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Abstract—We investigate the potential and accuracy of snap-
shot hyperspectral imaging for authentication and classification
of red-meat species. Snapshot hyperspectral images are acquired
of lamb, beef, and pork samples. We consider 13 muscles types of
standard loin and leg chops. We propose a deep 3D convolution
neural network (CNN) architecture for extracting and classifying
spectral-spatial learned features of red-meat. We present a
comparison with state-of-the-art models including partial least-
square discriminant analysis and support vector machines. Our
results show that the proposed 3D-CNN model outperforms the
state-of-the-art models with 95.81% and 96.01% for overall
accuracy and average F1 score, respectively. Visualization results
show that the proposed 3D-CNN model is able to convert snapshot
hyperspectral image data into an intelligent representation with
accurate separation between red-meat types. This study opens
the door for more research towards real-time and completely
portable hyperspectral imaging systems due to the ability of
snapshot hyperspectral cameras to work at video rate.

Index Terms—snapshot hyperspectral imaging, red meat
classification, spectral-spatial features, meat processing, adulter-
ation detection, deep learning, 3D-CNN.

I. INTRODUCTION

Meat processing, regarding quality and safety, is gaining
more attention in the meat industry and research. Customers
pay more attention to the authenticity and safety of meat as
they expect a high-quality product compared with the paid
price. Meat authenticity is considered to be one of the safety
attributes of meat, where accurate labelling of meat products is
important from a customer point-of-view due to fair-trading or
religious reasons. Detection of meat fraud (e.g. of mislabeled
products) is a challenging task in meat processing plants. Prac-
tically, red-meat identification processes are usually performed
manually (laboratory-based) in the industry, which is time-
consuming, and subjected by human errors.

The spectroscopy technology [1] is considered as a rapid
and non-destructive way to asses and recognize the type of
materials by analyzing their spectral properties. Spectroscopy
received attention in many application areas like raw material
analysis [2], product quality control, and processes monitor-
ing [3]. However, spectroscopy technology does not provide
a spatial distribution of the evaluated attributes on the sample
surface, where it still requires manual measurements of small
parts of the sample, followed by computing the mean of a
target measure for the whole sample. In many practical cases,
the spatial distribution of quality parameters is also needed for
visualization and monitoring purposes.

Recently, hyperspectral imaging (HSI) systems are in-
troduced to overcome limitations in spectroscopy technol-
ogy (i.e., better availability of spatial distribution, processing
speed, and accuracy). Moreover, HSI systems are able to
merge existing computer-vision technology, by RGB imaging,
with chemometrics analysis for many tasks such as food safety,
quality grading, or classification. Thus, HSI systems provide
robust, rapid, and non-destructive solutions in many research
areas, for example in agricultural and remote sensing [4],
medical imaging [5], and food processing [6]. In fact, the
mentioned robustness is possible by providing unique spectral
signatures for each material shown in the image, and also
by providing spatial attributes of these materials; attributes
like graded quality distribution, the shape of objects, texture
properties, or the ability of object localization.

HSI systems are a valuable tool for visualizing the
chemical components of materials by means of an image,
providing detailed information about their types and shapes.
An HSI image H : Dx × Dy × Dλ −→ R defines a 3-
dimensional (3D) hypercube, where [Dx,Dy] represents the
space of spatial coordinates [x, y] of an object in the image
(describing location and shape of objects), and Dλ is the
space of reflectance intensity vectors across a specific range of
wavelengths (λ provides a chemical composition of an object
inside the image). Figure 1 shows a schematic representation
of a hypercube. The hypercube is a stack of grey-scale images
at specific wavelengths, each grey-scale image is called a band
and defined as Bλ : Dx ×Dy −→ R

The rest of this paper is structured as follows. Section II
reviews state-of-the-art techniques in HSI classification and
analysis. Section III shows the used HSI system and the

Fig. 1. Schematic representation of a hypercube; red points in this hypercube
show one pixel location; its spectral signature is shown on the right



collected dataset. The proposed methodology and models
are briefly described in Section IV. Section V provides the
experimental setup and the achieved results for the proposed
models. An analysis and discussion about the results is given
in Section VI. Section VII concludes.

