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Abstract. Prediction error analysis is a known method for evaluating
the performance of optic flow algorithms. This paper applies this method
to long image sequences with a special focus on opportunities when us-
ing metronome sequences. Two top-performing algorithms are discussed,
known as TV-L; and BBPW.
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1 Introduction

Optic flow is the instantaneous speed of a moving object’s pixel, measured by vis-
ible displacements in the imaging plane. Optic flow research is about finding rela-
tionships between changes in image intensities in time and object movements in a
3-dimensional (3D) environment. In general, there are four events which can con-
tribute to observable optical flow: camera movement, movement of objects in the

Fig. 1. Left: a flying bat (data courtesy by Bob Fisher, Edinburgh) recorded at 1000
Hz. Right: optic flow results when applying TV-Li. The coloured frame shows the used
colour key; intensity corresponds to length of motion vectors. Both ellipses highlight
local regions where wings move intensively (and actually into opposite directions).



scene, movements of both, or temporal changes in intensity due to illumination
changes or simply due to noise. Optical flow methods are divided in [Ye 2002] into
categories of matching-based, frequency domain-based, and gradient-based tech-
niques. In this classification scheme, TV-L; [Papenberg et al. 2006] and BBPW
[Brox et al. 2004] are gradient based, and both lead to good results on [OF WMC].
See Fig. 1 for the used colour key for visualizing results.

The original TV-L! algorithm applies an approximation of the Li-norm in
a total variation approach using an error function which combines a data and
a smoothness term. Compared to the Lo-norm, the Li-norm is more robust
against outliers and preserves discontinuities. In this paper we use the improved
TV-L! algorithm from [Wedel et al. 2008] which incorporates a median filter
into the optimization scheme to increase convergence speed and to improve the
consistency of the flow. It also proposes to work on the textural part of the input
images to improve robustness against illumination changes.

The BBPW algorithm follows the Horn-Schunck algorithm but also mini-
mizes an L,; data term in order to improve flow results, especially with regards to
large displacements by using image pyramids with arbitrary scaling factors. It ap-
plies image warping and a robust penalizer for allowing also flow discontinuities.
The implementation as used in this paper was done for [Vaudrey et al. 2008] and
follows [Brox et al. 2004]. We use 50 levels in the pyramid with a scaling factor
of 0-95.

The paper is structured as follows: Section 2 recalls prediction analysis and
specifies our evaluation approach. Section 3 introduces the used sequences. Sec-
tion 4 informs about experimental results. Section 5 concludes.

2 Prediction Error Analysis

Performance evaluation in computer vision is often designed under the assump-
tion that ‘ground truth’ is available for measuring deviations from the ‘golden
standard’.

Prediction errors [Szeliski 1999] can be utilized for analysing the performance
of optic flow algorithms on real-world sequences, as illustrated there for very
short sequences. Flow is calculated between images at times ¢ and ¢ + 2, and a
virtual image calculated ‘half-way’ for time ¢ + 1; this is then compared with the
actually recorded image at time ¢ + 1. See Fig. 2.

The idea also applies to stereo vision: depth is calculated from cameras L
and R, and, using camera calibration data, the intensity of camera L is then
mapped into the view of a third camera T using the calculated depth or dis-
parity values. This stereo evaluation approach was followed at some depth in
[Morales and Klette 2009] using long trinocular image sequences recorded from
a mobile platform.

However, it is very difficult to obtain long video sequences where recorded
motion supports the application of prediction error analysis, due to relatively
slow cameras (or relatively fast motion in the recorded scene). For example, 30
Hz is still an insufficient recording speed of cameras for common motions in the
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Fig. 2. Illustration for prediction error analysis for evaluating optic flow methods. Point
(z1,y1) is half-way between (z,y) and (z2,y2) = (z,y) + (u,v), and the calculated
intensity is the mean of Pi(x,y) and Pit2(z2,y2).

real world. The website [EISATS] provides a few long synthetic sequences with
motion ground truth, but even for those synthetic sequences, the frame rate and
the rendered object motions do not support prediction error analysis.

Consequently, we have recorded sequences showing very slow motion in the
scene, and we also use (from other sources) sequences recorded at very high
speed. Because mean brightness and brightness variations in individual images
in a sequence vary due to some conditions (e.g. exposure or lighting), we can
either use some kind of input data normalization (e.g. mapping images onto a
constant mean and a constant standard deviation [Klette and Zamperoni 1996],
applying a ‘simple’ edge operator [Guan and Klette 2008], or mapping images
onto their residuals with respect to some blurring [Vaudrey and Klette 2009]),
or we can compare the virtual and recorded image with a measure that does not
take such brightness variations into account.

For this paper we decided for the latter approach. We report results for the
original images and use the normalized cross-correlation (NCC) as the measure
for detecting differences between virtual and recorded image:
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where p; 1 and pf, | denote the means, oy, and of, ; the standard deviations of
recorded image P, and predicted (or virtual) image P/, ;, and 2,1, the set of
all pixel positions used for frame P;.1 (i.e. all positions (z1,y;) obtained in the
way as sketched in Fig. 2), and also contained in a generated mask (see beginning
of Section 4). The NCC measure has been used, for example, for motion analysis
in [Islam et al. 2009], and for stereo analysis in [Morales and Klette 2009].

