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Abstract—In this study we examine three road-modeling meth-
ods, which we evaluate on seven stereo matching algorithms. The
road-modeling methods we consider are a B-spline modeling
technique based on region-growing and two versions of the
popular v-disparity approach. The used stereo algorithms are
variations or different parameterizations of belief propagation,
graph cut and semi-global matching.

We examine the performance of the possible combinations
of modeling methods and stereo algorithms by comparing the
deviation towards a reference road profile. Two evaluation
sequences are used, of which one features switched on windscreen
wipers that are visible in the the recorded imagery.

Our findings are that the examined B-spline modeling method
provides the best results in most cases. In terms of the modeled
distance, belief propagation is the most suitable stereo matching
method, which also performs best with the wiper sequence. Semi-
global matching achieves smaller model deviations, but with
drastically reduced modeled distances.

I. INTRODUCTION

Computer vision is gaining importance in the automotive
environment. Some modern series-production vehicles are
already equipped with computer vision based driver assistance
systems (DAS). Examples are lane departure warnings, traffic
sign recognition and blind spot monitoring, which all employ
monocular vision. It is also possible to use binocular vision for
driver assistance purposes, which in addition to normal video
imagery can provide depth information for the recorded scene.
While this additional information could open new application
areas, gathering and analyzing it is challenging.

For understanding a traffic situation from binocular imagery,
it is particularly important that we recognize the geometry of
the road. Previous research has been conducted on modeling
the road profile from the disparity maps received through
binocular vision and stereo matching [1]–[5]. Knowing the
road geometry facilitates segmentation and recognition of
obstacles on the road, such as other traffic participants. If we
want to use this information in novel computer vision based
DAS, it is important that the road-modeling process works
robustly under all weather and illumination conditions.

In this research we evaluate three road-modeling tech-
niques using seven stereo matching algorithms. The road
modeling algorithms we consider are the region-growing B-
spline approach we presented in [5] and two variations of the
popular v-disparity method, as introduced in [1]. The stereo
matching algorithms we examine are adaptations or different
parameterizations of belief propagation (BP), graph cut (GC)
and semi-global matching (SGM).

Further, we take a close look on how windscreen wipers
disturb the stereo matching algorithms and road-modeling
methods. As the common setup for vehicle mounted cameras
is behind the windscreen, moving windscreen wipers appear
in the recorded imagery. A computer vision based method is
required to cope with wipers occluding part of the visible scene
in one camera, if it should be applicable on rainy weather
conditions. We hence test all methods on how they perform
in this situation.

II. RELATED WORK

The common approach for judging the performance of a
stereo method is to process stereo pairs for which known
ground truths are available. The generated disparity maps can
then be compared to the ground truths and the deviation can
be quantified. This approach was applied in [6], [7] to evaluate
the performance of a large selection of stereo matching algo-
rithms. The used stereo pairs were, however, either synthetic
or photographed in a controlled lighting environment. The
performance of stereo algorithms on real-world imagery is
generally much lower. Hence, the information we gain from
an evaluation on such stereo pairs is only of limited use.

We are interested in the stereo matching performance on
real-world image data. In particular, we are focusing on
stereo sequences recorded from vehicle mounted cameras.
Performing an evaluation on such driving sequences is more
challenging as ground truths are usually not available. In [8]
an evaluation of stereo algorithms on driving sequences is
performed, by using a third camera for judging the found
stereo correspondences. In the evaluation presented in [9],
the stereo matching results are compared to the data from
a vehicle mounted LIDAR. To our knowledge, no evaluation
has yet been performed on how windscreen wipers in driving
sequences influence the stereo matching process.

In this study, we focus on using stereo-vision for modeling
the ground manifold. In particular, we are interested in the ver-
tical road profile that for a given road describes the elevation
change over distance. To model the vertical profile of non-flat
roads, previous attempts in literature used envelopes of lines
[1], quadratic curves [2], clothoids [3], and recently B-spline
curves [4]. In [5] we published a new method for modeling the
vertical road profile with a B-spline curve, which relies on a
region growing process. Similarly, a region-growing technique
is used in [2] for modeling the road with a quadratic curve.
We will use our previous region-growing B-spline method in



this research as one road-modeling technique for evaluating
the performance of the used stereo algorithms.