II. RELATED WORK

The standard way of collecting the spectral information in
HSI systems is by line scanning. In line scanning, the sample
moves (on a conveyor belt) and, at the same time, the camera
detector detects the reflected light of a particular row (or line)
on the sample surface. This way, the whole sample is scanned
and then reconstructed in the collected data as one HSI image.

Recently, new hyperspectral sensors [16], called snap-
shot hyperspectral cameras, are introduced as a solution for
limitations (i.e., the speed of hyper-cube acquisition) in line-
scanning HSI cameras. A snapshot HSI system is able to
collect the images at video rate, which make these sensors
more applicable for real-time applications. In the camera’s
array detector, each pixel is represented as a small sub-array
(e.g. 4 × 4 or 5 × 5) called micro-pixel [16]. Each cell in
the micro-pixel detects the reflectance intensity at a particular
wavelength [16]. The resulting image is a high-resolution im-
age containing the spectral pattern (i.e., the micro-pixels), then
the image is converted into three dimensions (the hypercube).

Snapshot HSI systems are successfully used in applica-
tions like terrain classification for autonomous driving sys-
tems [17], [18], vegetation classification using UAVs [19], or
for object recognition [20]. Line-scanning HSI systems are
used in many (especially indoor) applications areas such as
meat [7]–[11], fruit and vegetable [12], [13], or fish pro-
cessing [14], [15]. The main advantage of the line-scanning
method is that it provides deep spectral features (typically cov-
ering hundreds of bands with a very fine spectral resolution).
However, image acquisition is very slow here, and a large size
of the hypercube is computationally expensive.

In [8], a line-scanning HSI system was used to classify
the type of lamb muscle into semitendinosus (ST), longissimus
dorsi (LD), or psoas major (PM). A combination between
principal component analysis (PCA) and linear discrimination
analysis (LDA) was used to fit the data and to classify the type
of muscle. In [7], the ability of the HSI system for classifying
the types of red-meat was investigated by using a set of
LD muscle samples of lamb, beef, and pork. The extracted
spectral features were pre-processed by second derivatives
for obtaining the optimal wavelengths. Partial least-squares
discriminant analysis (PLS-DA) was used for classification.
Sample-wise results showed that the model performs well on
the test set. However, the model produces a lot of misclassified
pixel. So, the authors proposed a majority-voting technique to
obtain the final classification decision.

Red-meat adulteration was investigated in [9] using HSI.
Collected images have challenging conditions (packing, fresh,
frozen, and thawed) of meat samples of lamb, beef, or pork.
In [9], the main task is to classify one type of meat against

the others under the considered conditions. Support vector ma-
chine (SVM) results showed that a use of only spectral features
was insufficient for solving this problem. A new set of texture
features was proposed by combining the superpixel technique
with Haralick features of the grey-level co-occurrence matrix
(GLCM) [9], [25], concatenated with spectral features.

Recently, deep learning approaches for supervised learn-
ing are considered the state-of-the-art in many computer
vision applications. Deep convolutional neural network (CNN)
models show robustness as novel feature extractor for raw
input data. CNN models are applied on HSI images for object
recognition [20], remote sensing [22]–[24], plant-disease
detection [21], and meat processing [10]. Moreover, CNNs
show flexibility to deal with HSI data by introducing the 1D-
CNN in [10], [22] (designed for processing spectral inputs),
2D-CNN for single wavelength images or PCA-component
images [23], and 3D-CNN for an intelligent combination of
spectral and spatial image data [10], [23], [24].

In [10], comprehensive comparisons were provided be-
tween a deep learning approach and hand-crafted features (i.e.,
manually extracted spectral and spatial features as in [9]). In
[10], a combination of 1D-CNN and 3D-CNN was proposed
for extracting learned features for spectral and spatial domains.

