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Visual	Odometry	



Visual Odometry

•  Subsequently	solve	a	system’s	
egomo+on		ONLY		from	two	
consequently	taken	image	frames	

• Current	posi+on	of	the	system	is	determined	by	
concatena+ng	a	series	of	previously	solved	poses	

•  known	as	dead	reckoning	in	terms	of	naviga+on	
•  “dead”	derived	from	deduced,	or	ded	

• Related	to	simultaneously	loca.ng	and	mapping	
(SLAM)	and	structure	from	mo.on	(SFM)	
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Two alterna4ves
•  Indirect	methods	
(feature-based)	

•  Transform	image	pixels	into	a	
cra^ed	feature	space	

• Matching	is	performed	before	
egomo+on	es+ma+on	

• Use	sparse	key	points	

•  Faster	and	domina+ng	VO/
SLAM	for	decades	

• Direct	methods	
(feature-free)	

•  Use	pixel	intensi$es	directly	

•  Matching	happens	
simultaneously	during	
es+ma+on	

•  Use	dense,	semi-dense,	or	
sparse	pixels	

•  Slow	but	becoming	popular	
due	to	advances	in	parallel	
compu+ng	



Alignment problem

• Both	alterna+ves	treat	pose	es+ma+on	as	an	
alignment	problem	

• Ra+onal:	the	observed	data	in	the	current	frame	
should	be	aligned	well	to	the	one	transformed	from	
the	previous	frame	using	a	good	pose	es+mate	

Transforma+on	by	a	
good	pose	hypothesis	

current	

previous	



Generated	trajectory	by	proposed	method	
	
Comparison	with	given	ground	truth	defines		dri4		per	frame	
For	test	sequences,	see		
										www.cvlibs.net/datasets/kid/eval_odometry.php			

Example for a test sequence on KITTI



Well-known alignment models

• Rigid	alignment																								RIGID	

• Projec+ve	alignment															RPE	

•  Epipolar	alignment																		EPI	

• Photometric	alignment											PHOTO	



Rigid alignment

• Known:	3D-to-3D	point	correspondences	
• Given:	Pose	hypothesis	
• Yield:	Geodesic	error	in	world	(3D	space)	units	
• Commonly	used	in	3D	registra+on	

pose	hypothesis	

two	corresponding	3D	points	

applying	rigid	
transforma+on	

			
ϕRIGID x ,y; R ,t( ) = y− Rx+ t( ) 2



Projec4ve alignment

• Known:	3D-to-2D	point	correspondence	
• Given:	Pose	hypothesis	
• Yield:	Geodesic	error	in	image	plane	
• Known	as	reprojec.on	error	(RPE)	in	SFM	and	VO	
• Minimisa+on	of	RPE	in	a	least-square	form	is	
considered	the	“gold	standard”	

3D	point	

perspec+ve	
projec+on	

2D	point	

			
ϕRPE x ,y; R ,t( ) = y−π Rx+ t( ) 2



Epipolar alignment

• Known:	2D-to-2D	point	correspondence	
• Given:	Pose	hypothesis	
• Yield:	Epipolar	error	in	(normalised)	image	plane	
• Commonly	used	in	uncalibrated	two-view	
geometry	

• Useful	when	lacking	3D	informa+on	

two	corresponding	2D	points	
(in	canonical	image	coordinates)	

essen+al	matrix	

Note:	Here	we	show	algebraic	epipolar	error.	In	prac+ce	a	correc+on	factor	is	applied	to	obtain	geometric	error.	

			ϕEPI x ,y; R ,t( ) = yT t⎡⎣ ⎤⎦×Rx



Photometric alignment

• Known:	3D	point	and	intensity	images	
• Given:	Pose	hypothesis	
• Yield:	Photometric	error	
• Used	by	all	the	direct	methods	
• No	need	to	know	point	correspondences	

3D	point	

intensity	image	
previous	frame	

intensity	image	
current	frame	

			ϕPHOTO x; R ,t( ) = I π x( )( ) − I ' π Rx+ t( )( )



Mul4-objec4ve approach

• Use	tracked	image	features	and	measured	scene	
depth	to	instan+ate	four	sub-objec+ve	func+ons	

•  Each	sub-objec+ve	func+on	Φ↓SUB 	computes	the	
sum-of-squares	of	a	corresponding	residual	
func+on	 𝜑↓SUB 	

• Can	we	simply	sum	them	up?	

They	are	even	in	different	units!	