III. ROAD MODELING METHODS

The region-growing B-spline method (RGBS) that we use
for road-modeling, first selects a small group of near-range
points from the set of 3D points gained through stereo trian-
gulation. A B-spline curve is then fitted to those points and
serves as the first hypothesis for the vertical road profile. In
subsequent iterations, more points are selected that are close to
the previous hypothetical road model. A new and potentially
more accurate curve is then fitted to the increased set of points,
which is repeated for every iteration step.

To increase accuracy, a set of constraints is introduced that
limit the number of points, which can be selected in one
iteration. For example, points are required to be connected
in the xy-plane, and their distance in z-direction must not
exceed a threshold. Further constraints penalize high gradients
or curvatures, and enforce a flat gradient at the camera position
(as we assume that the car is standing flat on the road).

The v-disparity method, which is another road-modeling
method we consider in this study, was initially introduced in
[1]. In this approach, the disparity map is first transformed
into a virtual image, in which the intensity of a pixel with
the coordinates (u, v) is proportional to the frequency of the
disparity u in image row v. This virtual image is called v-
disparity image, and in it the disparity values corresponding
to the visible road are likely to form a curve. This curve is
detected with a Hough transform that delivers a set of best
matching straight lines, which are then combined by selecting
either the upper or lover envelope. In addition to this envelope-
based approach (VENV), which matches the method initially
published in [1], we also examine a simplified version that
only selects the best matching straight line (VPLAN).

IV. EVALUATION METHOD

The methodology we use for evaluating the quality of
a generated road model matches the method we previously
applied in [5]. We manually create a set of mask images that
identify the visible road in the left image (the reference image)
of an evaluation stereo pair. Only frames are selected in which
no wiper is visible in the right image. If a wiper is visible in
the left image, the region covered by it is excluded in the
corresponding mask. In total, 40 masks were created for each
of the two evaluation sequences.

We use one such mask-image and the disparity map ob-
tained through the examined stereo algorithm, to extract a
reference road profile. First, the mask is used to extract all
road-pixels from the disparity map. We then select one best
matching disparity value for every image row in which the
road is visible. For this task, we use the median of the extracted
disparity row, rather than the average, to make the method
more robust towards outliers. A generated road model is then
compared to this set of road profile points, by calculating
the distance in y-direction between a road profile point and
the road model curve. We take the sum of those distances,

which is the sum of absolute differences (SAD) between the
y-coordinates, as measure for the goodness of a model.

The number of compared road profile points depends on the
length of the modeled and visible road section. This means
that a different number of points might be used each time
we calculate an SAD value, which makes it impossible to
compare the results for two different stereo pairs. To make
our measure independent of the number of compared profile
points, we divide the SAD value by the total number of points
we evaluated, and receive a new relative SAD.

V. STUDY OUTLINE
For our evaluation we use two stereo sequences that were

both recorded on the same road. The considered road has a
wavy profile that should be ideal for evaluating road-modeling
techniques. The first sequence, to which we refer as Midday,
was recorded when the sun was close to its zenith and features
a good illumination without reflections. The second sequence,
which we call Wiper, was recorded shortly afterwards on
the same road, with switched on windscreen wipers (but no
rain). The illumination conditions have not changed noticeably
between both recordings. The used sequences have been
published online as Set 9 of the EISATS website [10].

An example image from each sequence is shown in Fig. 1a
and 2a. By recording both sequences on the same road, we
allow for an easy comparison of the gained results. This
enables us to draw conclusions on how the presence of wipers
influences the performance of the tested algorithms.

We evaluate the considered road-modeling methods on a
selection of well-performing stereo algorithms. We chose to
use BP [11] and GC [12], as they are among the most popular
global energy minimization methods. Our implementations are
based on the code published along with [13] and [14].

Unfortunately, both algorithms are too slow to enable real-
time stereo-matching, which would be required for driver
assistance purposes. We hence chose to further evaluate SGM,
which was initially published in [15]. Unlike BP and GC, the
SGM algorithm does not perform a global optimization but
only optimizes along a set of scan lines. Nevertheless, SGM
provides excellent results that may well compete with the ones
gained though global methods such as BP or GC.

For every algorithm, we examine several different variations
or different parameter settings. In total, we employ three BP,
two GC and two SGM variants. This gives us a total number
of seven distinct stereo-matching algorithms that we examine
in this study. Those algorithms are:

BP-EPE BP with a data-term based on the gradient end point
error (equivalent to the data-term evaluated in [16]).

BP-SEPE BP with a gradient end point error data-term and
a low data-term weighting factor λ. This leads to smooth
disparity maps, but blurred depth discontinuities.