For the same problem as in [9], results showed that
the CNN model significantly outperformed the SVM model
with hand-crafted features. This study aims at investigating
the robustness of the new snapshot hyperspectral imaging
sensors for solving the red-meat classification problem. Thus,
the main objectives of this paper are as follows: Developing
a methodology for data acquisition and sampling of each
image into a number of representative samples for modelling,
developing a deep-learning model for classifying snapshot HSI
image data, and for visualizing the robustness of a CNN model
against state-of-the-art models.

III. DATASET AND HSI SYSTEM

The HSI camera, as used here, was introduced by Ximea
using on-chip snapshot mosaic filters [16]. The camera’s array
detector consists of a grid of micro-cells of 216 × 409, for
height and width, respectively. Each cell in the grid is a square
of a 5× 5 sub-grid (micro-pixel) of 25 spectral pattern filters
in the range of 672.74 ∼ 957.49 nm. Thus, the dimensions
of the resulting HSI images are 216 × 409 × 25. The HSI
system consists of a snapshot HSI camera (Ximea MQ022HG-
IM-SM5X5-NIR), an illumination unit of two halogen lambs
(150 W), a controlled movable conveyor belt, and a computer
running an image acquisition software (HSImager). The speed
of the conveyor belt and the distance between the camera
and the conveyor belt were set to be 5.5 cm/s and 35.5 cm,
respectively. These values were empirically adjusted and then
synchronized with the camera to capture HSI images with a
spatial resolution of 0.27× 0.27 mm/pixel.

The resulting HSI images (raw spectral irradiance data,
with the mentioned HSI system) need to be preprocessed
for obtaining reflectance intensities and for a correction of



the illumination distribution. The reflectance and illumination
correction is computed as follows:

R(x, y) =
Ro(x, y)−D(x, y)

W (x, y)−D(x, y)
×N (1)

N =
mean (Ro)

mean

(
Ro(x, y)−D(x, y)

W (x, y)−D(x, y)

) (2)

where R is a corrected HSI image in reflectance, Ro is the
raw snapshot HSI image, and D and W are the dark and white
reference images, respectively. The N factor is a normalization
constant that is used to recover the original intensities of
the camera. The images are normalized to obtain reflectance
values in the range of 0 ∼ 1.0 as follows:

Rλ(x, y) =
Rλ(x, y)

max(Dλ)
(3)

A collection of red-meat samples were procured from
two local supermarkets. The total number of samples is 140,
including lamb (50), beef (55), and pork (35). All of the
samples were chosen from the loin and leg chops, which
include 13 muscle types based on the meat standards. In [27],
more descriptions were provided about muscles types and
structures in both loin and leg chops. A set of 105 samples
was used for training and processing, and the remainders
were used for only testing and evaluation. All samples were
scanned by the developed HSI system; each sample was put
on a movable conveyor belt while the snapshot HSI camera
collected a sequence of images of the sample.

Figure 2 shows an example of these sequences of two
lamb samples. The key idea of using the sequences is for
obtaining representative images under different illumination
conditions (i.e. the same meat portion with different angles
to the camera and the light source); in addition, all sample
portions are covered in these sequences. The average number
of HSI images per sample was 6; the total number of images
in the collected data set is 600 which defines a reasonable
dataset for deep-learning-based models.

The main task in this work is developing a pixel-based
classification model of red-meat products. Thus, considering
the mean spectrum of each meat type, for building a model,
such as in [7], [8],it is not efficient for the following reasons:

Fig. 2. Example of snapshot HSI images (false-color images), acquired
for representing two lamb loin-chop samples. The sequence in the figure
represents the time of acquisition during the motion of a conveyor belt

Fig. 3. Methodology for re-sampling an HSI image into a set of representative
points. (a) An HSI image of two lamb samples (an extracted false-color image
of an input hypercube). (b) GT image manually generated by using a multi-
polygon tool. (c) Superpixel segments of the input image. (d) Selected points
from each class; colors Green and Yellow denote meat and fat, respectively

(1) Considered muscles are 13; averaging them we lose the
spectral patterns. (2) Averaging the spectral response of meat
of the whole sample does not represent the variation of
light and meat within the sample. (3) Inefficient for complex
learning models like deep learning due to a limitation in the
number of samples.

