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Abstract

The report discusses options for testing correspondence algorithms
in stereo or motion analysis, designed or considered for vision-based
driver assistance. It introduces a globally available database, with a
main focus on testing on video sequences of real-world data. The au-
thors suggest the classification of recorded video data into situations,
defined by a co-occurrence of some events in recorded traffic scenes.
About 100 to 400 stereo frames (or 4 to 16 seconds of recording) are
considered to be a basic sequence, to be identified with one particular
situation.

Future testing is expected to be on data that is reporting on hours
of driving; multiple hours long video data may be segmented into basic
sequences, and classified into situations. The report prepares for this
expected development.
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The report uses three different evaluation approaches (prediction
error, synthesized sequences, labeled sequences) for demonstrating
ideas, difficulties, and possible ways in this future field of extensive
performance tests in vision-based driver assistance; especially also for
cases where ground truth is not available. The study shows that the
complexity of real-world data does not support an identification of gen-
eral rankings of correspondence techniques on sets of basic sequences
showing different situations. It is suggested that correspondence tech-
niques need to be adaptively chosen in real time using some type of
statistical situation classifiers.

Keywords. Vision-based driver assistance, performance evaluation, stereo
analysis, optical flow, motion analysis, video data, basic sequences, situa-
tions, ground truth.

1 Introduction

Driver assistance systems are active safety measures in modern cars, also
developed for comfort, fuel economy, and so forth. Vision-based driver assis-
tance systems have been implemented in commercial vehicles since the 1990s,
first time in form of a lane-departure warning system by Mitsubishi in 1995
[34]. There is an increasing demand in evaluating such sensor-based compo-
nents of modern cars, similar to crash tests being performance measures for,
e.g., mechanical components of cars.

1.1 Objectives and Motivation

The main objective of this work is to report about current work in test-
ing correspondence algorithms (i.e., motion or stereo analysis techniques),
on a large variety of test data under realistic recording conditions, as typi-
cally occurring in the driver assistance domain.1 Such ’large scale’ testing is
not yet supported by popular benchmarks, as used in the computer vision
community; those are characterized by well controlled data sets, and, as a

1This certainly also generalizes to other domains such as outdoor robotics, surveil-
lance, human pose recognition, or for mobile platforms in outdoor applications in general.
However, this report is only discussing evaluation in a context of driver assistance systems.
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consequence, their value is only of limited relevance for application domains
dealing with outdoor data such as occurring in driver assistance.

Evaluations of correspondence methods in general have already some his-
tory in the computer vision literature (see, for example, [3, 17, 35, 44, 47]),
and have contributed to the current progress in the field of those algorithms,
designed for spatial or temporal matching of image data. For evaluations
especially in the context of vision-based driver assistance systems, see, for
example, earlier work by the authors as in [27, 36, 37, 38, 42, 48, 49]. This
report is summarizing but also extending work reported in those references.
In particular, the authors would like to present the various opportunities in
using publicly available test data on EISATS, the .enpeda.. image sequence
analysis test site; see [12].

1.2 Basic Terms

In this report, we introduce data sets that are selected or designed for testing
vision-based driver assistance systems, together with a discussion of evalua-
tion methods (when using those data) for stereo or motion analysis. Motion
is typically described in computer vision by optic flow (i.e., the visual change
of image intensities from frame to frame).

The ego-vehicle is the car in which the driver assistance system is oper-
ating; ego-motion is defined by changes of the ego-vehicle in position, tilt,
roll, or yaw angles. Stereo or motion analysis are low-level tasks for un-
derstanding image data, and results of this analysis are used in subsequent
higher-order process for understanding traffic scenes. As an example of such
a higher-order process we consider in this report the segmentation of image
data into regions where the optic flow is caused either by ego-motion (of
the ego-vehicle) or by independently moving objects, such as other vehicles,
pedestrians, or bicyclists.

The EISATS database in its current form already supports evaluation
of stereo, motion, or segmentation algorithms. Provided stereo image video
data are sequences of some length, typically of about 100 to 400 frames (or
4 to 16 seconds of recording, assuming 25 Hz as a current standard). These
sequences are considered as representing particular situations. One way of
defining a situation is by identifying a particular co-occurrence of events in
recorded traffic scenes. Examples of events are activities of adjacent traffic
(overtaking, oncoming traffic, crossing pedestrians, and so forth), weather
and lighting conditions (rain, sun strike, patterns of shadow while driving
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Figure 1: Frames from sequences showing three different situations: inner
city at night (left), brightness differences (middle; a changing angle towards
the sun occurs here), and close objects (right).

below trees, and so forth), road geometries (flat or curved, narrow lane,
entering a tunnel, driving on a bridge, a speed bump, and so forth), or
particular events such as traffic signs, a wet road surface or strong light
reflections at night. For example, ”driving in daylight on a planar road while
overtaking a truck” is an example of a situation defined by a concurrent
appearance of such events. Another way of defining a situation may be by
statistical properties of image data; for example, see the visual textures in [1].
However, in this report we stay with the first option (i.e., situations defined
by events).

Situations typically change every few seconds in normal traffic, and we
consider 4 to 16 seconds as a reasonable length of a recorded video sequence
(also called a basic sequence) to be identified with one particular situation.

Examples of situations are: default driving conditions, inner city traffic
at night, brightness differences between both images in the stereo pair, illu-
mination artifacts (e.g., sun through trees along the road), or close objects in
front of the ego-vehicle. See Figure 1 for images visualizing three examples
of situations; those are situations as discussed at some length in Section 5.

Future testing is expected to be on data that is reporting on hours of driv-
ing; multiple hours long video data may be segmented into basic sequences,
and classified into situations. The report aims at preparing for this expected
development.

We are interested in identifying the impact of particular events (i.e., of
real-world outdoor issues) on the performance of correspondence algorithms
in the context of a given situation. This allows us to recognize a particular
challenge, often a particular task for research in correspondence algorithms,
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and possibly also to propose ways to overcome the underlying problem, de-
fined by this particular event.

We name a few examples of such challenges: (i) large disparities or mo-
tions across frames for image regions showing objects that are close to the
ego-vehicle (e.g., caused by passing-by cars) but also due to large rotational
motions of the ego-vehicle (i.e., also of the recording cameras), (ii) variations
in illumination across frames2 (e.g., slowly due to movements of clouds or
a change in viewing angle relatively to the sun, or rapidly due to driving
through a forested area, having the shade of leaves on cameras for fractions
of a second), or (iii) motion blur in recorded frames. These are just three
examples of real-world outdoor challenges. Such challenges often severely
effect the complexity of the correspondence problem, to be solved for stereo
or motion analysis.