BP-CEN BP with a data-term based on the census transform
[17]. The census transform is an image transformation
that has previously been used for robust stereo-matching.
Recent studies have shown that the census transform is
very robust against illumination differences [16], [18].



(a) Image form Input Stereo Pair (b) BP-EPE (c) BP-SEPE (d) BP-CEN

(e) GC-EPE (f) GC-CEN (g) SGM-EPE (h) SGM-CEN

Fig. 1: (a) Image of a stereo pair from Midday and (b-h) corresponding disparity maps.

(a) Input Image (b) BP-SEPE (c) GC-CEN (d) SGM-CEN

(e) BP-SEPE (f) GC-CEN (g) BP-SEPE (h) GC-CEN

Fig. 2: (a) Image of a stereo pair from Wiper and (b-d) corresponding disparity maps; (e-h) regions selected by RGBS.

GC-EPE GC algorithm based on α-expansion and with a
data-term based on the gradient end point error.

GC-CEN GC based on α-expansion and with a data cost term
based on the census transform.

SGM-EPE SGM algorithm using a data-term based on the
gradient end point error.

SGM-CEN SGM using a data-term based on the census
transform.

VI. EVALUATION RESULTS

We applied the seven selected stereo-matching algorithms
to the two evaluation sequences. This resulted in a total of 14
disparity sequences, which we each processed with the three

road-modeling methods we consider in this study. Hence, we
performed a total of 42 test runs. The results we gained are
summarized in the following subsections.

A. Sequence Midday

Sequence Midday provides excellent conditions for stereo-
matching and we thus received accurate results with this
sequence for all examined stereo-matching algorithms. An
example for the disparity maps generated with each algorithm
for this sequence is shown in Fig. 1.

The disparity maps obtained with all examined BP variants
appear very similar and are all of a very high quality. It is
difficult to spot differences between the end point error and
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Fig. 3: Results on Sequence Midday for (a) BP-CEN, (b) SGM-CEN, and (c) GC-CEN / GC-EPE with B-splines.

the census transform based BP versions. The differences be-
tween BP-EPE and BP-SEPE are slightly smoother transitions
between the disparity levels.

Considering the similar disparity maps, all road-modeling
methods delivered similar results for each BP algorithm.
Fig. 3a shows the road model deviation for each evaluated
frame, when using BP-CEN. In this diagram, we see that
RGBS predominantly delivers the best results throughout the
sequence. Apart from a few large deviations, VPLAN is not
far behind, while VENV clearly delivers the worst results for
most of the stereo pairs in the sequence.

Despite the very similar performance of the end point error
and census transform based data-terms for BP, there appears to
be a large difference when using GC. While GC-CEN delivers
relatively good results with few noisy mismatches, GC-EPE
contains a large amount of wrong disparity values. This lower
performance is clearly visible with our evaluation method.
Figure 3c shows the results we received with RGBS for GC-
CEN and GC-EPE. However, this bad performance might be
exaggerated because the reference road profile extraction is
not as accurate for the noisy GC-EPE disparity maps.

If we compare the disparity maps from Fig. 1g and 1h
that we received with the tested SGM variants, we notice
a difference in the density of disparity values. Compared to
SGM-EPE, the disparity maps from the SGM-CEN algorithm
have a higher density for the road region. For RGBS, the
disparity map density has a strong effect on the modeled
distance due to the region growing process.

Figure 3b shows the evaluation results we received for
SGM-EPE, which shall serve as an example for the perfor-
mance of SGM on Sequence Midday. In this figure we see
that VENV performs much worse than for the other stereo
algorithms. The same observation was also made for SGM-
CEN. The performance of VPLAN is better but suffers from
several high outliers. For this stereo algorithm, RGBS again
produces the best results.

A summary of the results gained with each stereo algorithm
and road-modeling method on this sequence is shown in the
upper half of Table I. This table contains the mean and median
relative SAD values and maximum modeled distances that we
received for the entire sequence. For each stereo algorithm,

the mean and median of the best performing road-modeling
method has been printed in bold.

Except for GC-EPE (and in case of the median also SGM-
EPE), RGBS performed best for all stereo algorithms, while
VENV always performed worst. The bad performance of
RGBS with GC-EPE is not surprising, as the large amount
of noise in the disparity maps impedes the region-growing
process, while the Hough transform used by VENV and
VPLAN is still be able to find a robust fit.

