on
the centre map; while isolated centres will be just small
regions. We assumed that the larger regions were potential



Fig. 5. Upper left. Final bounding boxes. Upper right. All the
potential areas defined by multiple sliding windows. Lower left.
A heat map based on the candidate areas; a color map is applied
to the grayscale image. Lower right. A centre map created by
the sliding windows; it shows all the centres of bounding boxes
from the sub-image above

FCs, and used their centroids as the real FCs’ centres.
Small regions were further ignored.

Once a centroid was confirmed, a set of square bound-
ing boxes (which use the centroid as their centre) were
placed on the image; those boxes vary in side lengths
for matching the given size of an extracted sample. These
samples were fed to the network again to evaluate the prob-
ability of presence of the FC. Non maximum suppression
was used to choose a unique bounding box.

The localisation algorithm, using selective search, was
similar to the one used for the sliding window, but without
filtering out smaller regions in the centre map.

III.. Experimental Results
To compare different approaches, we used online im-

ages [3], [11] of FC fields that we never used when training
the model. They were cut into 800 × 600 pixels and the
ratio of the size of FCs to the image size remained in the
range of (2%, 10%) so that an FC would fit into a sliding
window.

Figures 5 and 6 illustrate the output results of the sliding
window and the selective search methods, respectively.

For a quantitative comparison, two measures, precision
(PR) and recall (RC), were used to assess the performance.
PR denotes the ratio of numbers of true-positive to all
detections, and RC is the ratio of numbers of true-positives
and of all ground-truth FCs:

PR =
tp

tp+ fp
(3)

and
RC =

tp

tp+ fn
(4)

Fig. 6. Result of the selective search method. Black areas are
centres of candidate bounding boxes, final bounding boxes are
shown in green.

where tp, fp and fn are the numbers of true-positives,
false-positives, and false-negatives, respectively.

Sliding Window. Table II shows a comparison between
two sliding window methods. We selected ten images
which all had truncated FCs on the edge. The results sug-
gested that by extending the sliding window method from
normal to full coverage, the average PR and RC values
increased by 0.09 and 0.16, respectively. Figure 7 shows
that the full sliding window method leads to the detection
of more centroids at the border of the centre map. Although
the normal sliding window can cover almost entirely of an
image, the centres of sliding windows in this method do
not cover the image-border area. The improved full sliding
window algorithm significantly increased the detection
accuracy near the image border. For higher accuracy, we
only considered this improved methods afterwards.

Selective Search. Figure 8 illustrates the difference
between traditional selective search and the discussed
modified version for detecting FCs. It clearly showed that
the method we propose is more accurate.

To compare with existing methods, we used the same
dataset as in [1]. Table III compares the detection accuracy
of five different methods.

A drawback of the three methods used in [1] is the
manual setting of parameters according to the different
environments studied. Consequently, these methods fail
when operating on new images. Furthermore, small FCs
may be ignored by these approaches as they implement a
size-based filtering step.

The method using new version of selective search as
region proposal can be seen as a combination of methods
proposed in [1] and CNNs where CNN reduces false



TABLE II. Comparison between full and normal sliding window methods

Image Ground truth Full Normal

TP FP PR RC TP FP PR RC

I1 32 19 0 1 0.59 17 0 1 0.53
I2 25 19 0 1 0.76 14 0 1 0.56
I3 21 13 0 1 0.62 15 0 1 0.71
I4 21 16 0 1 0.76 16 0 1 0.76
I5 17 14 2 0.88 0.82 13 1 0.93 0.76
I6 5 3 0 1 0.60 3 0 1 0.6
I7 7 5 2 0.71 0.71 4 1 0.8 0.57
I8 5 5 1 0.83 1 4 1 0.8 0.8
I9 4 2 0 1 0.50 2 0 1 0.5
I10 1 1 0 1 1 0 0 0 0

Average 0.94 0.74 0.85 0.58

TABLE III. Comparison between three methods used in [1] with the full sliding window and selective search, as proposed in this paper

Image Method A Method B Method C Full Sliding Window Selective Search

PR RC PR RC PR RC PR RC PR RC

I1 0.67 0.8 1 0.8 1 0.8 1 0.6 1 0.8
I2 0.5 1 0.67 0.8 0.6 0.6 1 0.8 0.83 1
I3 0.67 1 0.8 1 0.8 1 1 1 0.8 1
I4 0.5 0.5 0.6 0.75 0.6 0.75 1 0.5 1 0.5
I5 0.8 1 .43 0.75 0.4 0.5 1 0.75 0.75 0.75

Average 0.63 0.86 0.7 0.82 0.68 0.73 1 0.73 0.88 0.81

positives. Selective search still lead to the observation
of false positives; while after CNN’s filtering, PR value
increases by almost 0.2 apposed to methods proposed in
[1] but keeps a similar RC.

There are two key aspects that influence the perfor-
mance of the selective search method. First, similar to
previous methods in [1], the selective search method
still cannot overcome all the variations in environments,
although it can cope with more diversity. This can be

Fig. 7. Full Left and normal Right sliding window

clearly seen when applying the method on some gravel
plain sets (see Fig. 9). Second, CNNs also need accurate
input data with deep structure and numerous weights.
Otherwise, CNNs cannot filter the candidate areas properly.
Without an area limit, as for the sliding window method,
our CNNs have a higher chance to return false positives,
which decreases the PR when compared to the sliding
window method.