1.3 Used Acronyms for Correspondence Algorithms

For stereo analysis, we discuss in this report (BP) loopy belief propaga-
tion stereo [14], (DP) dynamic programming stereo [39] with simple spatial
(s) or/and temporal (t) propagation strategies [30], encoded by acronyms
DPs, DPt, or DPst (note: those propagations could also be applied for the
other matching algorithms), semi-global matching (SGM) stereo [21] with
cost functions defined either by mutual information (SGM-MI) or (SGM-
BT) the cost function introduced by Birchfield and Tomasi in [7], and (GC)
graph-cut stereo matching [28].

Other correspondence algorithms could be considered as well, but this set
provides a good selection of currently favored stereo matching approaches.
Note that they represent three dominant design methodologies of stereo
matching: optimization along linear paths of pixels (DP, SGM), graph cut
optimization (GC), or optimization by belief propagation (BP).

Each stereo matching technique is defined by selected parameters such as
weights in cost functions, or the size of used neighborhoods when defining cost
values. It is not the intention of this report to evaluate one particular method
in detail (e.g., by aiming at optimizing such parameters for a particular
situation). The report likes to point out that matching methods behave very

2[22] studies cost functions in stereo algorithms under the particular aspect of brightness
differences between stereo frames; see also [20] for a general study of cost functions in stereo
algorithms.
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Figure 2: Example of stereo input data (left and middle) and a disparity
map obtained with SGM-BT (right). This disparity map is fairly useless in
this particular case; this is for illustrating a ‘bad performance’. Note that
the cameras were also recording some reflections on the windscreen in this
example of a situation that might be called ‘brightness differences between
left and right images, and an approaching truck’; the first event (brightness
differences) causes the BT cost function to fail, the second event (approaching
truck) should be solvable for the SGM matching strategy in principle when
using a ‘better’ cost function for matching than BT.

differently for different situations recorded in a traffic context, and we define
and illustrate ways how to obtain such evaluations.

The calculation of depth or disparity values (i.e., stereo analysis) is a
basic step in the understanding of the surrounding environment of an ego-
vehicle. A given stereo algorithm may report very confusing depth values if
the input data has not been recorded under ideal conditions. For example,
Figure 2, left and middle, presents a stereo pair in which there is a large
difference in brightness between both images. The right image in this figure
shows the output (i.e., depth map) of SGM-BT. Note that it is difficult to
recognize any 3D structure of the scene. But this only shows that SGM-BT
is not well suited for image data of this particular situation; possibly some
preprocessing of the input data might actually change the performance to
be better, or SGM-BT might perform ‘much better’ if there would be no
brightness differences between left and right image? Actually, our studies
have shown that SGM-BT is ‘not a good choice’ in general, due to the small
neighborhood of contributing pixels even if there are no brightness differences,
but in general also due to the inherent assumption of brightness constancy
in this cost function.

We also introduce a few acronyms for the discussed motion analysis algo-
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rithms. For computing optical flow, we will report about (PyrHS) Pyramid
Horn-Schunck [23] (by extending the basic version of the Horn-Schunck al-
gorithm in OpenCV with a pyramidal control structure), (BBPW) the algo-
rithm described by four authors (identified by capitals B,B, P, and W) in [8],
and (TVL1) a total-variation technique using an approximation of the L1-
metric [53]. Again, this selection is obviously not covering the whole diversity
of currently discussed motion analysis algorithms, but the authors aimed at
having a methodologically reasonable selection of different techniques for this
report.

Where available, stereo analysis or optic flow sources have been down-
loaded either from author’s websites and adapted by us, or fully implemented
by us (partially also in contact with those authors); the source of basic HS
was downloaded from OpenCV.

1.4 Stability and Robustness

Correspondence methods may be ranked for given situations based on their
performance. Stability of one method is defined with respect to a particular
situation, and a constantly good performance of this method for different ba-
sic sequences all showing this situation. Robustness of one method is defined
by good performance on various situations.

The ranking of correspondence algorithms with respect to stability can be
rather different for considered situations. A ‘top performer’ for one situation
may not be robust within a given set of situations. For example, BP (which
assumes intensity constancy in the data term of its cost function) is often
a very good choice if there are no brightness differences in the stereo image
data, but its results quickly degrade if there are lighting differences.

See Figure 3 for complete diagrams of performance values of consid-
ered stereo algorithms for some selected situations, for stereo image (sub-
)sequences of a length between 80 to 140 frames. The used NCC measure
will be specified later. However, with reference to those diagrams we already
note that rankings may differ within one sequence from frame to frame, and
the overall mean performance from sequence (i.e., situation) to sequence.

For example, the results indicate that SGM-MI may be called ‘stable’ on
the Brightness Difference sequence, but it ranks low in general on the other
four sequences. DPt ranks twice fairly high, on the Ordinary Conditions
sequence and on the Close Objects sequence, and by analyzing the corre-
sponding image data we noticed that this correlates to scenes where a high
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Figure 3: Performance of stereo algorithms on five different situations, using
a normalized cross-correlation (NCC) measure (a larger value is ‘better’) on
trinocular sequences. Top row: Left: Ordinary Conditions sequence. Right:
Illumination Artifacts sequence. Middle row: Left: Inner City at Night se-
quence. Right: Brightness Difference sequence. Bottom: Close Objects se-
quence.
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percentage of pixels shows the surface of a planar road (and this corresponds
on a theoretical level exactly to the underlying model of the used temporal
propagation). Sometimes there is a strong correlation in the ups and downs
of all the stereo algorithms (e.g., at frame 55 in the Close Objects sequence),
and sometimes just particular algorithms fail (e.g., those depending on the
intensity constancy assumption about at frame 110 in the Brightness Differ-
ence sequence).

Similar variations in performance may be noticed for motion analysis
algorithms. Here, TVL1 proved to be superior in general; the other two
considered motion analysis techniques were good for some situations only.
TVL1 may be called robust, at least with respect to currently known motion
analysis methods.

There was no ‘clear winner’ for stereo analysis algorithms for all the
considered situations. Some studied algorithms may be called ‘stable’ for
some situations, but we do not call any of the considered stereo matching
algorithms ‘robust’ for some kind of extensive class of different situations.
However, we only have studied a few different situations so far (what was
already quite time-consuming), and it might be possible to identify such
classes in future, for example by sharing more evaluation results for long
stereo sequences as available on the EISATS database.

