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Abstract—This paper addresses the problem of identifying
potholes on roads. The model discussed in this paper is able
to identify dry and wet potholes. The proposed model employs
a transfer-learning-based approach; using Mask-RCNN, we use
weights trained for the CCSAD model to identify dry potholes.
This approach provides promising results on four different
datasets recorded under challenging weather conditions, from
bright-sunny to dark-cloudy days. The aim of this research is to
identify potholes at instance level segmentation. Evaluated results
demonstrate very high accuracy of detected potholes compared
to our previous model trained by using one dataset consisting of
dry potholes only.

I. INTRODUCTION

Dangerous potholes not only cause a damage to a ve-
hicle; they are also a threat to human life. In 2011, the
Christchurch Infrastructure Rebuild Team was formed to re-
build Christchurch’s earthquake damage. After seven years,
Christchurch is still mentioned as the “pothole capital” of New
Zealand, as published in one of the regional newspaper [1].
In 2017, different city councils in New Zealand received a
number of complaints about potholes such as 276 requests in
Auckland only, for compensation for damages or injuries that
have been related to road surface conditions; Christchurch’s
council received 994 complaints about potholes, and Welling-
ton’s Council received 394 [2].

Depending on the severity of potholes, they are a nuisance
of varying degree both for passengers and to the coun-
try’s economy. For all the received pothole complaints in
2017, Christchurch council spent 525, 000, Wellington council
12, 782, Invercargill city council 60, 000, and Dunedin city
council around 27, 000 [1].

Regarding driverless cars, major companies such as Tesla,
Toyota, Ford, or BMW announced to be able to deliver
autonomous cars by about 2020 [3]. However, research in
the field of automatic identification of road potholes still
needs to follow the successes in other subject areas. In the
already defined digital world, the reporting and identification
of potholes still depends mainly on public reporting [4], [5].

The greatest challenge to solve the problem of identification
of potholes is the absence of robust and advanced methods us-
ing automatic identifications of potholes. Automated detection
methods can save large sums spend on vehicle damage, and
can also make road repair systems more efficient.

Current methods use a variety of sensors such as iner-
tial measurements, 3-dimensional (3D) scanners, and optical
sensors. Vibration-based methods use an accelerometer for
measuring the vibrations caused in a vehicle due to hitting
a pothole or other road damages [6], [7].

Other techniques such as 2D-vision based methods [8], [9]
rely heavily on manual processing; it appears impractical to
define 2D features of potholes due to their irregular shape.

Other sensors such as ground penetrating radar [10], 2D
laser scanners [11], 3D laser [12], or stereo vision cameras [13]
offer an accurate option based on 3D reconstruction [14], [15].
Ground penetrating radar is mainly used for special purposes.
Stereo vision cameras or a 3D laser are the logical choice
for identifying a pothole from a distance, where a 3D laser is
(still) an expensive sensor, also usually not applicable when a
pothole is filled with water.

The current state-of-art methods employ deep-learning-
based methods (see Fig. 1) to identify road damage. However,
to the best of our knowledge, there is not yet any report
on focused research based on deep learning in fields related
to pothole identification. To develop such a deep-learning-
based model to identify potholes, 65% of the total efforts are
generally spent on the collection and preparation of a road-
pothole dataset; see Fig. 1. The purpose of this study is to
introduce four datasets while providing insights into related
findings based on experiments

The rest of the paper is organised as follows. Section II
presents a review of related literature. Sections III gives the
introduction to four different datasets that we used. Section IV
demonstrates experimental results of this study. Section IV
concludes.

II. RELATED WORK

Pothole-detection approaches can be divided into two types
- first, conventional image-analysis-based algorithms, and sec-
ond, deep-learning-based models.

Based on conventional computer-vision algorithms, Dhiman
et al. [16] proposed a method for identification of potholes
using a disparity map. The algorithm models a road manifold
in 3D space using RANSAC for iterative optimization. An
elevation map is built for the road surface following the
identification of the road manifold. Pixels representing points978-1-5386-4276-4/17/$31.00 c©2017 IEEE



below ground-manifold level are considered for a connected-
component analysis. Finally, morphological operations are
used to find salient pothole regions in the disparity image.
Authors of [17] used a multi-frame fusion technique (based on
visual odometry) for detecting potholes. The technique works
by accumulating multiple-frame 3D reconstructions which are
properly aligned into a road-centred coordinate system. A 3D
plane-fitting technique is first carried out to approximate the
road manifold at the beginning of the accumulation, followed
by the construction of a digital elevation model (for the road
being analysed) from integrated multiple frames.