Table IV shows comparative results for sliding window
methods using step sizes of 5 and 10, which have a
higher accuracy than the selective search method. The
comparison uses multiple test sets. The NAMIBIA dataset
is the same one used in Table III. The ONLINE dataset

Fig. 8. Left. Modified selective search for FCs. Middle. Ground
truth. Right. Traditional selective search.



TABLE IV. Comparison between sliding window method with different step sizes. Average is a weighted arithmetic mean of PR and
RC

Test Set Sliding Window s5 Sliding Window s10

PR RC PR RC

NAMIBIA×5 1 0.73 0.93 0.69
INTERNET×15 0.97 0.74 0.97 0.69

DUNE×20 0.86 0.83 0.89 0.77
GRAVEL×15 0.62 0.67 0.71 0.67

Average 0.84 0.75 0.87 0.71

has 15 processed images from online sources [3], [11].
We cut the original images into pieces, or rotated them to
obtain different scales and numbers of FCs. We also left
some truncated samples near the image border. The DUNE
and GRAVEL datasets originate from our training sets of
images from Namibia, and are characterised by distinct FC
surroundings.

Fig. 9. Two images from a gravel site show that our selective
search method does not cover FCs very well in these situations

When using the sliding window methods, a larger step
size extracts fewer samples. It therefore reduced the com-
puting time significantly from 35 to 15 seconds per image
on an average laptop. Furthermore, our localisation method
did not trust small areas on the centre map. So, it rejected
more false-positives than true-positives and increased PR
slightly but decreased RC at the same time.

IV.. Conclusions
This paper presents two detection methods and one

localisation method with a CNN as pattern recognition
algorithm in order to detect fairy circles. A modified
version of a selective search method was also used for
presenting experimental results. Our results suggest that
the sliding window method we propose outperforms the

other methods tested while handling trade-offs between PR
and RC. However, our selective search did not overcome
all the challenges of environment variations.

The experiments clearly showed the possibility of ob-
taining higher accuracy by using CNNs. Regarding future
work, further processes should be added to improve the
drawing of FC contours and/or to estimate their surface
area. Those processes would focus on the FCs’ bounding
boxes which are much smaller areas than the whole image.
Furthermore, pixel-level CNN models [7] are considered
to be another option for high detection and segmentation
accuracy.

References
[1] Al-Sarayreh, M., Moayed, Z., Bollard-Breen, B., Ramond, J.-

B., & Klette, R.: Detection and spatial analysis of fairy circles.
In Proc. IEEE Image Vision Computing New Zealand, DOI:
10.1109/IVCNZ.2016.7804457, 2016.

[2] Antoni, B., Bartomeu, C., & Jean-Michel, M.: Non-local means
denoising. Image Processing Online, 1:208–212, 2011.

[3] Fay, J. M.: The ‘fairy circles’ in Namibia [Photograph].
Retrieved from www.ecography.org/sites/ecography.org/files/styles/
threshold-992/public/nationalgeographic1022083.jpg

[4] Getzin, S., Wiegand, K., Wiegand, T., Yizhaq, H., von Hardenberg,
J., & Meron, E.: Adopting a spatially explicit perspective to study
the mysterious fairy circles of Namibia. Ecography, 38(1), 1-11,
2015.

[5] Getzin, S., Yizhaq, H., Bell, B., Erickson, T. E., Postle, A. C., Katra,
I., Tzuk, O., Zelnik, Y. R., Wiegand, K., Wiegand, T., Meron, E.:
Discovery of fairy circles in Australia supports self-organization
theory. PNAS, 113(13):3551–3556, 2016.

[6] Girshick, R., Donahue, J., Darrell, T., & Malik, J.: Region-based
convolutional networks for accurate object detection and segmenta-
tion. IEEE Trans. Pattern Analysis Machine Intelligence, 38(1):142–
158, 2016.

[7] He, K., Gkioxari, G., Dollár, P., & Girshick, R.: Mask R-CNN. In
Proc. ICCV, 2980–2988, 2017.

[8] Tschinkel, W. R.: The Life Cycle and Life Span of Namibian Fairy
Circles. PloS one, 7(6), 2012.

[9] Uijlings, J. R. R., van de Sande, K. E. A., Gevers, T., & Smeulders,
A. W. M.: Selective search for object recognition. Int. J. Computer
Vision, 104(2):154–171, 2013.

[10] Van der Walt, A. J., Johnson, R. M., Cowan, D. A., Seely, M.,
& Ramond, J.-B.: Unique microbial phylotypes in Namib desert
dune and gravel plain Fairy Circle soils. Applied Environmental
Microbiology, doi:10.1128/AEM.00844-16, 2016.

[11] Vandyke, I.: Namibia’s mysterious fairy circles dot the
landscape at Sossusvlei [Photograph]. Retrieved from
www.wildimages-phototours.com/wpcontent/uploads/2017/06/
Sossusvlei-10-Namibia-Inger-Vandyke.jpg


