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Abstract—The paper discusses an evaluation of visual odome-
try accuracy with respect to available lighting. Very extensive test
data (along one and the same road in New Zealand) have been
recorded at day and at night. Used sensors are stereo cameras,
inertial measurement unit (IMU), and GPS. The paper discusses
odometry and 3D point cloud reconstruction results for the cases
when using visual odometry only (i.e. based on the stereo camera
data), or additionally also an IMU. Results show how trajectory
and 3D point cloud recovery under low-light conditions benefit
from the use of additional sensors.

I. INTRODUCTION

Odometry (estimation of trajectories, i.e. change of pose
over time) and 3D point cloud reconstruction are two subjects
relevant to modern vehicles, or to test field studies for eval-
uating modern vehicles. The Northland Transport Technology
Testbed (N3T) aims at providing a test field for control and
safety modules of modern vehicles, with a particular focus
on the safety of trucks [1]. The research project “Digital
Roads New Zealand” has been defined in connection with the
needs of N3T, with participating academics at the German
Aerospace Centre (DLR), see [2], and at Auckland University
of Technology [3].

Visual odometry (VO) estimates trajectories by using mono-
or multi-ocular camera systems; see [4] for an evaluation
of various programs for visual odometry. Test sequences,
provided by this benchmark website, are typically of a length
of around 400 stereo frames. In this paper we use test data for
a day-time and a night-time run along a road of about 6 km;
during these runs we recorded 6,998 or 7,577 stereo frames
(at 10 fps) for VO, respectively.

DLR developed an integrated positioning system (IPS) that
may also be installed on a car for providing precise odometry
of the vehicle on the road [5], [6], [7] while recording data
by stereo vision and an inertial measurement unit (IMU).
Additionally, the used test vehicle also operated a low-cost
GPS. In this paper, we discuss odometry and 3D point cloud
reconstruction results; at first odometry for VO only (using the
ORB-SLAM method; see [8]), and then also 3D point cloud
recovery for the IPS (using VO and IMU).

The studied road (see online maps for Otaika Valley Road)
is one of the traffic-accident hotspots in New Zealand. Fig. 1

shows a measured trajectory for the night-time test run on this
road; the red cross indicates the start position; the green cross
is the end position (i.e. intended to be identical with the start
position).
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Fig. 1: Measured trajectory for the night-time test run in the
local coordinate system

The paper is structured as follows. Section II discusses data
quality and the exclusive use of visual odometry. A brief
Section III informs about the used IPS (i.e. VO and IMU).
Section IV discusses the quality of obtained clouds of 3D
points. Section V concludes.

II. DATA QUALITY AND VISUAL ODOMETRY

Having exact calibration information about the given binoc-
ular camera system (a left and a right camera) at hand, a
relative transform between stereo-frame pairs can be calculated
with high accuracy. By integration of relative transforms, the
motion trajectory of the camera system can be obtained.

First, visual features are selected in the left image of
the stereo image pair at time k. Second, selected features
are matched to the right image (known as stereo matching).
Third, 3D points can be obtained from successfully matched
features [9]. Fourth, those 3D points are back-projected into
the subsequent stereo-image frame at time k+1 with an initial
guess of a relative transformation T . Features from the image
pair at time k are also matched with features in the image pair
at time k + 1 directly. An optimized relative transform can
be obtained by minimizing the error distance between back-
projected features and matched features. Eq. (1) defines the
calculation: ∑

n

∣∣∣p(n)k+1 −K[R|t]P (n)
k

∣∣∣2 (1)



where K is the camera calibration matrix. A matched feature
with index n in image Ik+1 is denoted by p

(n)
k+1. A recon-

structed 3D object point at time tk is denoted by P
(n)
k . Let

R and t denote rotation and translation components of the
relative transform T .

The above steps are repeated for each newly arriving image
pair. By composition of all the optimized relative transforms,
we obtain the sequence of subsequent positions and directions
of the camera system (i.e. the trajectory).

Figure 2 shows images recorded by night (with no additional
headlights on). For enhancing the performance of semi-global
matching (SGM), selected for stereo matching, we pre-process
night image data for contrast enhancement. Fig. 2, right
column, shows pre-processing results.