Akarsu et al. [22] classified defects in road-surface images
into three types: Horizontal, vertical, or crocodile; Zalama
et al. [23] classified only into vertical or horizontal. Chun
et al. [24] proposed an automated asphalt pavement crack
detection technique using a combination of a naive Bayes-
based method and image processing.

Kulkarni et al. [25] used an android smart phone to identify
changes in acceleration to detect potholes; the authors used a
high frequency filter and a neural network approach. Eriksson
et al. [26] proposed a pothole patrol system to detect potholes
which gathers data from vibration and GPS sensors and
processes this data to access road-surface conditions.

Bhatt et al. [27] used a machine-learning approach to detect
potholes, and assess the road condition. Hsu et al. presented
in [28] a multi-sensor approach to detect potholes and measure
a road-quality index by integrating laser, camera, GPS, and
inertial measurement unit (IMU) sensors into an experimental
golf-cart system. The analysis is based on imagery, laser-
scanned 3D data, and the data of the other sensors.

As examples for the second type, Zhang et al. [19] suggested
a CrackNet to predict class scores for all the pixels in existing
road damage, and Maeda et al. [18] employed a state-of-the-
art CNN to train a model for detecting road-surface damage
using a large-scale dataset of road images collected in Japan
using a smart phone by the authors. The authors used SSD
Inception V2 [20] and SSD MobileNet [21] to classify eight
types of road damages. Detected road damages are identified
within enclosed bounding boxes.

Staniek [29] used a form of a recurrent artificial neural
network (i.e. a Hopfield neural network) to solve the complex
problem of matching points in stereo images to perform depth

Fig. 1. Efforts required to develop a deep-learning-based model.

analysis. The author provides an introduction into a variety of
issues faced in case of stereo vision, ranging from acquiring
images of roads to calculate 3D point clouds. The author
proposed a fusion of sensors, such as stereo vision cameras,
inertial sensors, and a GPS, for solving depth discontinuities.
Depth discontinuities may occur due to sudden significant
changes in image intensities.

To the best of our knowledge, no example of an application
has been published so far to detect potholes at pixel level.
Extensive research has been carried out already for image seg-
mentation using CNNs such as RefineNet [30], PSPNet [31]
or Large-Kernel-Matters [32]. CNNs for image segmentation
may also be of relevance, such as the fully convolutional neural
network (FCN) by Long et al. [33], in which a final fully-
connected layer is replaced by another convolutional layer
for a large receptive field to capture the global context of a
scene. However, this results into coarse segmentation maps by
upsampling layers of the FCN.

Badrinaraynan [34] proposes Segnet, a multiclass deep-
encoded-decoder-based CNN, that is more memory-efficient
than the FCN and performs semantic pixelwise segmentation.
Segnet eliminates the need of upsampling, as this decoder
uses pooling indices, computed in the max-pooling step of
the corresponding encoder, for non-linear upsampling.

One more class of CNNs, which uses dilated or atrous con-
volutions, is proposed in DeepLab by Chen [35]. The dilated
convolutions in DeepLab help to increase the field of view
exponentially without increasing the number of parameters.
However, this type of convolutions is computationally very
expensive because of its application for high-resolution feature
maps.

There is currently strong progress towards object detection
and recognition based on deep learning; a common issue is
the lack of training data. Therefore, reflecting this common
problem in our paper, we detect potholes by pixel-level seg-
mentation. We use a state-of-the-art deep learning approach
to achieve instance segmentation to delineate the boundary of
potholes at pixel level in an image. Because we have a (very)
limited amount of labelled data only (considering the unlimited
diversity of pothole appearances), we initially developed a
model to identify dry potholes using a transfer learning based
approach.

Transfer learning can be defined as a method where a model,
developed for one task, can be reused as a starting point for a
model for another task, such as when proceeding from a large
source domain dataset like COCO [36] or Imagenet [37] to a
smaller target domain.

Generally, in transfer learning the feature learnt in source
data is exploited to improve generalization in the target domain
dataset. Feature spaces usually differ between source and
target domain data, and the aim is to boost the performance
rapidly in the target domain. We used as source domain the
COCO dataset, trained using Mask R-CNN [38], and as target
domain we used different datasets, to be specified below. The
aim of this study is actually to put forward different datasets
for road pothole identification as well as a novel method for



detecting potholes at pixel level.
As a base network, we used Mask R-CNN. Mask R-CNN

was extended in 2017 by using Faster R-CNN [39], to predict
segmentation masks for each region of interest, along with
classification and bounding box regression. To delineate the
boundary of each instance at pixel level, Mask R-CNN uses
a small mask branch FCN, applied for each ROI to predict a
mask.