1.5 Contributions of this Report

As a technical contribution we introduce the EISATS data base [12] which
provides appropriate data as well as evaluation tools for benchmarking and
analysis of correspondence algorithms within a driver-assistance context, on
a much larger scale and variation than currently used benchmarks which
are still defined by small sets of test images. Since the visual information
in the driver assistance domain is very different than the commonly used
rather controlled stereo and optic flow benchmarks, their value is limited for
practical applications in the driver assistance domain.

We develop tools and perform large scale benchmarking on long sequences
with high variations. This allows us to characterize stability or robustness;
something what was not discussed earlier for small sets of benchmark data.
Moreover, there are many situations (e.g., overtaking a truck, or driving
into a tunnel) in which established correspondence algorithms actually fail,
meaning that their performance drops such that there is no way to ensure a
qualitatively correct 3D scene analysis. This points to still existing funda-
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mental problems in stereo processing that are not visible in currently used
data bases.

As a further scientific contribution, our analysis shows that the optimal
stereo algorithm in general depends on the actual situation, and hence some
categorization of situations is needed, to assign whole classes of situations
to particular correspondence algorithms. This defines a new direction of
research.

The report is structured as following: First, the next section introduces
the EISATS database as available by December 2010, which is structured into
Sets 1 to 7. Next we prepare for stereo and motion performance evaluation; at
first we define error measures, also proposing new summarizing methods for
error measures on image sequences, and in the next section prediction error
analysis for stereo methods based on calibrated trinocular image sequences.

After all those preparations we demonstrate comparative stereo analy-
sis on EISATS data, with the intention to highlight the study of situations.
We also use synthesized EISATS data for evaluating motion analysis algo-
rithms. We show that different situations lead to different rankings in stereo
or motion algorithms.

Finally we briefly discuss the use of Set 3 for discussing methods for the
detection of independently moving objects in traffic scenes. The report ends
with conclusions and comments about future work.

2 The EISATS Data

Testing on extensive and varying data sets helps to avoid a bias which occurs
when using only selective (e.g., ‘small’) sets of data. The report introduces
several sets of ‘long’ test sequences that are made available on the net as well
as used evaluation measures for comparing different algorithms.3

Data relevant for driver assistance applications have basically an unlim-
ited range of variations (‘expect the unexpected’), due to the potential range
of events, and thus of their combinations into situations. Selective (‘small’)
sets of test data, say with a focus on rendered or engineered (good lighting,
indoor) scenes, are insufficient for serious testing. The .enpeda.. (environ-

3Actually, ‘long’ in this report still translates into durations of sequences in multiple
seconds only, rather than of minutes, hours, or days; however, sequences of 150 or 400
stereo frames already allow us to illustrate the potentials of such ‘long’ sequences for
testing and improving correspondence algorithms.
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Table 1: Data sets offered on the EISATS website in December 2010.

Set Comments

1 Night vision stereo sequences (Daimler AG)

These seven stereo night vision sequences (12 bit, between 220 and 300 pairs of frames each) have been provided by

Daimler AG, Germany, in June 2007 (group of Dr. Uwe Franke). These sequences come with ego-motion data and

time stamps for each frame.

2 Synthesized stereo sequences (.enpeda.. & Daimler AG)

These synthesized stereo sequences (with ground truth) have been provided by Tobi Vaudrey (.enpeda..) and Clemens

Rabe (Daimler AG).

3 IMOs in color stereo sequences (Drivsco)

These three day-time, color stereo sequences have been provided by the European Drivsco project. Independent

moving objects ground truth and gaze data is now available.

4 “Normal camera” binocular stereo sequences (Hella Aglaia Mobile Vision & .enpeda..)

A few of those day- or night-time, grayscale stereo sequences have been provided by Hella Aglaia Mobile Vision

GmbH, Germany; most of them have been recorded by students in the .enpeda.. project.

5 “Normal camera” trinocular stereo sequences (.enpeda..)

Three-camera stereo sequences (rectified by pairs) captured with HAKA1.

6 Grayscale stereo sequences with range scans (HU Berlin, .enpeda.. & Daimler AG)

So far three stereo vision sequences where the test vehicle drives through a car park; ground truth from a laser

scanner; SGM, block and cross matcher disparity maps are also included.

7 Grayscale stereo sequences for scene labeling (Daimler AG)

Stereo sequences with ground truth for scene labeling analysis (segmentation).

ment perception and driver assistance) Image Sequence Analysis Test Site
(EISATS), see [12], is not (!) focused on one particular set of data or one
particular evaluation strategy, but open to researchers in vision-based driver
assistance systems for applying those data in their evaluations, as well as
for contributing more (best: verified) data. The website contains recently
seven different sets of test sequences, provided by different research groups
in vision-based driver assistance, and of relevance for particular evaluation
strategies. We illustrate the use of some of those data sets in this report.
We are not discussing data in Sets 6 and 7 of EISATS in this report; more
sequences with accompanying range scans or segmentation ground truth are
in preparation, and this will be a subject of more specialized papers.

For the case of stereo and optic flow, we demonstrate that performance
of established algorithms on small sets of test data, such as [35, 44, 47], is
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not necessarily describing their performance on data as used in experiments
in vision-based driver assistance. This reflects a common problem that (e.g.)
engineers working in certain application areas find only little indications on
the actual relevance of an algorithm in their specific scenario on a very se-
lective set of test data.

We see the EISATS data base as a dynamic forum for relevant data
and benchmarks for vision-based driver assistance. See Tab. 1 for a brief
characterization of available sets of image sequences.

Each of the EISATS image sequences [12], as used in this report, repre-
sents a few seconds of driving (i.e., typically showing one situation). Sets 1-5
provide already some diversity of situations, and the goal is to extend those
in a more systematic way. These sequences are still only representing a very
small segment of possible situations in vision-based driver assistance (e.g.,
our discussion does not yet cover sequences recorded in the rain with moving
wipers, against the sun, and so forth).

However, the given sets already allow us to go to a new quality of per-
formance evaluation for correspondence algorithms compared to basically
“no-sequence” data sets on sites such as [6, 10, 32, 33], which do not support
studies about the influence of illumination artifacts, temporal filtering, or
having low-contrast images with rapid changes due to events happening in
real-world driving situations.

