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Abstract—Glaucoma is an optic neuropathy resulting in pro-
gressive vision loss. It is the leading cause of global irreversible
blindness. The reported prevalence among the population in New
Zealand is 2% over the age of 40 years. About 10 % of those
over 70 years are diagnosed with this disease.

Population-based studies report high rates of undiagnosed
glaucoma with over 50% of the population with glaucoma living
in developed countries remaining undiagnosed and unaware of
their disease. Clinical diagnosis rests on the detection of the
characteristic optic disc signs. Stereo optic-disc imaging improves
intra and inter-observer agreement in the detection of optic
disc abnormalities. We propose a robust method to detect some
abnormalities in stereo optic-disc images using stereo vision
and superpixel segmentation concepts. A stereo vision system
produces a disparity map for the input stereo images of the retina
in which abnormalities are more distinguishable. The produced
disparity map is then segmented using two different superpixel
segmentation algorithms (simple linear-iterative clustering and
simple non-iterative clustering) to detect abnormalities. The
original stereo images are also segmented using the same concept;
results are compared with the segmented disparity map.

Index Terms—Glaucoma detection, abnormalities, stereo vi-
sion, superpixel segmentation

I. INTRODUCTION

Glaucoma is an optic neuropathy resulting in progressive
vision loss [1]. It is the leading cause of global irreversible
blindness [2]. In 2013, the population aged 40–80 years with
glaucoma worldwide was estimated to be 64.3 million; this is
projected to increase to 76.0 million in 2020 and 111.8 million
in 2040 [3].

In New Zealand, glaucoma is responsible for 7% (1,192
patients) of cases of bilateral blindness, ranking the third
most common reported etiology [1]. The reported prevalence
among the population in New Zealand is 2% over the age of
40 years. About 10% of those over 70 years are diagnosed
with this disease [1]. Early detection is vital to reduce the
burden of unnecessary blindness due to glaucoma. The Royal
Australian and New Zealand College of Ophthalmologists
recommends a biannual ophthalmic examination, and the New
Zealand Association of Optometrists recommends a regular
examination every 2–5 years for healthy adults. However,
like other developed countries, New Zealand does not have

a formal screening program for glaucoma [4]. Diagnosis
and subtype classification is based on intraocular pressure
measurement, gonioscopy, and the presence of both structural
and functional evidence of glaucomatous optic neuropathy [5],
[6]. Intra and inter-observer settlement in the detection of optic
disc (OD) abnormalities could be improved with stereo fundus
images [7]. See Fig. 1 for examples of such stereo OD images
(SODIs).

The general definition of abnormalities for glaucoma aspects
is as follows:

1) increased cup-to-disc ratio (i.e. the ratio of the optic cup
in the central optic disc to the margin of the optic disc),

2) notching of the neuroretinal rim (focal loss of the margin
of the optic disc margin),

3) symmetry of optic disc cupping, and
4) loss of retinal nerve fiber layer.

We assessed optic discs from patients with different subtypes
of glaucoma defined by abnormal SODIs. The RIM-ONE,
release three, is a public SODIs dataset that consists of 85
healthy and 74 glaucoma stereo images. It illustrates the accu-
rate optic nerve head (ONH) gold standard for professionals in
this field. Figure 1a shows a stereo image pair of normal optic
discs, and Fig. 1b shows optic discs with glaucomatous optic
neuropathy. Glaucoma manifests as ONH cupping; clinically
this is most easily recognised at the superior and inferior poles
of the optic disc as well as a focal and diffuse retinal nerve
fiber layer loss [5], [6].

Stereo vision extracts 3D information from multiple 2D
views of a scene. Stereo vision works by using a stereo-
matching algorithm which finds corresponding points in a
stereo image pair and produces a disparity map. This map
encodes the difference in horizontal coordinates of correspond-
ing image points. The values in the disparity map are inversely
proportional to the scene depth at the corresponding pixel loca-
tion [8]. Up-to-date stereo matching is robust (due to progress
in matching algorithm design) and fast (as it only processes
one stereo image pair). Many modern applications, such as
advanced driving assistance system or robot navigation, work
on principles of stereo vision to estimate the actual distance



or the range of objects of interest relatively to the camera
[9]. In this paper, we apply a stereo-matching algorithm to
our input SODIs to assess the difference in depth values for
abnormalities compared to OD. We use a commercial stereo-
vision system SP1 which produces disparity maps for input
SODIs.

