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Abstract. The history of stereo analysis of images dates back more than
one hundred years, but stereo analysis of image sequences is a fairly re-
cent subject. Sequences allow time-propagation of results, but also come
with particular characteristics such as being of lower resolution, or with
less contrast. This article discusses the application of belief propagation
(BP), which is widely used for solving various low-level vision problems,
for the stereo analysis of night-vision stereo sequences. For this applica-
tion it appears that BP often fails on the original frames for objects with
blurry borders (trees, clouds, ...). In this paper, we show that BP leads
to more accurate stereo correspondence results if it is applied on edge
images, where we have decided for the Sobel edge operator, due to its
time efficiency. We present the applied algorithm and illustrate results
(without, or with prior edge processing) on seven, geometrically rectified
night-vision stereo sequences (provided by Daimler AG, Germany).
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1 Introduction

Stereo algorithms often use a Markov Random Field (MRF) model for describing
disparity images. The basic task of an MRF algorithm is then to find the most
likely setting of each node in an MRF by applying an inference algorithm. Belief
propagation (BP) is one of the possible inference algorithms; it can be applied for
calculating stereo disparities, or for other labeling processes defined by finite sets
of labels. [5] shows that BP is such an algorithmic strategy for solving various
problems. BP is recommended for finding minima over large neighborhoods of
pixel, and it produces promising results in practice (see, e.g., evaluations at
website http://vision.middlebury.edu/). Performance analysis is an important
issue in computer vision [6].

A belief propagation algorithm applies a sum-product or max-product pro-
cedure, and in this paper we choose the max-product option. The max-product
procedure computes the Maximum A-Posteriori (MAP) estimate over a given
MRF [11].

[7] reports about the general task of evaluating stereo and motion analysis
algorithms on a given test set of seven rectified night-vision image sequences



(provided by Daimler AG, Germany [4]). In this article we consider the applica-
tion of BP algorithms on these seven sequences, each defined between 250 and
300 pairs of stereo frames. We show that a straight application of BP fails, but
it leads to promising results after prior application of an edge operator.

The article is structured as follows. In Section 2, we briefly introduce the
BP algorithm, which includes the definition of an energy function, max-product,
message passing, Potts model, and also of some techniques to speed up the stan-
dard BP algorithm, following [3]. In Section 3 we calculate Sobel edge images,
and show that subsequent BP analysis leads to improvements compared to re-
sults on the original sequences, verified by results for those seven test sequences
mentioned above. Some conclusions are presented in Section 4.

2 BP Algorithm

Solving the stereo analysis problem is basically achieved by pixel labeling: The
input is a set P of pixel (of an image) and a set L of labels. We need to find a
labeling

f:P—1L

(possibly only for a subset of P). Labels are, or correspond to disparities which
we want to calculate at pixel positions. It is general assumption that labels should
vary only smoothly within an image, except at some region borders. A standard
form of an energy function, used for characterizing the labeling function f, is
(see [1]) as follows:

E(f)= Z Dp(fp) + Z Vp,q(fpqu)

peP P,qEA

Since we aim at minimizing the energy, this approach corresponds to the Maxi-
mum A-Posteriori (MAP) estimation problem.

D,(f,) is the cost of assigning a label f, to pixel p. We use the differences in
intensities between corresponding pixel (i.e., defined to be corresponding when
applying disparity f,). To be precise, in our project we use absolute differences.
A is an assumed symmetric and irreflexive adjacency relation on P.

Each pixel p (say, in the left image at time ¢) may take one disparity at that
position, out of a final subset of L (e.g., defined by a maximum disparity). The
corresponding pixel is then in the right image at time ¢. Because the given image
sequences are rectified, we can simply search in identical image rows. The given
gray-level (or intensity) images allow that differences in gray-levels define the
cost Dp(fp). The smaller an intensity difference, the higher the compatibility.