In this paper, we develop a methodology for re-sampling
HSI image data into a set of representative points (i.e., regions
from each muscle shown in the image). These points are then
used to extract the spectral features or patches of an s× s× s
3D window around each point. As superpixel algorithm we
use the SLIC method [26] for segmenting HSI images into
a set of labelled segments; one segment (i.e., one superpixel)
consists of a group of pixels that share the same spatial and
spectral properties. In addition, the images were manually
labelled (i.e. for having ground-truth images) into meat and fat
classes. Then, the segmentation map and ground truth (GT)
are matched for generating a ground truth of the super-pixel
map. For each super-pixel, the centroid was computed; then
its coordinates were used for deciding whether it is meat, fat,
or background. Figure 3 sketches the proposed methodology.

The proposed re-sampling methodology was used to
extract 86, 535 representative points from the whole training
dataset, for all classes; the considered classes are LAMB,
BEEF, PORK, and FAT. Table I shows the number of selected
points for each class.

IV. DEEP 3D-CNN MODEL

Snapshot HSI cameras are designed as on-chip micro-
multi-spectral detectors. They usually cover a limited number
of wavelengths; for example, the camera that was used here
covers only 25 wavelengths. This limitation in spectral features
inspired us to investigate complex models for dealing with the

TABLE I
THE NUMBER OF SELECTED POINTS FROM TRAINING IMAGES

Class Number of selected points
LAMB 23,324
BEEF 30,681
PORK 19,839
FAT 12,691



challenges in spectral information. In this paper, we propose a
deeper 3D-CNN model for the extraction of useful features of
snapshot HSI images. We evaluate these features on a red-meat
classification problem. Moreover, we evaluate and compare the
proposed CNN model with a state-of-the-art model of red-
meat classification problem as provided in [7], and with an
SVM [28] implementation, as the SVM is a common reference
for machine-learning models.

The proposed 3D-CNN model consists of a hierarchical
structure of 9 layers as follows: An input layer as a 3D
window of size S × S × λ (here, λ is fixed by the camera
specs, with λ = 25), a set of four 3D convolution layers with
different kernel representations (structured as two contiguous
convolution blocks), and two 3D max-pooling layers for down-
sampling the feature maps of each convolution block. The
extracted CNN features were then connected with a fully
connected dense layer as feature extractor for red-meat types.
Finally, we added an output layer as a fully-connected softmax
layer for having the probability of being one of the meat types.

3D convolution operations are able to handle and extract
learned features among spectral and spatial domains. Multiple
3D-CNN layers extract robust and complex features in a
hierarchical way; each layer extracts features from the previous
layer. The output of the i − th CNN layer is computed as
follows:

xi = Fi(ui−1) (4)

where ui−1 = wTi−1xi−1 + bi−1 and wTi−1 and bi−1 are the
weight matrix and the bias vector of the previous layer. Fi(·)
is a non-linear transform applied to the output of each of the
3D-CNN layers.

In the training process, forward-propagation and back-
propagation processes were used to compute and update the
weights of the CNN and of the fully-connected layers. In
the back-propagation process, the weights of the model were
adjusted using a stochastic gradient descent approach. In these
processes, the main task is to minimize a loss function between
the actual output and the model output (i.e., a prediction in
feedforward processes). In this work, we used the adaptive
moment estimation (Adam) optimizer [29] for optimizing the
following loss function (categorical cross entropy):

L(θ) = − 1

n

n∑
i=1

k∑
j=1

{j = Y (i)} log(y(i)j ) (5)

where n is the number of samples (batch size), k is the number
of classes, Y is the ground-truth vector (encoded as one-hot
vector style), y is the model prediction vector, and θ represents
the model parameters (i.e., weights and biases).

V. EXPERIMENTS

The dataset and HSI system, described in Section III,
were used for evaluating the proposed deep 3D-CNN model.
The training patches (i.e., a window around selected points;
see Table I) were extracted using the proposed method as
described in Section III. The parameters of SLIC [26], the

number of segments and the compactness factor, were empir-
ically chosen to be 300 and 0.4, respectively.