Fig. 2: Top left: Original image. Top right: Pre-processed
image with sufficient quality for SGM. Bottom left: Very dark
original image. Bottom right: Pre-processed image with very
poor quality for subsequent processing

For illustrating the varying quality of image data under low-
light conditions, we analysed the relationship between the
number of detected features and image contrast. Any input
image is subdivided into 10 × 10 windows; we calculate the
standard deviation of pixel intensities in these windows and
the mean value of those standard deviations for the whole
image. We also specify the number of detected features for
each image. We apply a sliding mean (window size 51) to
both resulting curves. Furthermore, we normalize both curves
to zero mean and standard deviation equal to 1. The result
for the night-time sequence is shown in Fig. 3. There are
critical drops in both curves along the sequence. There is a
high correlation between both curves.

We process the recorded day-time and night-time data by
the visual odometry system ORB-SLAM.1 Figure 4 shows
ORB-SLAM results. In the figure, the first image frame is
shown as the red triangle; each keyframe2 is shown as a blue

1 Position 29 on 27 June 2018 on [4]
2 ORB-SLAM tracks features detected in a keyframe as far as it can; if

the number of tracked features is below a threshold then a new keyframe is
defined: Doing stereo matching, then track these new features.

Fig. 3: Sliding means (window size 51; 25 on both sides of
current time slot) for number of tracked features and for frame-
by-frame mean of local standard deviation in recorded left
images (for the whole night-time sequence)

Fig. 4: Top: Screenshot for ORB-SLAM: Detected features in
the night-time sequence are limited to a car driving in front,
due to the strong reflections of headlights. Bottom: Measured
trajectory by ORB-SLAM for the first 5 seconds

triangle; the green triangle indicates the current frame. During
the test, ORB-SLAM fails feature tracking in the night-time
sequences just after 50 frames (i.e. 5 seconds) hence just
a short trajectory can be obtained. Moreover, the measured
trajectory is completely wrong. In the first recorded frames,
a car in front of the test vehicle moved forward while the
test vehicle was still parked. However, ORB-SLAM wrongly
generates a backward moving trajectory for these first frames
due to features detected from the front car.

In general, VO alone performed badly under low-light
conditions, but reasonably well under day-light conditions (as
known from results such as on [4]; however, these bench-
mark sequences do not contain any night-time sequence). The
quality of VO measurements highly relies on the number and
distribution of features. Thus, the performance of a camera-
only system is limited under low-light conditions where only
a few features can be detected in each image.



III. VISUAL ODOMETRY AND IMU

In the IPS, features are detected by an extended AGAST
feature detector [6]. To ensure a better balance between
performance and processing time, the number of detected
features for each image pair is dynamically adjusted, based
on the number of successfully matched features in the next
step [7].

In addition to the cameras, the IPS integrates an inertial
measurement unit (IMU) as a self-contained sensor; the IMU
measurement is independent of any external signal as well as
of lighting conditions. The sampling frequency of the IMU is
normally much higher than that of the camera system; thus,
the IMU can provide a good reflection of the system’s state.
IPS’s IMU contains a 3-axis gyroscope which provides angular
velocity ωb , and a 3-axis accelerometer which measures the
acceleration ab of the movement; superscript b stands for
body-frame.

In the IPS, measurements from VO and IMU are fused
by a Kalman filter to provide the most reliable trajectory
measurement.

Both for day-time and night-time run, start and end point
of the test vehicle with IPS are intended to be at exactly the
same position. A measured trajectory was shown in Fig. 1. The
distance error between measured start and end point is known
as closed-loop error; a common measure to indicate the quality
of odometry. For the night-time run, the test vehicle travelled
6,196 m, with a closed-loop error of 26.12 m, what is about
0.4% of the travelled distance. Due to the combination of VO
with IMU, the IPS never stops calculating a trajectory.