The process of partitioning a digital image into multiple
segments is called image segmentation. These multiple seg-
ments are sets of pixels which are also known as superpixels.
Pixels that share certain characteristics such as similar colors,
intensities or gray-levels are grouped together to form super-
pixels [14]. By doing so, image segmentation simplifies the
representation of an image and makes it easier to analyze [15].
The simple linear-iterative clustering (SLIC) algorithm is one
of the widely used algorithms. It efficiently generates compact,
nearly uniform-sized superpixels by clustering pixels in a
combined five-dimensional color and image coordinate space
[16]: “SLIC produces superpixels at a lower computational
cost while achieving a segmentation quality equal to or greater
than four state-of-the-art methods, as measured by boundary
recall and under-segmentation error [17].” In this paper, we
apply the SLIC algorithm to divide input SODIs and disparity
maps into distinct areas to estimate the abnormalities on OD.
We also apply the simple non-iterative clustering (SNIC)
algorithm on SDFIs and disparity maps; SNIC is an improved
version of SLIC. Results of SLIC and SNIC algorithms are
compared at the end.

The reminder of this paper is structured as follows: Sec-
tion II presents the used public dataset and the SP1 stereo
vision system that is used in this research. In Section III,
all steps of the methodology are explained such as stereo
matching and superpixel segmentation. Section IV presents
the results of stereo matching and superpixel segmentation.
Section V concludes.

II. MATERIALS

The SP1 stereo vision system has been used in this research;
it is a product of Nerian Vision Technologies (NVCom);
see [11]. It performs stereo matching in real time using a
semi-global matching algorithm. It is a stand-alone processing
system with an integrated field programmable gate array
(FPGA) which produces a dense disparity map. The system
can be configured through a web interface using its IP address.
A gigabit ethernet connection is established between the SP1
and a client computer for the transmission of images. The
NVCom software is required to send input stereo images
to the SP1 and to display and write the received images
from the SP1. The system can process the images from two
industrial USB cameras in real time, or it can also generate
disparity maps for input stereo images transmitted from a
client computer. The SP1 can process images with a resolution
from 320×240 pixels up to 1, 440×1, 440 pixels; the number
of calculated disparities ranges from 32 to 256 pixels. It can
also reconstruct the 3D location of corresponding scene points
from the disparity map [11].

(a) Stereo fundus images of a healthy person

(b) Stereo fundus images of a glaucoma patient

Fig. 1: Stereo fundus images; courtesy of [12], [13].

The third version of the RIM-ONE [12] dataset has been
used in this research. It contains 159 SODIs with a resolution
of 2, 144×1, 424 pixels. Three hospitals, namely the Hospital
Clı̀nico San Carlos, the Hospital Universitario Miguel Servet,
and the Hospital Universitario de Canarias, had contributed to
the development of this database [13].

III. METHODOLOGY

The flow chart in Fig. 2 represents our approach for the
detection of abnormalities on ODs in SODIs. At first, input
stereo fundus images are separated in left and right images.
Then, the left and right images are cropped in order to have a
region of interest (ROI) accurately. These two images are given
to the SP1 system to calculate the disparity map. Afterwards,
in two stages, the disparity map and the left image are entered
into SNIC and SLIC algorithms to achieve the segmented
masks. Finally, SNIC and SLIC masks are overlaid on the
input left image as outputs; see Fig. 6. Current segmentation
studies, as reviewed in [10], do not yet cover such types of
superpixel segmentations.



Fig. 2: Overall approach for segmentation of abnormalities on
optic discs.

The concepts of stereo vision and superpixel segmentation
for glaucoma detection are discussed below in the rest of this
section; processes applying this flow chart are explained in the
following sections.

A. Stereo Vision

We cite [18]: ”Stereopsis is a term that is most commonly
used to refer to the perception of depth and 3-dimensional
(3D) structure obtained on the basis of the visual information
deriving from two eyes by individuals with normally devel-
oped binocular vision”; the difference in the relative horizontal
position of objects in the two images is referred to as binocular
disparity. The visual cortex of the brain processes disparities
to yield depth perception.

Stereo vision is a well-known ranging method because it
resembles the basic mechanism of the human eye. Computer
stereo-vision systems use the same principle by replacing eyes
with two CCD cameras. They are displaced horizontally to
obtain two different views. A disparity map, which encodes the
difference in horizontal coordinates of corresponding image
points, can be obtained by comparing these two slightly
different images. The values in the disparity map are inversely
proportional to the scene depth at the corresponding pixel
location [8].

Fig. 3: Left and right camera image for canonical stereo
geometry [19].