Vip.q(fos fq) 1s the cost of assigning labels f, and f, to two adjacent pixel p and
q, respectively. It represents a discontinuity cost. The cost V in stereo analysis
is typically defined by the difference between labels; each label is a non-negative
disparity. Thus, it is common to use the formula

V;mq(fpa fq) = V(fp - fq)



The resulting energy is (see [3]) as follows:

E(f) = Z Dp(fp) + Z Vp,q(fp - fq)

peP P,g€EA

The task is a minimization of E(f).

2.1 Max-product

A max-product algorithm is used to approximate the MAP solution to MRF
problems. The max-product algorithm is guaranteed to converge, and also guar-
anteed to give the optimal assignment values to the MAP solution, based on
the message at time of convergence [10]. The max-product BP algorithm is de-
fined by iterations of passing a message (the belief) around in the image grid.
Typically, (and also in our tests) 4-adjacency is assumed. The message update
schedule is in iterations, and messages pass from node to node in parallel.
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Fig. 1. Illustration for a messages update in the graph: the circles represent pixel in
an image, and the arrows indicate directions of message passing.

Figure 1 illustrates message passing in the adjacency graph of the given
pixel. If node i is left of node j then node i sends a message to node j at
each iteration. The message from node i contains the messages already received
from its neighbors. In parallel, each node of the adjacency graph computes its
message, and then those messages will be sent to adjacent nodes in parallel.
Based on these received messages, we compute the next iteration of messages. In
other words, for each iteration, each node uses the previous iteration’s messages
from adjacent nodes, in order to compute its messages send to those neighbors
next. Meanwhile, the larger D,(f,) is, the more difficult it is to pass a message
to an adjacent node. That means, the influence of an adjacent node decreases
when the cost at this node increases.

Each message is represented as an array; its size is determined by the max-
imum disparity (assuming that disparities start at zero, and are subsequent
integers), denoted by K.

Assume that m! is the message, send from node p to adjacent node g at

P—q
iteration t. For each iteration, the new message is now given by (see [3]) the



following:

m;_,q(fp)zn}in Vp,q(fp*fq)jLDp(fp)jL Z millq(fp)

s€A(p)\q

where A(p)\ ¢ is the adjacency set of p except node ¢. The message array contains
at its nodes the following

bq(fq):Dq(fq)+ Z m;f;—»q(fq)

PEN(q)

after T iterations; see [3]. Each iteration computes O(n) messages, where n is
the cardinality of set P.

2.2 Potts model

The Potts model! is a method for minimizing energy; see, for example, [2]. In
this model, discontinuities between labels are penalized equally, and we only
consider two states of nodes: equality and inequality. We measure differences
between two labels, the cost is 0 if the labels are the same; the cost is a constant
otherwise. Let the cost function between labels be V(z;, x;). Then, (see [9]) we
have that

0 if Ti = Ty

d otherwise

Vi(xi,xj) = {

The Potts model is useful when labels are “piecewise constant”, with disconti-
nuities at borders. It was suggested to apply this cost function to the message
update formula. The formula is now rewritten (see [3]) as follows

m:f?ﬂq(fp) = H}in (Vp7q(fp — fo) + h(fp))

where

h(fp) = Dp(fq) + Z msz(fp>

s€A(p)\q

This form is very similar to that of a minimum convolution. After applying the
cost function, the minimization over f, yields a new equation in the following
way (see [3]):

ma5) = min (105, in () + )

Except the f, minimization, the message computation time reduce to O(K),
see [3]. At first we compute miny, h(f,), then we use the result to compute the
message in constant time.

! Described in the 1952 Ph.D. by R. B. Potts.



2.3 Speed-up techniques

In this section, we recall some techniques that may be used to speed up a BP
analysis. We start with a technique called multi-grid method in [3]. This tech-
nique allows to obtain good results with just a small number of message passing
iterations.

[8] shows that message propagation over long distances takes more message
update iterations. To circumvent this problem, a common data pyramid was
used. (All nodes in one 2 x 2 array in one layer are adjacent to one node in the
next layer; all 2 x 2" pixel (nodes) at the bottom layer zero are connected this
way with a single node at layer n). Using such a pyramid, long distances between
pixels are shortened, what makes message propagation more efficient. We do not
reduce the image resolution, but aggregate data over connections defined in this
pyramid. Such a coarse to fine approach allows that a small number of iterations
(dependent on the level of the pyramid) is sufficient for doing a BP analysis.

