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Abstract—Machine Learning solves more image processing
problems every year, yet it is still reliant on painstaking
manual ground truth labelling. Segmentation labels require
higher accuracy and more clicks than bounding boxes or
classification labels. To accelerate the labelling task, a More
Efficient Labelling Tool (MELT) has been developed which
incorporates features from existing tools and adds some
novel ones. The new features are automatic zoom to existing
bounding boxes and tracking of arbitrarily shaped objects.
Zooming to bounding boxes makes it easy to upgrade bound-
ing box labels to segmentation masks, or to label parts of an
object, such as lights on a vehicle. Tracking is available in
other tools for rectangular objects such as bounding boxes,
but many objects including vehicle lights are not rectangular.
The user is given the freedom to create labels with a brush,
polygon or superpixel, with customisable label names and
colours.

Using MELT, a dataset of over 800 images has been
prepared with image segmentation labels for vehicle head
lights and tail lights. Labels are provided for download
as mask files. As there is currently no comparable dataset
available, it is hoped that this will become a benchmark for
researchers working on detecting and tracking vehicle lights.

Index Terms—image labelling, annotations, segmentation,
vehicle lights, image dataset

1. Introduction

Machine Learning (ML) has revolutionised the field
of image and vision computing. The most expensive and
time consuming phase of any ML project is labelling the
Ground Truth (GT) in a large dataset of images. The
labelling task becomes sequentially more difficult when
moving from classification, to detection, to segmentation.
Segmentation is most difficult, but also most powerful,
allowing ML to address a wider range of tasks, and more
closely imitate natural vision. Even an established expert
in the object detection field notes that “I’m probably a true
believer in masks” [1], since segmentation masks more
closely describe reality than a bounding box (bbox). Large
projects such as Cityscapes are today working at the level
of semantic segmentation, see for example [2].

Using the right software when labelling images has
enormous potential to save time, effort and money. Despite
this potential, many of the available software tools lack ei-
ther a user-friendly interface or adequate features to enable

the user to label GT for image segmentation quickly and
accurately. This paper presents a More Efficient Labelling
Tool (MELT) which aims to make it as easy as possible
for a user to create image segmentation GT labels. It
is compared to other tools, and shown to provide more
features than any of the available options, along with a
comfortable user interface.

MELT has been developed as part of a project to
automatically detect brake lights and head lights on ve-
hicles [3]. MELT’s features will be demonstrated on this
dataset, and the dataset will be made available for other re-
searchers who may be working on automatic detection of
vehicle lights. To our knowledge, there is no other publicly
available dataset of images where vehicle lights GT has
been labelled. Some researchers may want to detect brake
lights to anticipate deceleration of the vehicle in front.
Others may want to track headlights for adaptive shaping
of high-beams. Our own project is looking at using the
lights for a form of wireless communication network using
visible light and cameras [4]. Since transmitters (LEDs)
and receivers (cameras) are already installed in many new
vehicles, this could be a low-cost complement to conven-
tional radio frequency (RF) wireless communication.

In the remainder of this paper, Section 2 gives an
overview of existing tools for segmentation GT labelling,
Section 3 describes features of the new tool, and Section 4
describes the dataset which has been labelled using MELT.

2. Review of Existing Tools

An extremely large number of tools already exist for
labelling images. This section will describe the features
and limitations of a selection of those that can be used
for image segmentation. All tools which can be used to
segment an image can trivially be adapted to label bboxes
for object detection.

LabelMe [5] is probably the most well known online
tool. It has a large user base, and is maintained to a
high standard. Since it is accessed online, it is inherently
independent of a user’s operating system, and doesn’t re-
quire any software to be installed. Because images stored
in LabelMe’s database are publicly accessible, it may be
possible to outsource the labelling work. Some users will
provide labels ‘for fun’, others can be incentivised by
payment. For example, Mechanical Turk [6] allows re-
searchers to reward contributors with a moderate fee, and
provides an interface to tools such as LabelMe. In general,
the results of outsourced labelling should be checked to
confirm that the masks are positioned to an adequate



precision, and given accurate and consistent labels. Some
masks are very precise, and some are rough polygons with
less than 10 vertices for a vehicle. A quick browse of
LabelMe shows a wide variety of labels which may or
may not be synonymous for a given purpose, e.g. car,
Car, car side, car crop, car occluded, van. Occasionally,
labels are incorrect, such as bmw car for a vehicle which
is actually a Mercedes. The preprocessing which would
be necessary to confirm the accuracy and consistency of
LabelMe data is nearly as manually intensive as labelling.