Moreover, we measured GPS coordinates of some signifi-
cant landmarks besides the road (e.g., traffic signs) by a real-
time kinematic (RTK) GPS device. The average accuracy of
landmark’s coordinates measurement is 0.018 m in horizontal
and 0.025 m in vertical direction. The measured landmarks are
distributed along the testing road. They are used as ground
truth to evaluate the quality of the measured trajectories. In
order to compare with the landmarks, a measured trajectory
is transformed and calculated by fusion with the VO-IMU-
GPS data source in the global geographic coordinate system;
details can be found in [15]. Figure 5 shows experimental
results. From the latitude-longitude figure it can be seen that
the trajectory accurately passes through all the landmarks; this
demonstrates that the IPS measures a high-precision trajectory
in the 2D map, which is normally important information
for navigation tasks. Elevation-longitude shows us also a
high-quality trajectory which confirmed a high consistence
between trajectory and landmarks. Errors between landmarks
and trajectory in the elevation-longitude figure are very small
in comparison to the overall difference in height on the testing
road. This experiment proves that the IPS system also provides
an accurate trajectory in low-light environments.

IV. CLOUDS OF 3D POINTS

The IPS with its stereo camera approach generates two
images at the same time, which can not only be used for
reliable visual odometry estimation but also for the generation

of high-density depth maps. Subsequently, these point clouds
from all image pairs can be merged into a high-density cloud
and filtered into a voxel grid of an appropriate resolution and
size. A large-scale 3D cloud of points for the entire observed
area can be generated; see Fig. 6. Obviously, this approach
only works if all contributing components (stereo matching
for each pair of images and trajectory calculation) possess a
very high accuracy.

A special challenge for the extended IPS was to allow high
quality 3D point generation in real time. Our computationally
expensive dense stereo matching is executed on a graphics
processor unit (GPU). Based on earlier developments [16], we
implemented SGM in OpenCL. From the various possible cost
functions [17] with their pros and cons for different conditions
we selected a census cost function for the data term; see, for
example, [18] for a discussion of the influence of data and
smoothness term in energy optimisation for stereo matching.

The overall frame rate for point cloud generation is dy-
namically adapted as follows: If the calculated IPS navigation
solution shows a substantial difference in pose or time to the
previously used image pair, a new local 3D point cloud is
extracted from the depth maps and transformed into the global
navigation frame. All steps, including trajectory estimation and
dense depth map generation with a sufficient frame rate and
disparity resolution can be carried out on a capable laptop PC
in real time.

The global point cloud accuracy profits immediately from
navigation precision. The cloud quality in detail is further
strongly dependent on the stereo camera parameters, especially
on pixel resolution and base length. For a fixed camera set-
up, the depth resolution and local accuracy of 3D points is

174.220 174.225 174.230 174.235 174.240 174.245
Longitude [deg]

-35.774

-35.772

-35.770

-35.768

-35.766

-35.764

-35.762

-35.760

La
tit

ud
e 

[d
eg

]

IPS trajectory
Landmarks

174.225 174.230 174.235 174.240 174.245
Longitude [deg]

      80

     100

     120

     140

     160

El
ev

at
io

n 
[m

]

IPS trajectory
Landmarks

Fig. 5: Comparisons of measured IPS trajectory in a low-
light environment with landmarks. Top: The trajectory and
landmarks in latitude-longitude view. Bottom: The trajectory
and landmarks in elevation-longitude view.



Fig. 6: Point cloud generated from a day-time run of the
considered road segment is used as a reference (parallel
projection)

Fig. 7: Top: 3D point cloud for the whole road segment (one
direction) generated from pre-processed night-time images.
Middle: Curve segment. Bottom: Details for two sections of
the shown road segment.

mostly determined by the minimum distance of the shown
objects to the camera while passing the object. In case of low
light conditions, the extraction of depth images is a special
challenge. SGM basically relies on the evaluation of a cost
function for structure similarities in small image patches. This
requires at least some texture and grey value differences in the
images. A census cost function compares local intensity differ-
ences around the considered pixels in both images. Therefore
it is very tolerant to overall brightness differences between
the images but not to noise, which especially increases in
homogeneous areas with low lighting conditions.

All point cloud segments presented in the paper are calcu-
lated from depth maps generated with full image resolution
and filtered to a 2 cm sized voxel grid.