The red-black algorithm provides a second method for speeding up BP; see
[3]. The message passing scheme adopts a red-black algorithm which allows that
only half of all messages are updated at a time. Such a red-black technique is
also used for Gauss-Seidel relaxations. A Gauss-Seidel relaxation attempts to
increase the convergence rate by using values computed for the kth iteration in
subsequent computations within the kth iteration.

We can think of the image as being a checkerboard, so each pixel is differently
“colored” compared to its adjacent pixel. The basic idea is that we just update
the message sent from a “red” pixel to a “black” pixel at iteration ¢; in the next
iteration ¢ + 1, we only update the message sent from a “black” pixel to a “red”
pixel.

We recall this message updating scheme at a more formal level: assume that
B and C represent nodes of both defining classes in a bipartite graph, at iteration

Fig. 2. These two images illustrate the message passing scheme under a red-black
algorithm; the left image shows messages only send from a “black” (dark gray) to a
“red” (light gray) pixel at iteration ¢; at iteration ¢ 4+ 1, “red” sends messages back to
“black” in the right image.



t, we know message M; which is sent from nodes in B to those in C; based on
message Mj, we can compute message Ma sent from nodes in C to those in B
at iteration ¢ 4+ 1. That means, we can compute message M3 from nodes in B at
iteration ¢ 4+ 2 without knowing the message send from nodes in B at iteration
t+1. Thus, we only compute half the messages at each iteration. See Figure 2 for
further illustration. This alternating message updating algorithm is described as
follows:

[y -
m,_, otherwise

¢ if pe B
- { m if p
This concludes the specification of the BP algorithm as implemented for our ex-
periments. We aimed at using a standard approach, but with particular attention
of ensuring time efficiency.

3 Experiments

The seven image sequences used for stereo analysis are as described in [7],
provided by Daimler AG, Germany (for a download of those sequences, see
citr.auckland.ac.nz/6D). These night vision stereo sequences are geometrically
rectified. The following figures address each exactly one of those seven sequences,
and each figure show one unprocessed representative frame of the sequence at
its upper left. (We provide frame and sequence number.)

These seven sequences are already geometrically rectified, and stereo match-
ing is reduced to a search for corresponding pixels along the same horizontal line
in both images. For explaining the following test results, the used test environ-
ment was as follows: AMD 64Bit 4600 2.4GHz, 2 Gigabyte memory, NVIDIA
Geforce 7900 video card, WinXP operation system.

The following figures use a uniform scheme of presentation, and we start with
explaining for Figure 3. A sample of the original, unprocessed sequence is shown
in the upper left. The described BP stereo analysis algorithm was applied, and
the resulting depth map is shown in the upper right. The maximum disparity for
the illustrated pair of images (being “kind of representative” for the given stereo
sequence) is 70, and 7 message iterations have been used. Table 1 shows these
values, also the size of the used area in the given 640 x 480 frames (called “image
size” in this table), which were the parameters used in our test, and finally the
run time rounded to seconds. Note that no particular efforts have been made for
run-time optimization besides those mentioned in the previous section.

The experiments indicated (quickly) two common problems in stereo match-
ing, namely bad matching due to lack of texture (such as at the middle of the
road), and mismatching due to “fuzzy depth discontinuities” (such as in sky or
in trees).

For the other six image sequences, see the original frame of the stereo pair,
reported further in Table 1, ate the upper left of Figures 4 to 9. The depth maps
shown at the upper right (BP analysis as described, for the original sequence)
all shows similar problems.



Fig. 3. Image 0001_cO of sequence 1 (upper left) and its associated BP result (upper
right). The Sobel edge image (lower left) and the corresponding BP result (lower right).

As aresult of our analysis of those problems, we expected that the use of some
edge enhancement (contrast improvement) could support the message passing
mechanism. Surprisingly, we can already recommend the use of the simple Sobel
edge operator. The resulting Sobel edge image are certainly “noisy”, but pro-
vide borders or details of the original images which allow the message passing
mechanism to proceed more in accordance to the actual data.