For comparison, we implemented PLS-DA [7] and SVM
with radial basis function (RBF) kernels [28]. For both
models, a window of size 5 × 5 × 25 around each point
was extracted; then we compute the mean spectrum of each
window as a spectral feature vector of size 25× 1. Extracted
spectral feature vectors were used as input for the models.
In PLS-DA, the spectral features were pre-processed by a
2nd-derivative method [7]. For hyper-parameter tuning, a 10-
fold cross-validation approach was used for selecting optimal
parameters for the PLS-DA and SVM models.

In the proposed 3D-CNN model, architecture and pa-
rameters were chosen empirically and based on numerous
experiments for achieving a high accuracy and a light-weight
model. Overfitting is one of the challenges in deep learning.
To avoid overfitting in our model, we used the dropout
technique [30] by adding three dropout layers after the pooling
and fully-connected layers. Moreover, we sought to reduce
the whole model size by tuning a small number of kernels,
which is good for generalization [24], [30]. Table II shows all
details of the proposed architecture; in pooling layers, we used
a stride of (2, 2, 2) for down-sampling the spatial and spectral
domains. In the training phase, we used Adam optimizer [29]
with a learning rate of 0.0001 and patch size of 256. The
model was trained for 2, 000 epochs until its convergence.
The model converged well and showed a stable convergence
in both training and validation, as shown in Fig. 4, left.

The spatial size is an important parameter in the proposed
model. We evaluated different spatial windows as input of the
3D-CNN model. Results, as shown in Fig. 4, right, show a
trade-off in model performance. Thus, the optimal value of
spatial size was chosen as a 3D window of size 9× 9× 25.

For evaluating the proposed model and comparing with
the PLS-DA and SVM-RBF models, we used the standard
F1 measure, overall accuracy, and average accuracy. As F1

provides a harmonic mean of both recall and precision, we
used it for evaluating the accuracy of classes.

As described in Section III, the testing set of samples was
used for evaluation. Based on GT images, regions of each class

TABLE II
ARCHITECTURE AND SPECS OF THE PROPOSED 3D-CNN MODEL

Layer
Kernel

size
Feature
maps

Output
size

Activation
function

Dropout

Input – – 9 x 9 x 25 – –
3D Conv 1 5 x 5 x 5 4 4 x 9 x 9 x 25 ReLU –
3D Conv 2 5 x 5 x 5 4 4 x 9 x 9 x 25 ReLU –
3D MaxPooling 1 – 4 4 x 5 x 5 x 13 – 0.25
3D Conv 3 3 x 3 x 3 8 8 x 5 x 5 x 13 ReLU –
3D Conv 4 3 x 3 x 3 8 8 x 5 x 5 x 13 ReLU –
3D MaxPooling 1 – 8 8 x 3 x 3 x 7 – 0.25
Flatten – – 504 – –
Fully Connected – – 128 ReLU 0.25
Output – – 4 Softmax –

The total number of trainable parameters is 70,272



Fig. 4. Left: Learning curve of the proposed 3D-CNN model. Right: Impact
of spatial size on the accuracy of the proposed 3D-CNN.

were extracted as patches around each pixel; the patches are
9 × 9 × 25 for the 3D-CNN model, and 5 × 5 × 25 for both
PLS-DA and SVM models. Then, we passed the patches to the
models for evaluating purposes. Table III shows the evaluating
measures for the investigated models.

VI. RESULTS AND DISCUSSION

A key benefit of HSI images is that they provide a spectral
signature for each material inside the image. For visualizing
the signatures of the meat types, we extracted a set of batches
(for a set of 2,000 pixels from each class) of size 9× 9× 25
from the testing set. Then we compute the mean spectrum
of each patch. After that, the mean of all spectra of each
class was computed which ends with four 1× 25 vectors, one
signature for each class. As shown in Fig. 5, left, signatures
are highly correlated and have high similarity in shape which
shows the challenge in spectral features provided by snapshot
HSI sensors. For quantifying this observation, we computed
the Pearson correlation coefficient, as shown in Fig. 5, right,
where high positive values mean that the linearity between
class pairs is high. This observation shows that the only use of
spectral features of HSI snapshots is insufficient for achieving
high accuracy in material-based classification problems. This
result is clearly documented by our experiments; considering
both spatial and spectral features by our 3D-CNN outperforms
the models using only spectral features, as shown in Table III.