3 Error Measures

Since we are dealing with long sequences, we can analyze results over time,
where frames are indexed by t. There are hundreds of error measures available
(e.g., see [11]), and we aim at using general error measures that apply to many
types of evaluation data.

If ground truth is available, we may calculate at a pixel position p the
Euclidean distance

Et(p) = ‖At(p)−Bt(p)‖2

of a generated result At(p) from the ground truth Bt(p). Doing so for all
available (e.g., non-occluded) pixel positions p, we obtain an error image Et.

In general, At and Bt are both n-valued functions (e.g., for stereo we have
one disparity value and thus n = 1, optical flow is a field of 2D vectors with
n = 2, or scene flow combines disparity with optical flow, and we have n = 3
in this case).
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From such an error image Et we can derive various measures, such as
the mean µ, standard deviation σ, zero-mean standard deviation σ0 (also
referred to as root mean squared error), or simply maxima max.

We can explain this better by translating to some common error metrics
already used in the community. In the case of stereo matching, a common
metric is the root mean square error. For example, in [44] this is simplified
to

σ0(Et) with n = 1

For optical flow, the common measure is the mean end point error [3]

µ(Et) with n = 2

To be even more specific, consider the case of stereo algorithms first.
Assume that we have to compare two images At and Bt (e.g., calculated
depth map with ground truth depth map) at time t, at all pixel locations p
in a set Ωt (e.g., all non-occluded pixels). The applied evaluation measures
are point-wise root mean square

Rp(t) =

√√√√ 1

|Ωt|
∑
p∈Ωt

[At(p)−Bt(p)]2 = σ0(Et)

spatial root mean square, where we compare Gaussian means of local neigh-
borhoods (around the reference pixels),

Rs(t) =

√√√√ 1

|Ωt|
∑
p∈Ωt

[µ(Gσ(p) ∗ Et(p))]2 = σ0(Gσ ∗ Et)

where Gσ(p)∗ is a Gaussian convolution. Another measure is normalized
cross correlation (NCC)

N(t) =
1

|Ωt|
∑
p∈Ωt

[At(p)− µ(A)
t ][Bt(p)− µ(B)

t ]

σ
(A)
t σ

(B)
t

Those errors are calculated along the given sequences, frame by frame,
and conclusions are drawn based on mean errors and error variances along
sequences, or due to particular error patterns at particular sub-sequences
(e.g., for the occurrence of large occlusions, or of brightness alterations). In
the case of motion vector fields, we calculate either average angular errors
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or mean end-point errors µ(Et) between vectors at corresponding pixel posi-
tions.

The NCC mean mN and standard deviation σN of stereo matching tech-
niques,

mN =
1

T

T∑
t=1

N(t) and σ2
N =

1

T

T∑
t=1

[N(t)−mN ]2

on individual sequences (say, with T = 100 or more stereo frames) allows one
to identify a winner (as always, defined by the order of the means) for the
recorded situation, and its steadiness (standard deviation).

However, the winner algorithm might not be the best in every frame
within a given sequence. To measure this, we compare each two algorithms
using sums of direct comparison. Given two algorithms, say C and D, and
the corresponding NCC values C(t) and D(t) for every frame t in a given
sequence of length T , the sum of direct comparisons between C and D is
given by

SDC(C,D) =
T∑
t

∆(t) where ∆(t) =


1, C(t) > D(t)
0, C(t) = D(t)
−1, C(t) < D(t)

Note that the absolute values of SDC(C,D) and SDC(D,C) are equal. Thus,
we are able to define a ranking for each sequence based on sums of direct
comparisons. Let

sN(Sj) =
6∑
i=1

SDC(Si, Sj), Sj 6= Si

where the Sis represent the six selected stereo algorithms SGM-BT, DP, DPt,
DPs, BP, GC, and Sj is the particular stereo algorithm for comparison.

Taking multiple sequences for the same situation, or even all sequences for
all situations, the NCC mean and standard deviation defines the robustness
of methods on those data. We illustrate this for five different situations.

4 Virtual Views for Stereo Evaluation

Set 5 of EISATS offers five trinocular image sequences, where the third cam-
era may be used for prediction error analysis on stereo image sequences [37],
similar to the prediction error analysis in [45] for motion analysis.
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The prediction error strategy is a valuable tool to objectively evaluate
the performance of stereo algorithms when ground truth is unavailable or
basically impossible to acquire at full range and sufficient accuracy. The
prediction error strategy requires only that input data is captured with (at
least) three cameras: Two of them are used as input of the algorithms; the
remaining one (the third camera) is used for evaluation purposes. Calculated
depth data are used to map one of the stereo images (say, that of the ‘left’
camera) into the pose of the third camera, thus defining the virtual view.
The similarity between virtual and third view characterizes the quality of the
used stereo algorithm. Because of possible brightness differences between left
and third view, normalized cross correlation (rather than root mean squared
error) is used to quantify this similarity. The set Ω is defined by all pixel
positions in the virtual view which receive a mapped image value of the left
image.

See Figure 4 for an example of a recorded third view, a calculated virtual
view, and the disparity map (a result of applying BP stereo matching) which
was used for calculating this virtual view. The use of several trinocular se-
quences for prediction error analysis has been demonstrated in [27], and more
of such sequences are now available on EISATS. The geometric approach of
the prediction error methodology was specified in [36], only using Sequence 1
of Set 5 of [12]) as a long real-world sequence at that time. All contributing
cameras are calibrated [18], thus making mapping of data into defined poses
possible.

Figure 4: An application for a sequence in Set 5. Left: third view. Middle:
virtual view for the disparity map shown on the right. The applied matching
algorithm was belief propagation (BP) stereo analysis. The specularity (see
image on the left), apparent both in the recorded left and right image, causes
a ‘defect’ in the calculated disparity data.
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Algorithm Mean St. Dv.
DPt 0.81 0.03
DP 0.78 0.03
BP 0.75 0.02
SGM-MI 0.72 0.02
GC 0.67 0.03
SGM-BT 0.58 0.02

BP BT DP DPt GC MI sN Rank
BP 0 - - - - - 146 3
SGM-BT -110 0 - - - - -550 6
DP 76 110 0 - - - 334 2
DPt 106 110 70 0 - - 506 1
GC -110 110 -110 -110 0 - -328 5
SGM-MI -108 110 -108 -110 108 0 -108 4

Table 2: Overall results for the Ordinary Conditions sequence of Set 5 (see
Figure 3 for the complete diagram of values per frame). Left: Mean and
standard deviation. Right: Sums of direct comparisons for (SGM-BT - BP),
(DP - BP), (DP - SGM-BT), (DPt - BP), and so forth.

