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Visual Odometry B

* Subsequently solve a system’s
egomotion ONLY from two
consequently taken image frames

* Current position of the system is determined by
concatenating a series of previously solved poses
* known as dead reckoning in terms of navigation
* “dead” derived from deduced, or ded

* Related to simultaneously locating and mapping
(SLAM) and structure from motion (SFM)
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Two alternatives

* Indirect methods * Direct methods
(feature-based) (feature-free)
» Transform image pixels into a * Use pixel intensities directly

crafted feature space
* Matching happens

* Matching is performed before simultaneously during
egomotion estimation estimation
* Use sparse key points * Use dense, semi-dense, or

sparse pixels
* Faster and dominating VO/

SLAM for decades * Slow but becoming popular
due to advances in parallel

computing



Alignment problem

* Both alternatives treat pose estimation as an
alignment problem

* Rational: the observed data in the current frame
should be aligned well to the one transformed from
the previous frame using a good pose estimate

current

o &i Transformation by a \
good pose hypothesis .‘)

A

previous



Example for a test sequence on KITT]
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Generated trajectory by proposed method

Comparison with given ground truth defines drift per frame
For test sequences, see
www.cvlibs.net/datasets/kitti/eval_odometry.php



Well-known alignment models

* Rigid alignment RIGID
* Projective alighnment RPE
* Epipolar alignment EPI

* Photometric alignment PHOTO



Rigid alignment

* Known: 3D-to-3D point correspondences

* Given: Pose hypothesis

* Yield: Geodesic error in world (3D space) units
* Commonly used in 3D registration

2

Puan(%¥; RE) = [y~(Rx+t]]
pose hypothesis applying rigid
transformation

two corresponding 3D points



Projective alighment

* Known: 3D-to-2D point correspondence

* Given: Pose hypothesis

* Yield: Geodesic error in image plane

* Known as reprojection error (RPE) in SFM and VO

* Minimisation of RPE in a least-square form is
considered the “gold standard”

(pRPE(x,y; R,t) = Hy—7r(Rx+t)||2
1 i
2D point perspective

3D point projection



Epipolar alignment

* Known: 2D-to-2D point correspondence
* Given: Pose hypothesis
* Yield: Epipolar error in (normalised) image plane

* Commonly used in uncalibrated two-view
geometry

» Useful when lacking 3D information

O (%y; RE) = [y[t] Ry]
two corresponding 2D points essential matrix

(in canonical image coordinates)

Note: Here we show algebraic epipolar error. In practice a correction factor is applied to obtain geometric error.



Photometric alignment

* Known: 3D point and intensity images

* Given: Pose hypothesis

* Yield: Photometric error

* Used by all the direct methods

* No need to know point correspondences

¢PH0T0(X; R’t) ~ ‘ I(ﬂ(x)) - I'(ﬂ(RX_I_t))‘
J intensity image intensity image
previous frame current frame

3D point



Multi-objective approach

* Use tracked image features and measured scene
depth to instantiate four sub-objective functions

* Each sub-objective function @Psygp computes the
sum-of-squares of a corresponding residual
function Q¢

* Can we simply sum them up?

gDRIGID(R’t) * ¢RPE(R't + (PEPI(R't) + (pPHOTO(R't)

N o/

They are even in different units!



Mahalanobis distance

Generalised Euclidean distance measuring how
likely an observation X belongs to a normal
distribution with co-variance matrix X

Can be used to represent each residual term in a
covariance-normalised unit-free form

Need to estimate error covariance now

s(xiat %) = -, =\(x-1) = (x-1



Propagation of uncertainty

Error covariance X in the domain of a function / can
be propagated toit’'srangeby X' = JXZ]J'where]is
the Jacobian matrix of /at the point X is obtained

The chaining of propagation is carried out for each
point correspondence from the domain to the range

of each residual function @,



Example: @m0

* Evaluation of the photometric error starts from a
point in 3D space and ends up with an intensity
difference

* In case the point is measured using stereo vision,
the propagation has to back-trace to the disparity
space

3-by-3 3-by-2 2-by-1
Jac. Jac. Jac.

Disparity Image

3D space

space intensity

3-by-3 covariance 1-by-1 covariance



Implementation

For each two frames 4#—1 and 4 five data terms are
built
M JIRPE : Mapping of 3D points in #4—1 to 2D points in &
M JIRPE : Mapping of 3D points in £ to 2D points in £#—1
M JEPI : Mapping of 2D pointsin #4—1 to &4
M JRIGID : Mapping of 3D points in #4—1 to &
M JIPHOTO : Mapping of 3D points to intensities in £A—1

A RANSAC-based outlier rejection is performed to
kick out poor correspondences

A nonlinear optimisation process then solves for
the pose that minimises the total energy of four
sub-objectives built from five (filtered) data terms



Multi-objective RANSAC

A

MJIRPE M /RPE M JEPI M JRIGID MJIPHOTO

Random ?‘
sampling ° / T/ T/

D (§)=DIRPE (&)+DIEPI (§)+DIRIGID (§)+DPLPHOTO (§)

Q\‘\ //

Consensus
pose

hypothesis Evaluate the hypothesis
using whole population

Solve optimal pose

Repeat for several iterations; the hypothesis supported by the
largest consensus set from population wins the election



Experiments

A KITTI sequence is selected for evaluation
No bundle adjustment, no loop closure

Implemented using OpenCV in C++, with CPU-only
parallelism

Recovered egomotion is compared with GPU/IMU
readings

For each configuration, five trials are carried out
and the average drift (in %) is calculated



Combinations

We tried out all 16 combinations of 4 models

A four-letter label is assigned to each combination
B: backward RPE / P: photometric / R: rigid / E: epipolar

E.g. BxxXE stands for backward RPE + epipolar objectives

Forward RPE, the classical objective, is always activated



Results

* Using additional energy model(s) outperforms

mono-objective VO in most cases

* The best record (63% improvement) is achieved by
using photometric + rigid alignments (xPRx)

* When backward RPE is solely used (Bxxx), the

result is slightly worse than the baseline by 0.17%

Model Best Worst Mean Std. Model Best Worst Mean Std.
XXXX 4.97 5.54 5.21 0.27 |Bxxx 5.14 5.99 5.41 0.34 |
xPxx 2.26 2.76 2.52 0.21 BPxx 1.99 2.50 2.23 0.21
xxRx 4.65 5.09 4.88 0.15 BxRx 5.10 6.00 5.58 0.37
xPRx 1.84 2.39 2.18 0.26 BPRx 1.96  2.56 2.16 0.26
xxxE 2.27 2.31 2.28 0.01 BxxE 2.21 2.29 2.24 0.03
xPxE 2.24 2.71 2.47 0.17 BPxE 2.17 2.48 2.31 0.11
xxRE 2.29 2.38 2.34 0.03 BxRE 2.18 2.31 2.24 0.05
xPRE 2.41 2.59 2.50 0.08 BPRE 2.21  2.40 2.33 0.08




Accumulated drift

* The all-enabled multi-objective VO is three times
more accurate than the baseline model at the end
of a sequence

* An interesting finding suggests the use of epipolar
term is not necessary to achieve better estimation
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Drift analysis of the best (BPRx), worst (BxRx), all-enabled (BPRE), and the
baseline model (xxxx)



Conclusions

We reviewed four alignment models used as
objective functions in existing VO approaches

A unifying framework (including error modelling) is
proposed

Experimental results indicate that at least 30%

improvement is attenable when multiple objectives
are incorporated

Time profiling shows that multi-objective VO incurs
13% more computational cost compared to
baseline

Sounds like a good deal!