3 Slow Motion Sequences

Image data for a flying bat was recorded (at Edinburgh university) at 1000 Hz.
For the test discussed further below, 800 consecutive frames (i.e. less than one



Fig. 3. Left: Frame 2 of the first metronome sequence. Right: TV-Li-result when com-
paring Frame 2 with Frame 3.

second) have been selected for applying optical flow algorithms at frames P,
when t is even, thus generating 400 NCC values. See Fig. 1 for an input frame
and a result using TV-L;.

|

Fig. 4. Mask generated for Frame 57 of the used metronome sequence, prior to the
application of the NCC measure. Note that the white region on the right and along
the bottom is due to ‘incorrectly’ detected motion.



A metronome is known for its regular movements. It can be adjusted to a
speed of 40 to 210 beats per minute. We recorded image sequences for 40 beats
per minute because of our interest in slow motion. Metronome sequences were
recorded with a Cannon EOS 5D Mark II which is a high-performance digital
SLR camera with a full-frame CMOS sensor with 21.10 effective megapixels.
Videos were recorded in full 1920 x 1080 pixel HD mode at 30 Hz. Videos were
recorded for different lighting (e.g. lighting was changed by turning on and off
regularly the office ceiling lights). Below we illustrate results for a sequence of
200 frames (i.e. 6:6 s) recorded for constant lighting, and also for a sequence
with 800 frames where lighting changed regularly. See Fig. 3 for an input frame
and a result using TV-L;.

4 Experiments and Discussion

Colour-coded optic flow for both TV-L; and BBPW is shown in Fig. 5. For
prediction error analysis, we calculate the flow from ¢ to t + 2, scale the flow

Fig.5. Results for TV-L1 (left) and BBPW (right) for Frame 57 (top) and Frame
111(bottom).
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Fig. 6. NCC graphs for TV-L; (red line) and BBPW (blue line) in the constrained
case (i.e. using a mask) for a metronome sequence with constant lighting. There is a
high correlation between both curves, and BBPW appears to be superior. See Fig. 7
for a better illustration of this superiority.

vectors by 0-5 for generating a virtual image for time ¢ + 1 and compare with
the original frame at ¢ + 1 using the NCC measure.

We apply two different selection criteria for the set 2;+1 in Equation (1). In
the unconstrained case we use all the pixels that are identified by endpoints of
halfway flow vectors in the virtual image. In the constrained case we calculate
the NCC values only within regions of motion. Therefore we generate a mask as
follows. At every pixel where the magnitude M = v/u? + v2 of the flow extends
0-5 pixel, we validate the mask for a squared neighbourhood which has the size
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Fig. 7. Differences of NCC values: those for TV-L; minus those for BBPW in the
constrained case. The figure shows that BBPW’s NCC values are in majority above
those of TV-Lj.
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Fig. 8. NCC values for a flying bat sequence of 800 frames. Unconstrained case and
use of TV-L;.

M x M (i.e. at least 1 x 1). An example of a generated mask image is shown in
Fig. 4.

At first we state a general observation that both techniques performed well
to the expectations, as raised by their standing on [OFWMC], with a slight
superiority of BBPW over TV-L;. See Figs. 6 and 7.

As a second result, the analysis of video data of a flying bat shows that optic
flow is potentially a way for quantifying complex movements if the recording
speed is sufficiently high. In Fig. 1, right, see, for example, the two ellipses
highlighting particular motion patterns. When the bat is trying to generate a
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Fig. 9. Unconstrained case and TV-L; when regularly changing the lighting for the
metronome. NCC values decrease exactly at those frames where lighting changes and
remain at the same level, no matter whether to office was darker or brighter for a given
period A, B, C or D.
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Fig.10. Mean (over a whole metronome sequence) NCC values for the constrained
case (i.e using a mask) where the z-axis shows now the distance from the rotation
centre of the pendulum.

lift, the wings are stretching rapidly; therefore the motion vectors at the edge of
the wings are bigger than at other wing pixels.

In Fig. 8 we have encircled four parts with a particular ‘NCC failure pattern’.
Such cases can be discussed as particularly ‘difficult motion patterns’ of the flying
bat, such as no motion between two frames (but the prediction takes two frames
where motion occurred), acceleration in movement, or changes in direction of
movement.

Similar observations can be made for the metronome when the pendulum is
close to the turning point: in such cases there may be a mismatch between the
implicitly used motion model of prediction error analysis and the actual motion.
This is our third statement.

Next, changes in lighting affect the performance of both optic flow meth-
ods, as already studied in [Vaudrey and Klette 2009] for other image data. Fig-
ure 9 shows how the NCC values decrease exactly at frames when the light was
switched on or off.

Finally, the metronome sequence is also valuable for understanding the abil-
ities of optic flow methods for estimating motion vectors of increasing lengths.
See Fig. 10. These mean NCC values have been generated for pendulum po-
sitions including two turning points. Not surprising, the values are decreasing
with distance. However, there are some periodic patterns in this histogram which
require further analysis to be understood properly.



5 Conclusion

This paper introduces metronome image sequences for testing optic flow algo-
rithms. Metronome sequences will be made publicly available at [EISATS]. The
paper also discusses the use of image data recorded at very high speed. The
experiments show how these data can be used for designing experiments aiming
at particular studies.
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