5 Evaluations for Situations

In this section we illustrate the use of sequences, as provided on EISATS,
for evaluating the performance of stereo algorithms for particular situations.
The classification of sequences into situations was done manually, just by
subjective evaluation of contributing events.

5.1 Ordinary Driving Conditions

Ordinary conditions are those in which the traffic is relatively light, the
brightness differences between the stereo pair is minimum, the sun still high
in the sky and there are no objects in the borders of the road which may
create illumination artifacts (see Section 5.2). Shadows and specularities
are minimum. Note that this sort of conditions can also be present in a
cloudy environment. Sequences in Sets 1 and 4 of EISATS are mostly in this
category.
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We show results for the Ordinary Driving Conditions sequence in Set 5.
The algorithm with better performance (with respect to the NCC mean)
was DPt, followed by DP and BP. All the algorithms presented their worst
performance in that sequence when the followed and incoming vehicles are
closer to the ego-vehicle. DPt, the winning algorithm, did not show the best
performance in every single frame, for around ten frames it performed worse
than DP. See Table 2 and Figure 3 top row, left.

5.2 Illumination Artifacts

Illumination artifacts (e.g., while driving below trees) are present in most of
the sequences of Sets 1, 4 and 5. We show results for the Illumination Arti-
facts sequence in Set 5. This sequence was recorded over a road surrounded
by trees. This situation, in general, did not modify drastically the brightness
between the stereo pairs, but introduced a considerable number of different
dark and bright patches (caused by the foliage) in the left and right images.

Algorithm Mean St. Dv.
GC 0.88 0.08
DP 0.82 0.03
DPt 0.81 0.02
BP 0.78 0.10
SGM-MI 0.77 0.03
SGM-BT 0.64 0.08

BP BT DP DPt GC MI sN Rank
BP 0 - - - - - -6 4
SGM-BT 150 0 - - - - -446 6
DP 4 150 0 - - - 270 2
DPt 4 150 -112 0 - - 48 3
GC 144 146 138 142 0 - 712 1
SGM-MI 4 150 -142 -148 -142 0 -278 5

Table 3: Results for the 150 frames of the Illumination Artifacts sequence
(see Figure 3 for the complete diagram of values per frame). Left: Mean and
standard deviation. Right: Sums of direct comparisons for (SGM-BT - BP),
(DP - BP), (DP - SGM-BT), (DPt - BP), and so forth.
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It also introduced a fast change in the lighting conditions between subsequent
frames.

For this particular sequence we noticed that, when the trees are closer to
the right side of the road (due to the fact that this sequence was recorded
in the late afternoon, when the sun was in a low position in the left side
of the ego-vehicle), the difference in brightness between the stereo pair is
reduced, improving the performance for most of the algorithms. The top
performing algorithm was GC, followed by the two dynamic programming
ones, see Figure 3 top row, right. An interesting point to note with this
sequence is that BP had a slightly better performance than SGM-MI with
respect to the mean, however, the latter algorithm had a better performance
in a larger number of frames than the former one, according to the Table 3.

Algorithm Mean St. Dv.
GC 0.79 0.06
BP 0.76 0.06
DP 0.74 0.07
DPt 0.73 0.07
SGM-MI 0.66 0.04
SGM-BT 0.64 0.05

BP BT DP DPt GC MI sN Rank
BP 0 - - - - - 332 2
SGM-BT -150 0 - - - - -696 6
DP -88 150 0 - - - 60 3
DPt -92 150 -26 0 - - 0 4
GC 138 150 146 150 0 - 734 1
SGM-MI -140 96 -118 -118 -150 0 -430 5

Table 4: Results for the 150 frames of the Inner City at Night sequence (see
Figure 3 for the complete diagram of values per frame). Left: Mean and
standard deviation. Right: Sums of direct comparisons for (SGM-BT - BP),
(DP - BP), (DP - SGM-BT), (DPt - BP), and so forth.
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5.3 Inner City at Night

A sequence of an “Inner City at Night” situation (Set 5) is recorded after
sunset with regular to dense traffic on the road; the scene is illuminated by
the lights of the other vehicles, and lights and specularities cause large white
regions of missing dynamics in intensity values. Using NCC as a quality
metric, GC was the algorithm with the best performance on the selected
original sequence, while SGM-BT showed the worst performance; see Table 4,
left. In the first 30 frames, the performance of all the algorithms is poor as a
consequence of a close object present in the scene (see Figure 3, middle row,
left).

For this sequence, the ranking with the NCC mean and the one obtained
with sums of direct comparisons was the same. However, according to the
Table 4 right, DP had a better performance than BP in almost the half of
the frames.

5.4 Brightness Differences

Brightness differences between the input stereo pair is a common issue in
driver assistance. For example, by changing the viewing angle with respect
to the sun, one camera may record a brighter sequence of frames than the
other. Of course, inter-camera-communication may somehow relax this issue
in the future.

The output of correspondence algorithms is severely affected in such a
situation of brightness differences. In the Brightness Differences sequence of
Set 5, there are brightness differences in every frame, and they increase in the
last 40 frames. The algorithm with the best performance on this sequence
was SGM-MI, followed by DP and DPt (see Table 5, left). This ranking is
in accordance with the results obtained in [37] in the case for the bright-
ness altered sequence, supporting the idea that the prediction error is a good
technique to evaluate stereo algorithms in the absence of ground truth. BP
showed a good performance (second) until the difference in brightness be-
comes extreme, in which its performance is the second worst. This situation
was reflected in the ranking defined by the sums of direct comparisons, in
which BP was the second best, due to the fact that its performance was
degraded until the last third of the sequence. See 3, middle row, right.
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Algorithm Mean St. Dv.
SGM-MI 0.86 0.01
DPt 0.77 0.02
DP 0.77 0.02
BP 0.75 0.08
GC 0.63 0.03
SGM-BT 0.60 0.05

BP BT DP DPt GC MI sN Rank
BP 0 - - - - - 174 2
SGM-BT -150 0 - - - - -584 6
DP -58 150 0 - - - 28 4
DPt -42 150 64 0 - - 172 3
GC -74 -16 -150 -150 0 - -540 5
SGM-MI 150 150 150 150 150 0 750 1

Table 5: Overall results for the 150 frames of the Brightness Differences
sequence. Left: NCC mean and standard deviation. Right: Sums of direct
comparisons for (SGM-BT - BP), (DP - BP), (DP - SGM-BT), (DPt - BP),
and so forth.