III. DATASETS

1. CCSAD. Hayet et al. [40] introduced an image dataset
(recorded in Mexico), called challenging sequences for au-
tonomous driving (CCSAD), that is useful for executing meth-
ods to detect damaged road surfaces; see Fig. 2, top left,
for an example. The dataset has been acquired at 20 fps by
using two Basler Scout scA1300-32fm firewire greyscale
cameras. Each image is of dimension 1, 018× 765.

The CCSAD dataset comes in four different categories:
Colonial Town Streets, Urban Streets, Avenues

and Small Roads, and Tunnel Network. CCSAD
accounts for 500 GB of data that incorporate calibrated and
rectified pairs of stereo images, videos, and meta-data.

2. DLR. This dataset has been recorded while using the
integrated positioning system (IPS) [41], [42], developed by
the German Aerospace Centre (DLR), installed on a car. The
dataset has 48, 913 images, recorded by a GoPro camera,
mounted behind a car’s windscreen. The camera was set to
a 0.5 second time lapse mode. The car was moving at an
average speed of 40 km/h while scanning the road surface.
Each image has a size of 1, 360× 1024; see Fig. 2, top right,
for an example.

Fig. 2. Examples from four data sets. Top, left: CCSAD. Top, right: DLR.
Bottom, left: Japan. Bottom, right: Sunny.

Fig. 3. Illustration of detection steps.

3. Japan. This dataset comprises of 163, 664 road images
of dimension 600 × 600 collected in seven different cities of
Japan [18]; see Fig. 2, bottom left, for an example. The dataset
contains 9, 053 damaged-road images and 15, 435 instances of
damaged road surfaces such as cracks or potholes. The authors
used a smartphone on the dashboard of a moving car driving
at an average speed of 40 km/h. Images are captured at an
interval of one second under different weather and lighting
conditions.

4. Sunny. Authors of [44] provided a dataset of 48, 913
images of size 3, 680×2, 760 recorded using a GoPro camera,
mounted behind a car’s windscreen. The camera was set to a
0.5 second time lapse mode. The car was moving at an average
speed of 40 km/h while scanning the road surface; see Fig. 2,
bottom right, for an example.

IV. EXPERIMENTS AND DISCUSSION

For transfer learning, we used 143 images of the CCSAD,
DLR, Japan and Sunny dataset collectively. We labelled
pothole masks manually in JSON format. We used a batch
size of 2; for 2,000 iterations it took 12 hours on a Ge Force
GTX GPU. In this study, we used RESNET101 as a backbone
architecture and a learning rate of 0.001. We train the network
using stochastic gradient descent and a learning momentum of
0.9.

As we used images from four different datasets, the image
dimensions were different. To keep an aspect ratio of uniform
size 1, 024 × 1, 024, zero padding is added to the top and
bottom of an image. We have two classes in our dataset, one

Fig. 4. Original and masked image.



Fig. 5. Detected “potholes” based on transfer learning using Mask R-CNN, shown in two columns with original image on the left and labelled results on the
right. Top to bottom, left to right: Twelve frames in order as listed in Table I.

for “background” and one for “pothole”. Transfer learning
with Mask R-CNN is a two-stage framework.

Stage 1: Classification and bounding box refinement.
During the first stage, the whole training image is scanned to
generate anchor proposals by fine tuning RPN from end-to-
end. RPN is a lightweight neural network that scans over the
backbone’s feature map, using a sliding window to generate
anchors. Anchors are typically bounding boxes in the image
to predict multiple regions while a small n×n window slides
over the convolved feature map of the entire training image.
As the sliding-window operation is convolutional in nature, so
it is handled fast on a GPU. This stage generates a maximum
of 256 anchors per image and bounding-box refinements. This

stage outputs a grid of anchors (see Fig. 3, left) at different
scales. IoU > 0.7 define positive samples, and IoU < 0.3
define negative samples, respectively.

The bounding box refinement step accepts a refined grid of
anchors from the RPN and classifies the anchors precisely.
It maps anchor bounding boxes, as shown in dotted lines
in Fig. 3, left, into final boxes as shown in solid lines
in Fig. 3, right. Mask-RCNN refines the ROIAllign layer
by removing a harsh quantization of the RoIPool layer, to
properly encapsulate the extracted features with the input.