The 3D point cloud for the whole road in Fig. 7 shows
image-quality dependent cloud densities; compare with Fig. 3.
The top image in Fig. 7 gives an overview for the whole
path (one direction), generated from pre-processed night-time
images. The middle one provides a segment of this whole
cloud. After light-condition changes and corresponding camera
exposure control cycles (while driving into the forest), the

Fig. 8: Comparisons of cloud for original night-time sequence
with day-time cloud (parallel projections)

generated point cloud density drops significantly due to an
inadequate (despite pre-processing) image quality for SGM,
up to almost only bright details like traffic posts or white road
markings as shown between the yellow boxes (see bottom right
of figure).

In case of dark and especially very noisy images the point
cloud density suffers. In order to increase the number of valid
3D points, we executed image processing steps on the input
images (with functions of scikit-image [19]) in an offline
process. An adaptive histogram equalization followed by a
total variance denoising proved favorable for SGM and the
following point cloud generation. Figure 2 top row shows
an image in original and sufficiently pre-processed form.
However, extensive image processing may lead to inaccuracies
of feature positions and therefore to a substantial negative
influence on the visual odometry results. To avoid that, point
clouds from pre-processed images pairs are fused with the help
of a trajectory from original images to the final improved 3D
point cloud.

Figure 8 shows point cloud results for original stereo images
of the night-time run. The top of the figure shows the point

Fig. 9: Comparisons of cloud for pre-processed night-time
sequence with day-time cloud (parallel projections)



cloud generated from original night-time data (compare with
Fig. 6); the middle of the figure shows colour-coded point
distances to the day-time cloud; the bottom of the figure shows
the aligned clouds, the colour-coded night-time cloud and the
grey-value-coded day-time cloud. Figure 9 shows point cloud
results for pre-processed stereo images of the night-time run -
in the same order as in Fig. 8 (i.e. point cloud, colour coded
point distances to daylight cloud, and aligned colour coded
cloud and grey value daylight cloud). With pre-processing,
the point cloud contains significantly more 3D points in a
visually better quality. If the images are too dark due to camera
exposure control cycles induced by light condition changes
(e.g. while driving into the forest) even using pre-processing
gives poor results like in Fig. 2 bottom row; the 3D point
cloud becomes sparse accordingly and contains almost only
traffic posts and brighter road markings. Figure 7, bottom,
shows quality differences which fundamentally depend on the
remaining information in recorded images.

Generated point clouds for original and pre-processed im-
ages are given in Figs. 8 and 9; both rely on the same
calculated trajectory from images recorded at night. That
means that both clouds resemble each other in size and overall
shape, but pre-processing led to significantly more and, maybe,
slightly different points. A significant statement about quality
and reproducibility of trajectories and point clouds based
on low-light-condition data can be obtained by comparing
3D points with a ground truth model of the observed area.
Such a model, unfortunately, is not yet available at sufficient
resolution for our test area. The (outdoor) trajectory itself
can be compared with high-accuracy GPS trajectories; see
[BLINDED]. We recorded data on the test road several times
under different conditions, hence we were able to generate a
3D point cloud for (“good”) day-time image data (taken just
some hours before the selected night-time test run). This cloud
serves as our point-cloud reference model. We compare the
number and accuracy of generated 3D points, and even local
(especially trajectory-dependent) shape differences of point
clouds.

Figure 6 shows a uniquely identifiable cloud segment from
the test area, generated under daylight conditions. Cloud
segments of both of our clouds, calculated from original and
pre-processed night-time images for the same region, have
been aligned with the daylight cloud by an iterative closest
point (ICP) algorithm. Subsequently, absolute point distances
of both night-time clouds to the reference cloud have been
calculated. These steps have been executed with the help of
CloudCompare [20]; all presented point-cloud figures in this
paper are also rendered with this software package. Figure 8 is
for the original night-time cloud, and Fig. 9 for the optimized
cloud; each figure shows a grey-value cloud, a colour-coded
cloud of absolute point distances to the reference cloud, and an
overlay of colour-coded cloud and grey-value reference cloud.
The night-time clouds fit “very well” the daylight reference
cloud; this means that the overall shape of the segment is
reproduced from night-time images with high accuracy, and
hence we can claim that the underlying daylight and night-

TABLE I: Parameters for absolute point differences to the
reference cloud for original night-time cloud (Cloud 0), and
the night-time cloud from pre-processed images (Cloud 1)

Cloud 0 Cloud 1
Number of points 1,050,903 3,721,126
Mean distance to reference cloud 52 mm 50 mm
Standard deviation 124 mm 119 mm
Max. distance of 50% 34 mm 33 mm
Max. distance of 75% 62 mm 60 mm
Max. distance of 90% 88 mm 86 mm
Max. distance of 95% 105 mm 103 mm

time trajectories are of similar quality for the considered road
segment.