LabelMe has the basic capability to zoom and scroll
to closely examine different parts of the image. If other
labels are obstructing the view, there is an option to hide
or reveal all existing object labels. Objects can be labelled
for segmentation with polygons, or by nominating certain
pixels as foreground and others as background. An in-built
algorithm then infers the boundary of the object. The in-
built algorithm is usually more accurate than polygons,
but it may take several iterations before the definitions of
foreground and background give the desired result.

Drawbacks of the LabelMe interface include the lack
of customisation for label colours and the lack of standard-
isation for labels as already mentioned. For this author’s
personal preference, the broad lines (approximately 10
pixels) are too bulky, and tend to discourage precise
labelling. It is difficult to edit existing object labels, as new
vertices can not be added to an existing polygon. Labels
created by another user cannot be edited at all. The online
nature of LabelMe means that even with a fast internet
connection, there is still some noticeable delay. Perhaps
the most important motivation for not using LabelMe was
the complex format in which the labels are stored. Labels
are stored in folders called Masks, Scribbles, and
Annotations. The first two contain one PNG file for
each object, i.e. dozens of files per image. Annotations
are verbose XML files.

Labelling apps distributed with Matlab are another
popular option. Matlab runs on all common operating
systems, but is proprietary. License costs may be pro-
hibitive. The Image Labeler App has many of the same
basic features as LabelMe e.g. zoom, pan, define custom
labels. Zooming is better, as the user has the choice
of the scroll wheel, single click, or selecting an area
to zoom into. The App allows objects to be labelled
as polygons, smart polygons, with a brush or with a
flood tool. When editing object labels, any combination
of tools can be used together. The “smart polygon” was
relatively disappointing in this author’s testing, until the
user takes advantage of the “smart polygon editor”. The
initial smart polygon is usually not a good match to
the object boundary, however this can be corrected by
nominating pixels as foreground and background, iterating
as for LabelMe. Another promising feature is the interface
for automated object detection, which can use conven-
tional image processing algorithms or algorithms trained
by ML. Unfortunately, the performance of the provided
example was disappointing - the person detector failed
to detect a person which was the sole ‘object’ in test
images. Even by tuning the settings, it was not possible to
have the correct detections outnumber the false positives.
Creating a custom automation routine is complex. Despite
the difficulties, current trends suggest that this feature will
be widely used in the future, especially ML algorithms

which suggest GT image labels, so that the user effort is
reduced to accepting, rejecting or making minor edits.

The Automated Driving Toolbox provides the Ground
Truth Labeler App, which has the additional feature of
tracking bboxes in video. The algorithm uses feature
detection, Kanade-Lucas-Tomasi (KLT) tracking and a
matrix transformation to find the location of the object’s
bbox in successive frames. Custom tracking algorithms
are allowed, although the procedure to create them is
again relatively complex. Tracking is only available for
bounding boxes, not labels created with the polygon, brush
or flood tools.

RectLabel [7] is a proprietary annotation program for
mac only. It has a slick interface, allowing labelling with
bboxes, polygons and cubic beziers. The annotation dialog
is advanced, providing automated classification sugges-
tions and allowing many attributes of an object to be
labelled e.g. colour, brand, view angle. Objects can be
searched and quickly zoomed in on. RectLabel supports
shortcut keys which speed up the labelling process.

Some other notable tools include one developed by
Vicomtech [8] which allows labelling by superpixels [9].
Superpixels partition the image into groups of neigh-
bouring pixels with similar colour, providing quick and
easy separation of many objects in a scene. Subject to
certain conditions, superpixel boundaries are generally at
the pixels with strong colour gradients, which usually
gives a more accurate label than a human can achieve by
setting polygon vertices. Superpixels are comparable to
“smart polygon” approaches, with the distinct advantage
that they require many fewer clicks. Superpixels and smart
polygons struggle with objects that have low contrast
compared to their surrounding pixels. For example, tail
lights on red vehicles or head lights on white vehicles
are usually not well identified. Conversely, superpixels
and smart polygons may give misleading results if there
are artefacts from ambient light or shadow in an image.
For example, where an object (such as a tail light) is
curved rather than planar, part of the object may be in
direct sunlight while the rest is in shadow. Superpixel and
smart polygon algorithms will predict a boundary where
the lighting gradient is strongest, rather than at the true
edge of the object. PolyRNN [10] uses a different “smart
polygon” approach. Instead of nominating foreground and
background pixels, the user can directly manipulate the
boundary produced by the algorithm. The effect of each
user input is easier to predict, which reduces the number of
iterations necessary to accurately define the object outline.
VIA [11] provides tracking of a face’s bbox using Faster
RCNN [12].