See the Sobel edge images (for the selected “key frames” of those seven
sequences) at the lower left of Figures 3 to 9.

The lower right images in Figures 3 to 9 show the subsequent result of the
specified BP analysis algorithm on Sobel edge images. Obviously, the new result
is much better than our preliminary result (upper right images). In general

Figure Max-disparity Iterations Image size Running time
3 70 pixel 7 633 x 357 pizel 9s
4 55 pizel 7 640 x 353 pizel 7s
5 40 pixel 5 640 x 355 pizel 4s
6 60 pixel 7 640 x 370 pizel 8 s
7 30 pizel 5 631 x 360 pizel 3s
8 35 pixzel 6 636 x 356 pizel 4s
9 40 pixel 5 636 x 355 pizel 4s

Table 1. Table of parameter used for BP algorithm and program running time.



Fig. 4. Image 0001_cO of sequence 5 (upper left) and its associated BP result (upper
right). The Sobel edge image (lower left) and the corresponding BP result (lower right).

Fig. 5. Image 0001_cO of sequence 6 (upper left) and its associated BP result (upper
right). The Sobel edge image (lower left) and the corresponding BP result (lower right).



Fig. 6. Image 0001_cO of sequence 3 (upper left) and its associated BP result (upper
right). The Sobel edge image (lower left) and the corresponding BP result (lower right).

Fig. 7. Image 0001_cO of sequence 2 (upper left) and its associated BP result (upper
right). The Sobel edge image (lower left) and the corresponding BP result (lower right).



Fig. 8. Image 0227_c0 of sequence 4 (upper left) and its associated BP result (upper
right). The Sobel edge image (lower left) and the corresponding BP result (lower right).

Fig. 9. Image 0184_c0 of sequence 7 (upper left) and its associated BP result (upper
right). The Sobel edge image (lower left) and the corresponding BP result (lower right).



comparison with the BP analysis for the original image pairs of those seven
sequences, major discontinuities are now often correctly detected.

For example, the visual border of a tree may be recovered despite of an
obvious fuzziness of its intensity edge. Especially the road and the sky are now
often accurately located. In most cases, a car is also detected if at a reasonable
distance. But there are still remaining problems.

For example, in Figure 5, the traffic light is not matching correctly, we can
see that there are two traffic lights in the depth map. The use of the ordering
constraint could help in such circumstances.

In some images, we can not identify many depth details especially in images
with lots of trees. See again Figure 5 for an example. Vertical edges disappeared
in the depth map image. The reason might be that we have chosen a small
discontinuity penalty only (see Section 2.2, the Potts model) to do these tests
illustrated in the figures.

When using a higher discontinuity penalty in BP, this produces more edges
or details in depth maps, but also more noise or matching errors.

Adaptation might be here a good subject, for identifying a balance point. In
Figure 8, the road is in the depth map (lower right) not a smooth, even, leveled
surface; this is caused by the shadows of the trees on the road which cause
about horizontal stripes in the images. This means that the pixel’s intensity in
an epipolar line is about constant, what makes mismatching more easy.

4 Conclusions

In this paper, we proposed the use of a simple edge detector prior to using
belief propagation for stereo analysis. The proposed method is intended for BP
stereo correspondence analysis where borders in given scenes or images are fuzzy.
We detailed the used BP algorithm by discussing the max-product algorithm of
belief propagation, and how messages propagate in the graph, especially also
under the circumstances of the used two run-time optimization strategies. One
of both techniques reduced the number of message passing iterations, the second
technique halved message computation.

Recently we integrate the ordering constraint in the BP algorithm, and we
also plan to design an adaptive algorithm which calculates discontinuity penalties
based on image intensities of frames.

The provided image sequences allowed a much more careful analysis than
just by using a few image pairs. This improved the confidence in derived conclu-
sions, but also showed more cases of unsolved situations. This is certainly just a
beginning of utilizing such a very useful data set for more extensive studies.
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