5.5 Close Objects

Sequences with close objects (people, other vehicles, static structures, etc.)
are very important to be investigated as this situation is the main character-
istic during a traffic jam, a potential conflict, and so forth. In this situation
it is likely that the implemented driver assistance systems should contribute
to adaptation and optimization of driving. In the analyzed Close Objects
sequence of Set 5, two pedestrians appear in front of the vehicle (without
any actual danger because the ego-vehicle stopped earlier).

The ranking of the algorithms differs from the two previous ones: DP is
the best overall, as seen in the Table 6 left and Figure 3 lower row. However,
four different algorithms have the best performance throughout the sequence
for particular intervals of time. The performance of all algorithms is below
standards around the middle of the sequence (except for SGM-MI), when
the two pedestrians are very close to each other. Even the top performing
algorithm, DP, had a worst performance than the worst overall algorithm
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(SGM-BT) for about 15 frames, according to the right side of Table 6.

Algorithm Mean St. Dv.
DP 0.65 0.07
BP 0.64 0.06
DPt 0.63 0.08
SGM-MI 0.63 0.03
GC 0.59 0.05
SGM-BT 0.53 0.03

BP BT DP DPt GC MI sN Rank
BP 0 - - - - - 123 2
SGM-BT -71 0 - - - - -331 6
DP 35 65 0 - - - 241 1
DPt -5 61 -43 0 - - 81 3
GC -77 55 -67 -57 0 - -201 5
SGM-MI -5 79 -31 -11 55 0 87 4

Table 6: Overall results for 79 frames of the Close Objects sequence. Left:
Mean and standard deviation. Right: Sums of direct comparisons for (SGM-
BT - BP), (DP - BP), (DP - SGM-BT), (DPt - BP), and so forth.

5.6 Summary

We summarize briefly the detected robustness of the algorithms across the
five situations presented in here (see Table 7). Using the mean of NCC
over all the situations, DPt outperforms (by a small difference) all the other
algorithms, despite the fact that it only performs the best in two of the
presented situations. However, the performance of DPt heavily depends on
the percentage of pixels showing a planar road surface. On the other hand,
GC finalized as the second worst algorithm, even that it was the best in two
of the sequences.

This report only discusses five sequences (situations). Summarizing our
more general experience, also taking our experimental results into account
which are not reported in this report, we may conclude that
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Algorithm Mean St. Dv.
DP 0.65 0.07
BP 0.64 0.06
DPt 0.63 0.08
SGM-MI 0.63 0.03
GC 0.59 0.05
SGM-BT 0.53 0.03

Table 7: Overall NCC results over the five different situations considered in
Section 5.

• cost functions should not depend on brightness constancy (as an alter-
native, some kind of preprocessing methods may map the given stereo
sequences into data where the impact of brightness differences has been
reduced, e.g., by using redials with respect to smoothing),

• the well-known streaking-effect of DP also limits the use of this simple
matching approach in the given application context,

• SGM is potentially able to deal with scenes of high depth complexities,

• BP may be preferred in scenes with larger homogenous regions, and

• GC has a tendency to create convex regions of nearly constant depth.

These findings are also accompanied by progress in real-time implementations
of DP, SGM, and BP, but the lack of fast implementations of GC variants.

6 Synthesized Video Sequences

Synthetic data with ground truth do have already a history in computer
vision. Long synthetic sequences, as in Set 2 of EISATS, are very useful for
studying defined variations in image data, for analyzing their impact on the
performance of a selected stereo correspondence algorithm.

In [37], the performance of several stereo algorithms was tested over dif-
ferent adverse conditions (blurred images, stereo pairs with differences in
brightness, and images corrupted with Gaussian noise) by modifying the
rendered sequence No. 1 of Set 2 of [12]. An objective evaluation (using
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the root mean squared error and the percentage of miscalculated bad pixels),
based on the available ground truth for such a rendered sequence, showed
indeed that the ranking of the studied algorithms varied depending on mod-
ifications applied to the sequence. However, a ranking of methods on such
rendered sequences is not well correlated to a ranking on real-world sequences
for particular situations. This is due to at least two facts: those synthesized
sequences are not yet perfectly photo-realistic and physics-based, thus differ-
ent from the real-world sequences recorded with specific cameras, and they
are also very limited with respect to the covered situations or (unpredictable)
events in the real world.

Synthesized data are especially important for motion analysis algorithms;

Figure 5: Top: example images (frame 42) from the synthetic sequence No.
1; grayscale (left) and color (right). Bottom: disparity map (left) with light
to dark as near to far, and red as occlusion; flow map (right) with the color
as direction (see border of image) and saturation as length, a vector map is
overlayed for additional information.
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Figure 6: Top: example images (frame 219) from the synthetic sequence No.
2; grayscale (left) and color (right). Bottom: disparity map (left) and flow
map (right), color encoding as in Figure 5.

relatively slow recording of video sequences (e.g., at 25 Hz) does not allow to
use prediction error analysis [45] for evaluation, and there are still not many
studies on performance of motion analysis on real world sequences (such as,
e.g., in [52]).

6.1 Sequences 1 and 2

The synthetic sequence No. 1 (a synthetic POV-ray sequence of 100 stereo
frames) was introduced in [48] and made publicly available (with stereo and
motion ground truth) in Set 2 on [12]. This was the first long stereo se-
quence, with ground truth data for optical flow (both x and y directions),
disparity, and disparity rate (change in disparity between frames - for scene
flow ground truth). This data is generated with ray-tracing and texture map-
ping, generating a very clean looking image. Figure 5 shows an example of
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the original images and ground truth interpretations. Furthermore, it is one
of the first stereo databases containing > 8-bit dynamic range; the sequence
contains 12-bit grayscale and 3 × 12-bit color depth. This is comparable to
top of the line commercially available machine vision cameras (e.g., [4, 41]).
This scene has been used to compare stereo [37], optical flow [38], and scene
flow algorithms [51] in various papers.

There is an advanced sequence available, synthetic sequence No. 2 in Set 2
[12]. This sequence contains a more realistic driving situation, also including
trees and grass. This sequence aims to be more challenging for the optical
flow and stereo algorithms. Example frames can be seen in Figure 6. It has
all the same qualities as sequence No. 1 (i.e., high dynamic range input,
with ground truth available). Furthermore, the ground truth ego-motion
(i.e., fundamental matrix) is available for every sequential pair of images.
This gives the ground truth movement of the cameras from frame t− 1 to t.
This allows one to use this information to create “biased” algorithms, and
also test ego-motion/fundamental matrix algorithms. Ego-motion estimation
is a very important aspect for driver assistance, as vibrations and variations
in the road cause very large rotational ego-motion between frames.