3. A More Efficient Labelling Tool (MELT)

The following section describes a tool which incor-
porates many of the features described above, and a few
novel features. The tool has been developed using the Mat-
lab App Designer interface. It can be packaged with the
Matlab Compiler Runtime (MCR) for execution without
a Matlab license on any Operating System. Consider first
the graphical interface, shown in Fig. 1. In the top left
are buttons to “zoom” and “pan” to the region of interest
within the figure. Zoom functionality provided by Matlab
allows the use of the scroll wheel, single click or selecting



a region of interest. The “select” button deactivates the
zoom and pan functionality. Tick boxes allow the label
mask and/or the image to be hidden. It can be useful
to hide the mask since overlaying the label’s colour can
obscure details of the image. Likewise it can be difficult
to be sure that a yellow label on a yellow background is
positioned correctly, so temporarily hiding the image can
help in that case.

Going down the right-hand panel, the folder button
allows the user to choose a folder to load images from.
The drop-down list offers different methods of labelling
the image. Each method will be explained in detail in
Section 3.1. In order to edit existing labels or correct
mistakes, selected pixels are reset to background when
the “Erase” button is activated. The next two fields set
parameters for the labelling methods. In the example
shown, “Brush size” is the only relevant option, and “SP
Compactness” is greyed out.

The list of labels shows their customisable names and
colours. Reddish colours have been chosen to represent
tail lights and yellowish colours for head lights. The list is
scrollable in case it is long or the window is small. Buttons
below the list allow for adding a new label (+), editing,
or removing (-) the selected label. Sets of labels can be
saved as a .mat file and loaded later, or by a collaborator.

When the user is satisfied with their labelling of an
image, they can press the large “>’‘ or “<” button to move
to the next or previous image, respectively. The mask will
be saved to the file shown in the bottom right corner of the
window, in the same folder as the image. The user may
also move to the next or previous image without saving
the mask. All annotations will be lost, which is an easy
way of starting over if necessary. For navigating large
folders, fast-forward (>>) and rewind (<<) buttons skip
10% of the files in the folder with one click. There are
also buttons to skip to the first ( |< ) or last (> | ) image
in the folder.

The last two checkboxes labelled “Track Objects and
“Bboxes only” activate advanced features which will be
described in Sections 3.2 and 3.3. The remainder of the
window is taken up by the image, with its filename shown
above it.

3.1. Labelling Methods

The simplest labelling method is the “brush”. Clicking
in the image will mask an n×n square of pixels with the
currently active label. The brush tool is most useful for
small masks, or small edits to larger masks, on the order
of a few pixels. The size of the square is set by the “Brush
Size” option. Figure 2 shows a label with a 5 × 5 brush
for the right head light, and an almost completed polygon
for the left head light.

The polygon tool allows more complex shapes to be
labelled with a small number of clicks. Left clicks add
vertices to the polygon, right clicks cancel the polygon
in progress. Figure 2 shows a completed polygon and
a polygon in progress. Clicking on the first point (ma-
genta) closes the polygon, and masks all pixels within the
polygon as the active label. Unlike other implementations,
the polygon vertices are not saved. This allows the mask
pixels to be edited by any of the labelling methods. For

example, the brush can be used to precisely add or erase
single pixels which the polygon may have missed.

Superpixels can be calculated quickly and plotted
over the image. If the superpixels do not initially align
well with the object boundaries, they can be adjusted
by three parameters. Firstly, the dropdown box allows a
choice between SNIC, SLIC and SLIC0 algorithm variants.
SNIC (Simple Non-Iterative Clustering) is a state-of-the
art superpixel algorithm [14], while SLIC (Simple Linear
Iterative Clustering) and SLIC0 have been included with
Matlab’s image processing toolbox for some time. SLIC0
allows the algorithm to iteratively refine the compactness,
while SLIC keeps this value constant. Compactness is the
ratio of superpixel area to perimeter length. Lower num-
bers allow more flexibility in matching the shape to the
pixel properties, while for larger numbers the superpixels
become more square. The number of superpixels should
be set roughly inverse to the size of the objects the user
wants to label. A high number will result in many small
superpixels, which means more clicking and can obscure
the image. Figure 3 shows an example of a bright red
tail light which can been labelled in just one click with
the superpixel tool, despite its relatively complex shape.
Other objects such as the hubcaps on the foreground
vehicle, and the right tail light and license plate on the
background vehicle have also been clearly segregated. The
second image in Fig. 3 shows how the license plate of
the foreground vehicle can be segregated by adjusting the
superpixel parameters. Increasing the compactness makes
the superpixel edges smoother, and decreasing the number
of superpixels increases their size. In this case, the left
tail light is only a few pixels wide and does not have
significant contrast to the background, so the user should
switch to brush or polygon to create that label.