As stated above, two CCD cameras replace human eyes
in computer stereo vision system. So, they should be as
identical as possible for avoiding difficulties. In canonical
stereo geometry, both the cameras have identical effective
focal lengths and they should be arranged in such a way that
they have parallel optic axes. If the cameras are not arranged
in canonical stereo geometry, then both images should be
rectified before performing stereo matching [19].

Figure 3 illustrates matching in canonical stereo geometry;
both the images have collinear rows y, defining the epipolar
lines. Here, the left image is the base image indicated by B,
and the right image is the match image indicated by M . The
projection of a 3D world point P in the base image is displayed
by pixel p = (x, y). Now, we must search for a corresponding
pixel on the same epipolar line in the match image M . The
two pixels are corresponding if they are projections of the
same point P in the scene.

Let pixel q = (x+d, y) be the corresponding pixel of pixel
p. Here, d is the value of the disparity which is plotted in
a disparity map. A disparity map encodes the difference in
horizontal coordinates of corresponding image points. We can
generate the 3D world coordinates for each pixel by processing
the disparity map [19]. Figure 4 shows an input stereo pair and
a resulting disparity map; we use a color key for visualising
integer disparities.

The first step in our experiments is to perform stereo
matching. We use the SP1 stereo-vision system to produce
a disparity map for the input fundus images. The calculated
disparity map describes a mapping of image points from the
left camera image to corresponding image points in the right
camera image (i.e. the SP1 produces a disparity map from the
perspective of the left camera image). Corresponding pixels in
both images should only differ in their horizontal coordinates,
corresponding to canonical stereo geometry. The produced
disparity map encodes a horizontal coordinate difference [20].

The input image data is transmitted from a client computer
to the SP1 for stereo matching. The system performs stereo
matching using semi-global matching (SGM) algorithm and
produces a disparity map with a bit depth of 8 bits per
pixel. The NVCom application is used to receive and display
disparity maps from the SP1 [20]. Results for tested 3D scenes
verified the accuracy of the SP1; the followed SGM algorithm
has been developed for accurate, pixel-wise matching at low
run time [21]. It combines concepts of global and local stereo
methods [22].

B. Simple Linear Iterative Clustering Algorithm

Superpixel algorithms group pixels into perceptually mean-
ingful atomic regions. These pixels should adhere well to
image boundaries [17]. The SLIC algorithm produces a desired
number of regular, compact and nearly uniform superpixels
with a low computational overhead. The SLIC algorithm is
very simple, fast and efficient, which makes it extremely
easy to use. [16] documented that this algorithm achieved a
segmentation quality better than four state-of-art methods (at
that time).



(a) Input left image (b) Input right image (c) Disparity map

Fig. 4: Input stereo pair and resulting disparity map (used color code is shown on the right).

SLIC adapts a k-means clustering approach to efficiently
generate superpixels [23]. There are two important distinctions
compared to general k-means clustering:

1) The search space for the number of distance calculations
in the optimization is limited to a region proportional to
the superpixel size.

2) The color and spatial proximity are combined by a
weighted distance measure. It also provides control over
the size and compactness of the superpixels [17].

SLIC has only one parameter k which is the desired number
of approximately equally sized superpixels.

Fig. 5: Search regions of k-means and SLIC algorithms [17].

For color images in the CIELAB color space, the first
step of the clustering procedure is to sample k initial cluster
centers ci=[li, ai, bi, xi, yi]> on a regular grid, spaced s

pixels apart. Here, s =
√

N
k for roughly equally sized

superpixels. To avoid centering a superpixel on an edge, the
centers are transferred to seed locations corresponding to the
lowest gradient position in a 3 × 3 neighborhood. The next
step is to assign each pixel at location p to the nearest cluster
center whose search region overlaps its location. As depicted
in Fig. 5, the size of the search region is limited to reduce the
number of distance calculations, in contrast to general k-means
clustering. Since the expected spatial extent of a superpixel is

a region of approximate size s × s, the search for similar
pixels is done in a region 2s × 2s around the superpixel’s
center. The last step is to adjust the cluster centers to be the
mean vector [l, a, b, x, y]> of all the pixels belonging to the
cluster. The residual error E between the new and previous
cluster centers is calculated. The last two steps of algorithm
are repeated iteratively until the error converges [17]. Finally,
a post processing step reassigns isolated pixels to nearby
superpixels to enforce connectivity [17], [25].