In terms of the average model deviation, BP-CEN and
BP-EPE deliver equally good results with RGBS; the lowest
deviation is, however, caused by BP-SEPE. For GC, the
version performing best with RGBS is obviously GC-CEN,
whose average deviation is slightly higher than for BP-EPE
and BP-CEN, but the median deviation is less. However, the
modeled distance with GC-CEN is approximately 5 m less
than for the three BP algorithms.

The SGM algorithm performing best with RGBS is SGM-
CEN, which has the lowest average and median deviation of
all tested algorithms. However, the average modeled distance
is approximately 9 m less than for the BP algorithms, and 6
m less than for SGM-EPE.

In conclusion, BP-SEPE provided the highest maximum
modeled distance, while SGM-CEN caused the lowest average
and median model deviation. However, the modeled distance
for SGM-CEN was much lower than for BP-SEPE. It is likely
that if we limit the modeling distance for BP-SEPE, we will
too receive a lower deviation as the close-range road profile
can be modeled with higher accuracy. It is thus wise to pay
more attention to the maximum modeled distance than to the
model deviation.

B. Sequence Wiper

Figures 2b to 2d show the disparity maps we received with
BP-SEPE, GC-CEN and SGM-CEN for one stereo pair from
Sequence Wiper, in which a wiper is visible in the left image.
The wiper can only be seen by one camera, and it is thus
impossible to find any matching pixel pairs for the image
region it covers. In the shown disparity maps, we can see
that each algorithm responds differently to this situation.

BP deals with this problem by smoothly interpolating the



Sequence Algorithm RGBS deviation VPAN deviation VENV deviation Max. modeled dist. / m
Avg. Med. Avg. Med. Avg. Med. Avg. Med.

M
i
d
d
a
y

BP-EPE 0.0205 0.0225 0.0264 0.0251 0.0504 0.0497 29.3 29.4
BP-SEPE 0.0191 0.0209 0.0266 0.0263 0.0483 0.0456 30.1 30.8
BP-CEN 0.0205 0.0217 0.0266 0.0261 0.0504 0.0512 29.4 29.4
GC-EPE 0.0798 0.0470 0.0776 0.0399 0.0916 0.0527 13.7 15.4
GC-CEN 0.0222 0.0214 0.0252 0.0252 0.0478 0.0484 25.2 25.7

SGM-EPE 0.0252 0.0237 0.0267 0.0236 0.0413 0.0395 14.0 18.1
SGM-CEN 0.0154 0.0137 0.0251 0.0200 0.0690 0.0643 20.6 20.6

W
i
p
e
r

BP-EPE 0.0231 0.0236 0.0247 0.0231 0.0494 0.0501 27.9 25.7
BP-SEPE 0.0223 0.0216 0.0259 0.0254 0.0484 0.0468 31.1 30.8
BP-CEN 0.0230 0.0230 0.0259 0.0238 0.0510 0.0499 30.5 28.0
GC-EPE 0.7372 0.2632 0.7742 0.1290 2.2340 0.1640 14.7 15.4
GC-CEN 0.0571 0.0244 0.0279 0.0244 0.0506 0.0506 25.7 25.7

SGM-EPE 0.0218 0.0192 0.0245 0.0212 0.0428 0.0429 15.5 19.3
SGM-CEN 0.0192 0.0209 0.0266 0.0257 0.0542 0.0475 19.8 20.6

TABLE I: Average and median deviation for examined algorithms and road-modeling methods on both evaluation sequences.

disparity values that surround the wiper. The result is a
disparity map in which the occluded part of the road still has
fairly accurate disparity values, due to the fact that they were
interpolated form the closest non-occluded road sections. This
smooth interpolation is caused by the smoothness-term used
in BP that penalizes non-gradual disparity changes.

The disparity map generated with GC for the same stereo
pair shows a different behavior. For the region covered by
the wiper, GC finds mostly random disparity values. SGM
on the other hand produces only few disparity values for this
region, and the values that it selects appear random as well.
The reason why the used SGM implementation performed
differently than GC for this stereo pair is that it includes a left-
right consistency check [19] and removes inconsistent pixels.
A left-right consistency check is, however, not specific to SGM
and can just as well be included in a GC algorithm.