6.2 Results on Provided Data

The following results are for synthetic sequence No. 1. For computing optical
flow, we decided for testing PyrHS, BBPW and TVL1 (see Section 1.3).
This subset of algorithms highlights the basic to state-of-the-art algorithms
for optical flow. The results for mean end point errors (as introduced in
Section 3) can be seen on the left of Figure 7.

Further to this, we can alter the input data to contain noise that is present
in real-world imagery. This was done in [38] and highlighted that illumination
differences cause the major problems in both stereo and optical flow algo-
rithms. This is obvious, because both types of correspondence algorithms
rely on the intensity consistency assumption, i.e., that the pixel on an object
will look identical between corresponding images.

Sample results can be seen on the right side of Figure 7. The shape is
because the brightness differences are large (±100 intensity values) at the
start of the scene, and reduce to zero at the mid-point, before increasing
back up to ±100. Obviously, TVL1 is more sensitive to major illumination
differences, compared to the other algorithms. Furthermore, with a difference
of only ±10 (see around the middle of the sequence), the algorithms rankings
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Figure 7: Mean end point error results across image sequence, compared to
ground truth (left: on original data, right: on illumination altered data). The
total average was 4.5 (PyrHS), 2.6 (BBPW), and 0.53 (TVL1) for the original
data, and 8.6 (PyrHS), 21.0 (BBPW) and 48.3 (TVL1) for the illumination
altered data.

are the same as for no illumination difference.
This evaluation was only given as an example of what can be done with

the provided data with ground truth. A much more extensive test, varying
parameters and noise properties could be investigated to exploit this data.
One major hole in the literature is an extensive evaluation of the importance
of having a high-dynamic range for machine vision. From a practical point
of view, we have experienced that the stereo and optical flow results are of a
much higher quality when the dynamic range is high. This is obvious because
the cost functions have an easier discretization between possible matches.
This effect needs to be studied in detail, and the data provided here makes
that possible.

6.3 Possible Future Extension of Set 2

Most studies work on adding artificial noise to generated scenes (as done in
[37, 38]). This noise needs to be more realistic. One way of doing this is
by introducing the noise generation into the image generation process. We
demonstrate opportunities of physics-based rendering for camera modeling,
which is planned to be used in further sequences in Set 2 of EISATS.

Figure 8 shows a 3D model of an urban road intersection, and stereo
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sequences (path tracing) are rendered either with a simple ray tracer or
LuxRender. This involves the use of a realistic model of atmosphere and
sunlight. A simulation of realistic specular highlights or blooming is of im-
portance, as these events occur frequently in imagery of outdoor scenes and
cause major problems to correspondence algorithms. A scene with specular
highlights or reflections can not be seen by a cameras as ‘perfect’ as shown in
the upper row (left, or second to the left). An image with moderate bloom
and some chromatic aberration simulates some realistic distortion as appear-
ing for common cameras. An image with severe blooming (upper row, right)
simulates a defective camera (or a camera with over-exposure - which often
happens in outdoor environments).

We also studied the behavior of BP stereo on such synthetic images. As
expected, depth maps derived from ray-traced stereo pairs contains only mi-
nor errors in image regions showing reflections. However, depth maps from
images with moderate blooming and chromatic aberration are not signifi-
cantly degraded compared to results from undistorted data. Images severely
degraded by blooming show impaired results. Further studies in this area
hope to identify which noise effects results for stereo and optical flow the
most, thus giving the community tools on where they should be trying to
adapt their algorithms.

Figure 8: Upper row, left to right: 3D model rendered with simple ray trac-
ing, tone-mapped output of LuxRender (some issues with material support
of this render engine are apparent such as missing road marks), also with
moderate blooming and chromatic aberration, and severe blooming. Lower
row, left to right: corresponding BP depth maps.
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7 IMOs in Color Stereo Sequences

The sequences in Set 3 of EISATS were especially designed for studying the
detection of independently moving objects. This set provides two situations,
both with (very) long image sequences. For the detection of independent
moving objects (IMOs), we also provide ground truth in terms of labeled
regions with associated information (such as the type of IMO, on which lane
the car is driving and additional occlusion properties of the IMOs). More-
over, we define several measurements that allow for comparative evaluation
of IMO detection algorithms. The two sequences show situations ’Suburban
Bridge (851 frames)’ and ’Suburban follow’ (1182 frames) with ground truth
information in terms of labeled IMOs.

We discuss the used data labeling. In the following, true IMOs are de-
noted A = (x, y, w, h) where the position of the IMO’s center is denoted by
(x, y), and its width and height by (w, h). Detected IMOs are denoted by
B = (x′, y′, w′, h′). The overlap value for A and B is an estimate for the
distance between a true labeled IMO and a detected one, and is calculated
as follows (see Figure 9): a =

(
max{x+ w
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, x′ + w′

2
} −min{x− w

2
, x′ − w′

2
}
)

and b =
(
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2
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2
}
)

and

O(A,B) =
a · b

max{wh, w′h′}
(1)

The defined overlap value is not a metric: it is symmetric O(A,B) =
O(B,A), we have O(A,A) = 0, but O(A,B) = 0 does not mean that A = B,
and this measure does also not satisfy the triangularity constraint O(A,C) ≤
O(A,B)+O(B,C), for sets of pixels A, B and C. However, the overlap value
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Figure 9: Left: because of w′h′ > wh in the shown case, the estimate is equal
to ab/w′h′. Middle: ab increases resulting into an increase of the overlap
value > 0.5. Right: ab decreases resulting into an overlap < 0.5.
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is easy to calculate and proved in our experiments to be a reasonable estimate.
On the other hand, the cardinality of the symmetric difference between A
and B divided by the cardinality of the union of both sets would be a metric;
for a proof see [26]; but this measure is more costly to calculate.

Finally, the counts of hit, miss or false alarms provide an evaluation of
the quality and reliability of the detection. A detected IMO is considered as
being true if the overlap value with a true IMO is less or equal to 0.5, where
equal to zero means that both circumscribing rectangles coincide.