Superpixel partitioning provides accurate boundaries around
different tissues which makes the extraction of image features
easier [24]. In this paper, superpixel segmentation is used
to reduce the negative impacts of vessels on abnormalities
detection. Another advantage of using superpixel segmentation
is that it separates a background region in an image from the
foreground. Moreover, it groups the abnormalities on OD in
one or more clusters which helps in glaucoma detection.

IV. EXPERIMENTS AND RESULTS

The first step of this experiment is to perform stereo
matching on to the input dataset. The SODIs are cropped to
ensure that the left and right camera images are of identical
size. The size of the left and right camera images is set to
1, 056× 1, 424 pixels. The stereo fundus images of glaucoma
patients are then transferred from a client computer to the SP1
through gigabit ethernet. The SP1 computes the disparity map
and transmits it back to a client computer [20].

For computing the disparity map, the value of maximum
number of disparities is set to 256. For generating disparity
map, the SP1 uses intrinsic and extrinsic calibration parame-
ters. The value of reprojection error is inversely proportional
to the accuracy of the disparity map. For our experiments here,
the value of the reprojection error was 0.06. The SP1 produces
a disparity map from the perspective of the left camera image.



(a) ROI in input left fundus image (b) ROI in disparity map

(c) Input image segmentation using SLIC (d) Input image segmentation using SNIC

(e) Disparity map segmentation using SLIC (f) Disparity map segmentation using SNIC

Fig. 6: Results after applying SLIC and SNIC algorithms.

A rainbow colormap is applied on the disparity map for better
visualization. As we go from blue color to pink color, the
disparity value increases gradually. See Fig. 4 for an example
of an output disparity map for one SODI.

The original left image or the produced disparity map are
now considered as inputs for the SLIC and SNIC algorithms.
As the abnormalities are present on or near the OD, we crop
the input left camera image and the output disparity map into
a region of interest (ROI) around the OD.

The OD shown in Fig. 6a has advanced glaucoma as the
inner line is close to the outer line indicating a loss of tissue
between both lines; the tissue between the two lines is called
the neuroretinal rim.

Figure 6b is a cropped disparity image. The size of the
cropped images is uniformly 585 × 585 pixels. The SLIC
and SNIC methods segment the images and produce boundary
masks. Both algorithms are applied for the same number k (we
decided for k = 200) of superpixels for comparison purposes.



The value of compactness in the SNIC algorithm is set to 40.
If the number of superpixels increases (above 200), there are
high chances that the clustering may lead to the production of
regions having black holes or dots (showing non-simple region
topologies).

The computed SLIC and SNIC boundary masks of the
input fundus image and also of the disparity map are then
overlaid on the original (cropped) input left image for a better
comparative visualization.

As a result, four output images are generated for each SODI.
Figures 6c and 6d show the segmented input fundus image us-
ing SLIC and SNIC algorithms, respectively. Resulting images,
after overlaying the boundary masks of segmented disparity
maps onto original input images, are shown in Figs. 6e and 6f.
Figure 6e illustrates the result of applying the SLIC algorithm,
and Fig. 6f is the result of applying SNIC algorithm.

On the processed SODIs, SLIC and SNIC algorithms
grouped abnormalities on the OD into one or more superpixels
without generating superpixels containing both (at significant
percentage) pixels of abnormal tissue and of normal tissue.

As a result, finding abnormalities in these clustered images
is easier compared to the fine structure of the pixel grid. The
four types of segmented output images are suggested for being
analyzed by the specialist. A subsequent large-scale study
needs to evaluate the efficiency of the proposed procedure for
detecting abnormalities (and, eventually, glaucoma).

V. CONCLUSIONS

An image segmentation method is proposed for SODIs
combining two superpixel algorithms (SNIC and SLIC) and
disparity map calculation, resulting into four kinds of segmen-
tations of optic discs. The goal is to support the early detection
of (small) abnormalities.

According to the ophthalmologist, results as shown in
Figs. 6c and 6d appear to be promising due to the following
factors:

1) ability to identify the margin of the optic disc,
2) some outlining of blood vessels, and
3) outlining of the optic cup (the center depression of the

optic disc).

Results of the SLIC disparity mask also appear appropriate
and the presented evaluations on fundus images show encour-
aging results. From our experiments we can conclude that
disparity values for abnormalities are higher than the disparity
values for normal parts (Fig. 4c). This change in disparity
values can also be further studied towards abnormality seg-
mentation.

In future work, we focus on the development of a system
to eliminate the healthy segments of a disparity map image to
achieve improved abnormality detection.
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