The examples given not only demonstrate the features
of the various labelling methods, they also show why it
is important for a tool to provide the user with several
options. Superpixels are fastest and most accurate for
objects with high contrast that are neither too large nor too
small. If superpixels can not be used, then the brush is best
for small objects, and the polygon is best for large objects.
Given that each method has its respective advantages and
disadvantages, the user must be able to choose the most
appropriate one for the task at hand.

3.2. Autozoom to Bounding Boxes

High level image classification and object detection
are relatively mature. Several projects, including ours, are
looking to the next step of labelling parts of images for
example lights on vehicles, eyes in faces or clothes on
a person. It can be very helpful to automatically zoom
to the object of interest in order to label its parts more
accurately. The checkbox “Bboxes only” provides this
functionality. Compare Figs. 1 and 2 for an example of an
image which is automatically zoomed to the bounding box
of one vehicle. Bbox co-ordinates are read from a range
of popular formats: KITTI, Berkeley Drive, Cityscapes,
YOLO and SYSU. The script can be customised to only
consider objects from relevant classes (in this case vehi-
cles) and ignore the rest (such as buildings). It would be
possible in the future to run a fast object detection routine
like YOLO [1] to automatically generate bboxes even for



Figure 1. Graphical User Interface for the new tool. Red numbers indicate regions for 1) select, zoom, pan 2) show/hide the image and mask 3)
select image folder 4) selection of labelling method and parameters 5) define labels and their properties 6) output file name 7) navigation between
images 8) tracking objects and autozoom to bboxes. Image from the Wilddash dataset [13].

Figure 2. Examples of masks created with the brush and polygon tools.
The figure is automatically zoomed to show the bounding box of a single
vehicle. Image from the Wilddash dataset [13].

images where bbox labels have not been manually added.
The autozoom feature accelerated the labelling task by a
very significant amount.

3.3. Track Objects

In videos, objects’ positions generally do not change
significantly from one frame to the next. Small movements
can easily be tracked. Labelling tools can make use of this
insight to transfer manually created labels from one frame
to a whole sequence of frames. As noted earlier, several
tools allow bboxes to be tracked, but none were useful
when it came to tracking objects for segmentation masks.

In order to track arbitrarily shaped objects, the labelled
pixels in the mask are first grouped into “connected com-
ponents”. The convex hull of each connected component
gives the vertices of a polygon that defines the object’s
boundary. Features (e.g. minimum eigenvalue corners) are

Figure 3. Examples of how superpixels can be used to quickly label
regions with high contrast. In the first screenshot, the number of super-
pixels is set to 101, while the compactness is 5. In the second screenshot,
the numbers are 64 and 18, respectively. The figures are automatically
zoomed to show the bounding box of a single vehicle. Image from the
KITTI dataset [15].

identified within the object’s boundary. Since it can be
difficult to identify enough features within small objects,
and since vehicle lights tend to move with their immediate
background, objects with less than 100 pixels are enlarged



by a factor of 4. Then matching features are found in
the next image, using the KLT algorithm provided by
Matlab’s Point Tracker. Given the previous and updated
location of a list of features, the program calculates the
matrix operation which performs the required transfor-
mation, in a minimum squared error sense. Applying the
matrix operation to the vertices of the polygon gives an
updated polygon. The updated polygon can be converted
into pixels, and those pixels are masked with the same
label as before.

The routine tracks all labelled objects within an image,
and can be performed forwards or backwards. Tracking
dramatically reduces the time and effort required to anno-
tate objects in a video.

The main limitation of this method is that the true
motion is continuous, and discretising as pixels gives an
inevitable quantisation error. The error is only a single
pixel per frame, but over several frames, these errors
accumulate into a drift. The same effect applies to KLT
tracking of bounding boxes by other tools, however the
errors are far more visible for segmentation masks. The
effects are also more visible for smaller objects, where
single pixels can be a significant fraction of their size.
Another important limitation is that KLT tracking assumes
no occlusion, and no change of shape. Change of shape is
not a big problem for tracking vehicle parts, but occlusion
is unfortunately quite common. The final limitation is
that convex hulls assume convex shapes, so only filled
polygons can be tracked. Holes will be filled in. It may
be possible to compensate for these limitations by combin-
ing the estimated tracked position with minor corrections
based on superpixels.