We have developed a two-stage vision system for extracting driving-
relevant information from stereo cameras mounted in a moving car (for de-
tails, see [5, 40, 42]). For the gaze target identification, we provide the
position of the gaze point within the frame, and identity the gaze target as
being the ground truth. The position is given in normalized (x, y) coordi-
nates, ranging from (0, 0) in the lower left, to (1, 1) in the upper right corner
of a recorded frame. Gaze target identities were classified by a human ob-
server into one of 15 active target classes (e.g., lane markings on the right,
and tangent point on lane markings at the center of the road).

Independently moving objects were hand-labelled frame-by-frame and
tracked across successive frames. For each IMO, the following parameters are
given: its identification number, type (car, truck, motorcycle, bike, pedes-
trian), a flag indicating whether it is partially occluded (1) or not (0), and
finally the lane it is traveling on (1-same as the test car, 2-opposite, 3-side
road left, 4-side road right). In respect to the image frame, the IMO’s center
(x, y) and extension (width and height) are given. This data range on both
axes from 0 to 1, with the origin (0, 0) being in the left lower corner. Fig-
ure 10 shows an example frame taken from the Suburban Bridge sequence.
On frame 875, IMOs 3 and 4 are to be seen and the former partly occludes
the latter.

Gaze point targets were classified by hand on a frame-to-frame base into
one of 15 active and three error classes: Lane markings on the left side, center
or right side of the road, boundary posts to either side of the road, tangent
points on these lane markings, where applicable, the road surface ahead (i.e.,
on the first 20-30 m in front of the car), or farther away, street signs and traffic
lights, IMOs ahead (on the same lane), upcoming (on the opposite lane), or
moving on cross roads. Gazes to any other point (including the dashboard)
were classified into the residual class, whereas errors were either associated
with the start or the end of the recording or were classified as a general
error. The predictive value of eye movements on car-directed actions by the
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driver has recently been demonstrated [24]. Next to the IMO information
mentioned above, Figure 10 also shows the position of the gaze point (number
plate of the first car).

Human drivers are facing a dual task: on the one hand, they need to steer
the car through straight and curved sections of the roads; for this part they
usually direct their gaze to the tangential point or the road surface (i.e., two
points that allow to infer the required steering angle by identifying simple
geometric means); see, for example, [29, 24, 25]. On the other hand, they
need to attend quickly to upcoming possible obstacles such as IMOs or points
of interest such as crossings. While there are a number of algorithms built
to segment the scene and identify salient points of interest in a bottom-up
manner (see above), the combination of saliency and relevance (top-down
processes) into a priority map [13] is a subject of current research, and there
are no databases available for benchmarking so far.

Figure 10: Frame 875 of the Suburban Bridge sequence (left camera) shows
two IMOs, for which hand-labelled data are provided. Furthermore, gaze
positions are available, both in coordinates and classified targets. In the ego-
vehicle we observe the number plate of IMO 3 (black and white cross) and
further data, also on IMO 4.
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8 Conclusions

Within the .enpeda.. project, hundreds of sequences have been recorded so
far, and many of them have been analyzed using prediction error analysis
and the NCC measure (in case of stereo analysis), or using approximate
scene geometry (in case of motion analysis [52]).

Rankings of stereo or motion correspondence methods change often along
one sequence, and benchmarking on only a few frames of such a sequence
would be meaningless. Various events in outdoor driving define many chal-
lenges for stereo or motion matching, and often all the methods experience
difficulties with the same event, just at different scales. The importance of
testing on such sequences is actually to identify such events, and to aim at
improving matching for those particular events. However, the authors also
imagine that an adaptive strategy may finally be best, selecting stereo or
motion matching methods out of a given toolbox in dependence on automati-
cally detected situations. For example, white balancing in cameras is already
such an adaptation, which needs to be refined and expanded to further layers
of data processing.

We presented methodologies for performance evaluation of correspon-
dence techniques and discussed experiments with test data relevant for out-
door vision in the driver assistance domain. Based on those investigations,
we draw the following conclusions:

• There are reasonable solutions for stereo analysis in outdoor environ-
ments, on sequences taken from moving cameras, but none of the tech-
niques was superior in all the tested situations; an adaptive selection
might be the way to go.

• A careful evaluation of stereo or motion algorithms (comparable to
efforts when performing car crash tests for physical performance) re-
quires a testing on very large and representative data sets. Testing on
data representing very different situations goes beyond common test
behavior in today’s computer vision community. The EISATS data
base offers evaluation tools as well as relevant data to do such large
scale analysis.

• There is a significant variation of performance of different correspon-
dence algorithms across and even within individual sequences (situa-
tions), and adaptive selection of techniques (from a toolbox where avail-
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able) would require time-efficient higher level mechanisms that identify
situations.

• An investigation of the influence of particular events in images, such
as typical for certain situations, on the performance of different stereo
and optic flow algorithms is a meaningful task which allows for the
improvement of techniques, either directly or by means of data prepro-
cessing. The classification of such events is likely to require high-level
scene analysis. In this context, the EISATS data base already contains
some benchmark data relevant for IMO detection as well as human gaze
data.

• Rendered data may be manipulated to simulate particular events. We
demonstrated that different stereo algorithms degenerate to a different
degree in case of brightness differences or lighting artifacts, depend-
ing on parameters when generating those events. The EISATS data
base provided rendered sequences in which these particular effects are
simulated.

The EISATS website [12] provides data for the analysis and benchmarking
of stereo and optic flow as well as for high-level scene interpretation in the
driver assistance domain. The authors invite other researchers to contribute
with relevant benchmark data in driver assistance. Obviously, this is and will
happen at various places, such as at the Daimler pedestrian benchmark data
set at [15], and for many other traffic-related application areas (e.g. driver
fatigue analysis [43]) which also have their particular needs for test data.

We suggest that different stereo or optic flow algorithms (identified as be-
ing stable top performers for at least one situation) are taken into a tool box,
and that an adaptive strategy should be applied. A classification of incom-
ing stereo video data into situations could guide the selection of algorithms
from the tool box. A statistical approach for identifying situations might
be more appropriate for this adaptive strategy than an intuitive high-level
identification scheme of situations (by events).

A future statistical categorization of situations may be possibly based on
distributions of selected features in the Fourier domain of signals (as in [1]),
on simple features such as mean intensity or variance in randomly selected
windows, or on the density of significant scale-invariant features or locally
adaptive regression kernels [46] in randomly selected image rows, and so
forth. We already tested scale-invariant features for this purpose [19], and
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a ‘sparse feature’ approach appears to be reasonable for some clustering of
image sequences into different categories.
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