			ϕRIGID R ,t( ) + ϕRPE R ,t( ) + ϕEPI R ,t( ) + ϕPHOTO R ,t( )

	ϕSUB

	ϕSUB



Mahalanobis distance

• Generalised	Euclidean	distance	measuring	how	
likely	an	observa+on	𝐱	belongs	to	a	normal	
distribu+on	𝑁(𝐱 ,𝚺)	

• Can	be	used	to	represent	each	residual	term	in	a	
covariance-normalised	unit-ness	form	

• Need	to	es+mate	error	covariance	now	
unit-free	

			δ x;µ ,Σ( ) = x− µ
Σ
= x− µ( )T Σ−1 x− µ( )

w	with	co-variance	matrix		Σ



Propaga4on of uncertainty

•  Error	covariance	Σ	in	the	domain	of	a	func+on	𝑓	can	
be	propagated	to	it’s	range	by	𝚺↑′ =𝐉Σ𝐉↑⊤ 	where	𝐉	is	
the	Jacobian	matrix	of	𝑓	at	the	point	Σ	is	obtained	

•  The	chaining	of	propaga+on	is	carried	out	for	each	
point	correspondence	from	the	domain	to	the	range	
of	each	residual	func+on	𝜑↓SUB 	

			Σ' = JΣ JT

	ϕSUB



Example: 𝜑↓PHOTO  

•  Evalua+on	of	the	photometric	error	starts	from	a	
point	in	3D	space	and	ends	up	with	an	intensity	
difference	

•  In	case	the	point	is	measured	using	stereo	vision,	
the	propaga+on	has	to	back-trace	to	the	disparity	
space	

Disparity	
space	 3D	space	 Image	

plane	
Image	

intensity	

3-by-3	covariance	 1-by-1	covariance	

3-by-3	
Jac.	

3-by-2	
Jac.	

2-by-1	
Jac.	

	ϕPHOTO



Implementa4on

•  For	each	two	frames	𝑘−1	and	𝑘	five	data	terms	are	
built	
1.  ℳ↓RPE  :	Mapping	of	3D	points	in	𝑘−1	to	2D	points	in	𝑘	
2.  ℳ↓RPE  :	Mapping	of	3D	points	in	𝑘	to	2D	points	in	𝑘−1	
3.  ℳ↓EPI :	Mapping	of	2D	points	in	𝑘−1	to	𝑘	
4.  ℳ↓RIGID :	Mapping	of	3D	points	in	𝑘−1	to	𝑘	
5.  ℳ↓PHOTO :	Mapping	of	3D	points	to	intensi+es	in	𝑘−1	

• A	RANSAC-based	outlier	rejec+on	is	performed	to	
kick	out	poor	correspondences	

• A	nonlinear	op+misa+on	process	then	solves	for	
the	pose	that	minimises	the	total	energy	of	four	
sub-objec+ves	built	from	five	(filtered)	data	terms	



Mul4-objec4ve RANSAC

Φ(𝝃)= Φ↓RPE (𝝃)+ Φ↓EPI (𝝃)+ Φ↓RIGID (𝝃)+ Φ↓PHOTO (𝝃)	

ℳ↓RPE  	 ℳ↓RPE  	 ℳ↓EPI 	 ℳ↓RIGID 	 ℳ↓PHOTO 	

Random 
sampling 

Consensus	
pose	

hypothesis	

1

Solve optimal pose 

2

3 Evaluate the hypothesis 
using whole population 

4 Repeat for several iterations; the hypothesis supported by the 
largest consensus set from population wins the election 



Experiments

• A	KITTI	sequence	is	selected	for	evalua+on	
• No	bundle	adjustment,	no	loop	closure	
•  Implemented	using	OpenCV	in	C++,	with	CPU-only	
parallelism	

• Recovered	egomo+on	is	compared	with	GPU/IMU	
readings	

•  For	each	configura+on,	five	trials	are	carried	out	
and	the	average	dri^	(in	%)	is	calculated	



Combina4ons

• We	tried	out	all	16	combina+ons	of	4	models	

•  A	four-leper	label	is	assigned	to	each	combina+on	

•  B:	backward	RPE	/	P:	photometric	/	R:	rigid	/	E:	epipolar	

•  E.g.	BxxE	stands	for	backward	RPE	+	epipolar	objec+ves	

•  Forward	RPE,	the	classical	objec+ve,	is	always	ac+vated	



Results 

• Using	addi+onal	energy	model(s)	outperforms	
mono-objec+ve	VO	in	most	cases	

•  The	best	record	(63%	improvement)	is	achieved	by	
using	photometric	+	rigid	alignments	(xPRx)	

• When	backward	RPE	is	solely	used	(Bxxx),	the	
result	is	slightly	worse	than	the	baseline	by	0.17%	



Accumulated driM

•  The	all-enabled	mul+-objec+ve	VO	is	three	+mes	
more	accurate	than	the	baseline	model	at	the	end	
of	a	sequence	

• An	interes+ng	finding	suggests	the	use	of	epipolar	
term	is	not	necessary	to	achieve	beper	es+ma+on	



Conclusions

• We	reviewed	four	alignment	models	used	as	
objec+ve	func+ons	in	exis+ng	VO	approaches	

• A	unifying	framework	(including	error	modelling)	is	
proposed	

•  Experimental	results	indicate	that	at	least	30%	
improvement	is	apenable	when	mul+ple	objec+ves	
are	incorporated	

•  Time	profiling	shows	that	mul+-objec+ve	VO	incurs	
13%	more	computa+onal	cost	compared	to	
baseline	

Sounds	like	a	good	deal!	