The advantages and limitations of KLT tracking can
be observed in Fig 4. Without any manual interaction, the
labels are propagated over 3 successive images. In the first
image, most labels require no manual interaction at all. We
observe that the right tail light of the second vehicle is no
longer occluded, and its label should be added. The right
tail light of the first vehicle is now outside the field of
view, and is no longer tracked. The hole in the left tail
light of the second vehicle has been filled in as a convex
hull, and this label should be edited. In subsequent images,
the drift becomes visible, and errors in the position of all
labels should be corrected. KLT tracking can not replace
manual labelling, but at least some of the user’s work
has been started for them. It should be noted that this
video was recorded at 10 frames per second (fps). Using a
faster frame rate such as 30 fps would improve the tracking
accuracy.

In future, MELT could be improved by adding key-
board shortcuts. Anything that can be done with the key-
board increases productivity. As Matlab’s AppDesigner
matures, more features will be added such as hover text to
explain the function of each button. MELT is available (by
request to the corresponding author) for other researchers
to use.

4. Dataset of Vehicle Lights

The main motivation and application for the new
image labelling tool was to create a dataset of vehicle
lights. This dataset will now be made available for other

Figure 4. Labels for head and tail lights are manually created in the
first image, and then automatically tracked over a sequence of images.
Images from the KITTI dataset [15].

researchers. To our knowledge, it would be the first pub-
licly available dataset of its kind. Researchers may want
to use it to improve detection of brake lights in order
to predict the future velocity of a vehicle in front. Or
they may track head lights to detect oncoming vehicles at
night. The original motivation for compiling the dataset
is to detect and track pairs of vehicle lights for optical
camera communication [3]. For this reason, neither the
central brake light in cars nor the single head and tail lights
on motorbikes are labelled. The lights on some distant
vehicles have an extent of only a few pixels, which is
comparable to blurring from motion, imperfect focussing
or atmospheric distortion. These lights do not add useful
information, so they have mostly not been labelled. See,
for example, the vehicles beyond the intersection in Fig. 4.



TABLE 1. MASK FILES ARE GRAYSCALE PNG IMAGES, WHERE THE
PIXEL VALUES SHOULD BE INTERPRETED AS FOLLOWS:

pixel value label

0 background
1 head light Left
2 head light Right
3 brake light Left
4 brake light Right

The dataset includes the masks only, with links to the
original images. Images were sampled from several vehi-
cle image datasets from Asia, Europe and North America:
Berkeley Drive [16], Cityscapes [2], Foggy Driving [17],
KITTI [15], SYSU [18] and Wilddash [13]. Conditions
range from bright sunlight to fog, rain, twilight and night.
The mask files are grayscale PNG images, where the
pixel values correspond to the label index, as shown in
Table 1. In the future, it may be extended to more images,
and video labels may also be released. Another obvious
extension would be to label left and right indicator lights.
It is hoped that researchers who make use of this dataset
will use it as a benchmark, and publish their results to
compare with others.

The dataset can be accessed from cerv.aut.ac.nz/
vehicle-lights-dataset.

5. Conclusions

A More Efficient Labelling Tool (MELT) has been
developed for image segmentation GT labelling. To ad-
dress challenges posed by different objects in different
lighting conditions, this tool allows the user the freedom
to label their objects with a brush, polygon or superpixels.
Superpixels are fastest for moderately sized objects that
have high contrast to their surroundings. Polygons are
useful for large or low contrast objects, and the brush
is ideal for small details. To accelerate the manually
intensive labelling task, the tool can automatically zoom to
existing bbox labels, and track arbitrarily shaped objects
in sequential frames of a video. These features have been
packaged in a comfortable user interface.

The tool has been used to label vehicle head lights and
tail lights. The GT labels have been provided as mask files
in a publicly available dataset for other researchers to use.

Both the image labelling tool and the image dataset
will continue to be developed in the future. New features
could include a form of smart polygon, improved tracking
or ML-based mask suggestions. Keyboard shortcuts will
be another boost to productivity. External contributions to
the dataset, for instance labels for indicators, central brake
lights or other vehicle parts, would be welcomed.
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