Stage 2: Mask generation. The mask branch is a CNN that
accepts positive regions as input, generated by the classifier
during Stage 2, and generates a low resolution 28 × 28 soft



Fig. 6. Decreasing mask loss in dependency of iterations.

mask for it. A soft mask differs from a binary mask as these
are represented by float numbers and represent more details.
We fine-tune the layer of Mask R-CNN, according to our
object class “pothole”, and see the final result as shown in
Fig. 3, right. To calculate a loss mask, average cross-binary
entropy [45] is used, in which only the k-th mask is included
if the region is associated with the ground truth:

MLoss =
−1

m2

∑
1≤i,j≤m

[yij log ŷ
G
ij+(1−yij) log(1− ŷGij)] (1)

where yij is the label of an anchor of dimension i,j for the true
mask of size m = 28. We calculate the loss by a predicted
value ŷGij of the same anchor in a mask learned for ground
truth class G.

For visualization purposes, a loss is calculated after comple-
tion of every epoch. As loss acts as a penalty on the network,
it is clear from Fig. 6 that the loss decreases in each iteration.

We first developed a model based on transfer learning using
Mask R-CNN with CCSAD frames and tested our model on
sequence 1 and 2 of this dataset. For each selected frame, the
ground truth is established manually. However, the developed
model was able to correctly identify dry potholes in properly
illuminated scenes as shown in Fig. 5, second row, first image.
But such a model is not applicable to identify wet potholes in
real-world scenarios. Thus, to identify potholes under varying
(challenging) conditions, we collected and used a variety of

Fig. 7. Precision-Recall curve.

datasets and trained the network using frames from all the
different datasets, collectively.

In Fig. 5, twelve tested frames are shown in two columns
from the four used datasets introduced in Section III. Left
column, the two top-most frames are from CCSAD sequences
1 and 2, identifying dry potholes under different illuminating
conditions. Left column, the four other tested frames are from
the DLR data showing wet potholes. Right column, the three
tested frames on the top are from the Nagakute and Numazu
data in the Japan dataset; identified potholes are emerging
from big cracks. Right column, the other three tested frames
are from the Sunny dataset; they show two images at the
bottom of the column where networks of pothole instances are
correctly identified while a false positive has been detected
in the third image (from the bottom) – as a pothole is of
arbitrary shape, under bright sunshine a tree is miss-classified
as a pothole in this case (this could be excluded by identifying
a ground manifold first).

As we are interested in identifying potholes at pixel level,
we provide a quantitative analysis using calculated common
classification measures:

Precision =
tp

tp+ fp
(2)

Recall =
tp

tp+ fn
(3)

Accuracy =
tp+ tn

tp+ tn+ fp+ fn
(4)

where tp denotes the number of true positives, fp of false
positives, fn of false negatives, and tn of true negatives.
Results are listed in Table I.

TABLE I
EVALUATION MEASURES (IN %) FOR RESULTS SHOWN IN FIG 5.

Dataset Frame Precision Recall Accuracy
CCSAD 547 89.0 95.6 99.7
CCSAD 345 96.4 80.2 99.9
DLR 472000 67.7 88.3 99.7
DLR 572000 100.0 100.0 100.0
DLR 749000 100.0 92.2 99.8
DLR 449000 91.0 36.1 95.6
Japan 20170912135214 72.8 65.7 99.3
Japan 20170906135035 76.8 86.9 99.8
Japan 20170906135037 96.4 72.8 99.2
Sunny G0010116 73.9 26.6 98.9
Sunny G0010118 100.0 100.0 100.0
Sunny G0011873 78.5 50.0 99.9
Overall 87.0 81.3 99.7

In some cases, our model is able to identify potholes at
100% of ground truth pixels; the potholes in these cases are
usually wet potholes and easy to label manually. Our model
also achieves an overall Precision of 87% and Recall of
81% while achieving an of Accuracy of 99.7%. To visualize
the relationship between classification measures, a Precision-
Recall plot is shown in Fig. 7.

V. CONCLUSIONS

More variations in training data improve the detection
accuracy. More benchmark datasets with exact ground-truth



labelling are needed for universal types of experiments. Having
already data from four different countries certainly contributed
to the documented good results. The trained network even
identified “crack patterns” of emerging potholes which were
difficult to see by a human. The novel pixel-level identification
of potholes proofed to be a useful approach, both for academic
and practical purposes. Our main purpose was to identify road
distress by exact masks, not just by bounding boxes.
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