The evaluation results in Table III clearly show that the
proposed 3D-CNN model achieved the highest efficiency in
terms of per-class F1 score, average F1 score of all classes, and
overall accuracy. Our 3D-CNN model achieves 95.8% overall
accuracy compared with 90.1% and 84.2% for SVM and PLS-
DA, respectively. The achieved high F1 value represents the

TABLE III
PERFORMANCE EVALUATION OF THE PROPOSED 3D-CNN MODEL, IN

COMPARISON WITH PLS-DA AND SVM-RBF FOR RED-MEAT
CLASSIFICATION

Model
F1 score

Mean F1 score
Overall

accuracy

Average

accuracyLAMB BEEF PORK FAT

PLS-DA 80.5 88.1 87.1 76.5 83.1 84.2 81.2

SVM-RBF 86.1 93.9 89.6 91.8 90.3 90.1 90.9

3D-CNN 93.6 98.3 94.6 97.7 96.1 95.8 96.1

Fig. 5. Left: Extracted spectral signatures of red-meat types and their fat.
Right: Correlation-coefficient matrix showing the similarity (or the depen-
dence) between signatures pairs; see color index on the right for Pearson
correlation coefficients

robustness of our model for a very good discrimination be-
tween meat types. Visual results in Fig. 6 show the robustness
of the proposed 3D-CNN model in terms of classifying all
sample portion correctly and maintaining the edges between
meat and fat.

Due to the portability of HSI snapshot cameras (i.e.,
being a completely portable device), we evaluated the time
for image-classification (i.e., for classifying a single image of
216× 409) for the investigated models. Results show another
efficiency of the 3D-CNN model, where the 3D-CNN model
was 4.7 times faster than SVM, and 2.9 times faster than the
PLS-DA model; the classification times are 13, 38, 61 seconds
for 3D-CNN, PLS-DA, and SVM, respectively, running on the
same machine.

We also investigated the features that were learned by the
3D-CNN model. Randomly, we selected a set of patches from
the testing set. Then, we projected these patches into the model
and extracted the computed output of the fully-connected

Fig. 6. Classification maps of 3D-CNN, SVM, and PLS-DA provide a
visual comparison between the models; colours Green, Red, Blue, and Yellow
represent classes LAMB, BEEF, PORK, and FAT, respectively



Fig. 7. PCA scatter plots for visualizing the separation between classes. Left:
First two PCA components of the original spectral features. Right: First two
PCA components of the learned features extracted by 3D-CNN model.

layer, layer number 8 as shown in Table II. Extracted feature
vectors (of size 128) were then fitted on a PCA model for
reducing the dimensions. For the same patches, we extracted
the mean spectra and applied another PCA model. For visual
comparison, we plotted the first two components of both PCA
models, as shown in Fig. 7. Clearly, Fig. 7, left, shows that the
3D-CNN model is able to convert raw spectral-spatial data into
a useful representation with a very good separation between
the classes in the PCA space, while in case of the original
spectral data, see Fig. 7, right, the class regions are highly
overlapping and look only like two clusters.

VII. CONCLUSION

Red-meat identification and authentication are important
tasks in the meat industry. In this study, we investigated
the potential and robustness of snapshot HSI systems, which
provide limited spectral information for red-meat identification
and authentication. Also, we investigated the robustness of
deep learning models (a 3D-CNN architecture) for classifying
the type of meat. The quantitative and visual analysis clearly
shows that the proposed deep 3D-CNN model outperforms
PLS and SVM models by achieving 96.1% and 95.8% for
average F1 and overall accuracy, respectively. In addition,
results showed that the 3D-CNN model is much faster than
the other two models which supports the use of a completely
portable implementation.
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