For RGBS, the behavior of BP is the most favorable.
Because BP produces a smooth interpolation of the disparity
values surrounding the wiper, the region-growing method will
be able to select pixels from the wiper region and thus pass
through to the road section cut off by the wiper. For GC and
SGM, the erroneous or missing disparity values will prevent
any further expansion of the selected road region. The road
that is depicted beyond the wiper will hence never have the
chance of being selected. This behavior is shown in Fig. 2e
and 2f for BP-SEPE and GC-CEN.

In case where an initial region above the wiper is selected,
the wiper does not have an impeding effect for GC or SGM,
as shown in Fig. 2h. Rather, in this case the region-growing
process does not select the region below the wiper. This region
is usually redundant, as close road sections to the opposite side
of the wiper can still be selected.

In terms of the modeling error, there seems to be only a
small difference between BP and GC or SGM, as can be
seen in Fig. 4a and 4b for BP-SEPE and GC-CEN (if we
neglect the high error observed for the last two frames). The
modeled distance on the other hand is significantly reduced for
several frames when using GC instead of BP, as is shown in
Fig. 4c.The fact that we didn’t observe a significantly higher

model deviation reveals that our road models do not degrade
in accuracy, but only in modeled distance.

The summary for all stereo algorithms and road-modeling
methods is shown in the bottom half of Table I. If we
compare those results to the ones that we received for the
previous sequence, we realize that RGBS performs worse
for most stereo algorithms (SGM-EPE is an exception). This
is, however, not true for VENV and VPLAN that in many
cases performed slightly better, which can be credited to the
robustness of the used Hough transform. Nevertheless, RGBS
still performs best for most stereo algorithms.

If we compare the maximum modeled distances between
both sequences, we realize that they do not differ much. Given
our previous observation on the limited region expansion, this
appears counter intuitive. However, most stereo pairs do not
depict a wiper, and for those stereo pairs that do, only few
provide a scenario where the modeled distance is significantly
reduced. Hence, the the maximum modeled distance is only
slightly smaller for most algorithms.

For BP-EPE and BP-CEN, the modeled distance has in fact
increased. As the wiper occlusion does not form an obstacle
for BP, this is not surprising. The smooth interpolation caused
by BP for the road section occluded by the wiper might even
facilitate the region-growing process for RGBS.

The relative performance of the individual algorithms did
not change significantly from Sequence Wiper. BP-SEPE
still performs best among the BP algorithms and achieves the
highest modeled distance. Likewise, SGM-CEN still causes
the lowest model deviation, but the advance is much less than
it was for Sequence Wiper, while the difference in modeled
distance remains approximately equal.

VII. CONCLUSIONS

We have performed an evaluation of the three considered
road-modeling methods using seven stereo algorithms and
two evaluation sequences. In most of our experiments, RGBS
provided the most accurate models. If we compare VENV and
VPLAN, we realize that VENV performed worse than VPLAN
for all sequences and stereo algorithms. There is hence no
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Fig. 4: Deviation for Wiper with (a) BP-SEPE and (b) GC-CEN, and (c) maximum distance with BP-SEPE and GC-CEN.

reason for ever using VENV in favor of VPLAN. However,
this is likely to be caused by the way the envelope function
is extracted from the v-disparity image, which matches the
method used in [1]. In principle, an envelope function can
model more complex road geometries and should be able to
provide more accurate results.

It is difficult to choose a best performing stereo algorithm
from the experiments we conducted in this study. Clear win-
ners are the BP algorithms in the case when a windscreen
wiper is visible. Losers are the GC variations that failed to
convince on any sequence, and especially GC-EPE, which
always performed worst. In terms of the maximum modeled
distance, BP-SEPE is the best performing algorithm. This
algorithm produces smoother disparity maps than the other
examined BP versions. It is, however, possible to also create a
smoother BP algorithm that is based on the census transform.
What our experiments show is that this increased smoothness
is beneficial for the region-growing process.

In terms of the model deviation, SGM-CEN produced
the best results for RGBS with both evaluation sequences.
However, in both cases the maximum modeled distance was far
lower than for BP-SEPE. Because the close range road profile
can be modeled with higher accuracy, we cannot conclude
that SGM-CEN provides the better road models. As BP-SEPE
caused a fairly low model deviation and on average the farthest
modeled distance, this algorithm is likely to be the most
suitable stereo algorithm for RGBS. Considering the similar
performance of BP-EPE and BP-CEN, it is likely that a smooth
census-based BP algorithm would produce similar results to
BP-SEPE. Such an algorithm should be included in future
evaluations.
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