Table I shows that the cloud from pre-processed images
(Cloud 1) contains more than 3 times as many points as the
cloud for original images (Cloud 0). Mean-absolute distances
to the reference cloud, standard deviations, and percentiles are
similar. Histograms of absolute point distances (see Fig. 10)
illustrate that for both clouds, 50% of the points have a
distance to the reference cloud smaller than 34 mm, and 90%
smaller than 88 mm or 86 mm, respectively. (Blue histogram
bars indicate the distance distribution for the original night-
time cloud, green bars show the same for the cloud from pre-
processed night-time images. Dashed lines mark the maximum
distance for 50% of the points; solid lines show this for 90%
of the points.) Pre-processing the images in the proposed way
significantly improves the information contained in resulting
point clouds, the additional points complete the original (day-
time) cloud at a comparable accuracy.

Diagrams in Fig. 11 quantify point cloud qualities when
comparing one of the clouds for night-time images with
the daylight reference cloud. Both charts show (smoothed)
numbers of VO features as red lines; the VO feature curve
in the bottom chart is the left section of the overall plot given
in Fig. 3. Green bars represent averaged numbers of 3D points
generated from one image pair after voxel filtering in the
final point clouds. For comparison, the vehicle speed, given
by the trajectory, is plotted as a blue line. A green bar value
is the quotient of the number of points (voxels) in a road-
segment point cloud and the number of image pairs evaluated
for that cloud. Assuming that image contents is only slightly
changing while driving along a rural road, and the nearly
constant vehicle velocity as shown, this ratio is a significant
measure for point cloud densities under different conditions.
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Fig. 10: Histograms of point distances to the daylight reference
cloud
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Fig. 11: Smoothed VO feature numbers (red lines) and aver-
aged numbers of 3D points generated from one image pair
in the final point clouds for one driving direction. A green
bar value is the quotient of the number of points (voxels)
in a road-segment point cloud and the number of image
pairs evaluated for that cloud. Top: Diagram for the daylight
(reference) point cloud. Bottom: Diagram for the night-time
point cloud generated from pre-processed images

The upper part of Fig. 11 shows values for the daylight run
used as reference. The velocity is nearly constant over time,
and the stable number of features found for VO calculation
implies reliable VO information. The averaged number of 3D
points per image pair is almost constant while driving, except
for the section that leads through the forest. Due to darker
images with lower contrast, this ratio drops to a value typically
seen for night-time images, given in the lower diagram. For
the night-time run with optimized input images this shows that
the average number of 3D points that can be added per image
falls to about half of the number for daylight reference values.
The time period between the vertical black lines corresponds
to the curved road segment between the yellow boxes in Fig. 7.
Under these very-low-light conditions, both the number of
VO features and the number of 3D points drop significantly.
However, brighter objects like road markings and posts are
still modelled in the point clouds as presented in the bottom
part of Fig. 7 - they could be used, e.g., for an estimation of
the slope angle for a continuation of a coarse road model.

V. CONCLUSIONS

The demonstrated combination of high-accuracy trajectory
estimation (VO, IMU, and GPS) is stable over long time
periods or trajectory intervals. It supports real-time 3D point

cloud generation and thus provides a promising technological
basis for various applications, even for non-optimal (for the
used camera system) low light conditions. In the case of very
poor image quality, generated 3D point clouds contain only
a few objects such as road markings and posts, but these are
already sufficient for 3D matching with a given (partial) 3D
road model. The proposed denoising step was prototypically
implemented as an offline process, but it may be time-
optimized or implemented on dedicated parallel hardware.
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