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Abstract. This paper introduces into seven real-world road driving
stereo sequences (provided by Daimler AG, Germany; now freely avail-
able for academic research); it also informs about their use for perfor-
mance evaluation in some experiments using common stereo and motion
analysis algorithms. Often, such algorithms are tested on a few frames
only, or on synthetic sequences, but not on long real-world sequences.
The provided sequences have 250 to 300 stereo pairs each; they have
been used at Daimler AG for testing 6D vision, which fuses disparity
and motion data (by using a Kalman filter). In this paper we introduce
into those seven sequences (and inform about the download web site);
we discuss a few approaches how to use those sequences for testing ei-
ther stereo or motion algorithms, or both combined together. Certainly,
those sequences do have many more potentials for future performance
evaluations for stereo and motion analysis algorithms.

1 Introduction

Stereo and motion analysis play a central role in computer vision. Many algo-
rithms in this field have been proposed and carefully studied; see, for example, [2,
3, 16] and the website vision.middlebury.edu. However, performance evaluation
of these algorithms is typically done on either short real-world, or slightly longer
but synthetic image sequences, instead of sequences modeling real-world applica-
tions by showing diverse situations at some representative length. Performance
evaluation is an important subject in computer vision [12].

After years of research on ego-motion estimation [1], the automobile industry
has all the tools for producing rectified stereo image sequences. In Section 2, we
will introduce seven night-vision, gray-level image sequences, provided recently
by Daimler AG Germany. We briefly highlight main features for each of those
sequences, which define goals when analyzing those sequences. For downloads,
see citr.auckland.ac.nz/6D.

This short article only allows a few comments on the intended or already
performed use of those sequences for testing stereo and motion algorithms. (See
also [7].) Others may find those sequences also of interest.



The paper is structured as follows. Section 2 specifies the seven sequences.
Section 3 discusses challenges in general terms, and informs about a few experi-
ments, showing stereo and motion analysis results, and results for combined (i.e.,
6D) analysis for these sequences. We also inform about methods how to visualize
results in some efficient ways. Section 4 informs on evaluation strategies defined
on contents in these sequences.

In this paper, the vehicle which is used to host the stereo camera platform
for capture image sequences is called the host car.

2 Real-world sequences

Daimler AG Germany [6] provided recently to the authors seven stereo sequences
for research purposes. They are captured with a calibrated pair of night-vision
cameras near Stuttgart. Each sequence contains 250 or 300 frames, and fea-
tures different driving environments, including highway, urban road and rural
area. The ego-motion of the stereo platform has been correctly estimated and
compensated [1], so that the view angle is always (about) parallel to the hori-
zon. Furthermore, camera calibration is used for geometric rectification, such
that image pairs are characterized by “standard epipolar geometry” [11]. A few
“black strips” around borders of images are caused by this compensation or
rectification. Figure 1 shows an example of one stereo pair in such a sequence.

Fig. 1. Sequence 2007-03-06 121807, called Sequence 1 or Construction-Site Sequence.

The resolution of images in these sequences is 640×481. They are saved in
PGM1 grayscale format, and available in both big endian and little endian, for
convenient usage in different software.

The stereo night vision camera parameters are provided in file camera.dat. For
each sequence, calibration parameters for left and right camera are also provided

1 Portable graymap file format.



in calib k0.bog and calib k1.bog under systemData directory. The vertical and
horizontal size of each pixel of the camera sensor, focal length, and coordinates
of principle point (i.e., intersection of optic axis with image plane) are all given
in pixel. The horizontal size of a sensor cell defines this unit.

The vehicle’s movement status is given for each frame. The information can
be extracted from the comment in the corresponding PGM file header as shown
below:

P5

# bigEndian

#[Units are rads, metres and seconds]

#[Inertial Sensor]

#YawRate= 0.004398

#YawAngle= 0.000000

#Speed= 8.329330

#[Other Image Data]

#TimeStamp: 1802550.000000

#CycleTime: 0.080000

#ImageNumber: 111

#[Wheel Data]

#WheelRPM_FL: 240.500000

#WheelRPM_FR: rm242.000000

#WheelRPM_RL: 235.500000

#WheelRPM_RR: 237.000000

#

640 481

3585

The TimeStamp might be wrong (e.g., identical time stamps in several sub-
sequent frames). The CycleTime in the header is always correct (which denotes
the interval between two consecutive pairs of frames). However, it may be either
0.04, or 0.08 (as in the example above; in this case there was a frame skip). For
more detailed explanations, see download website citr.auckland.ac.nz/6D.

Here is a brief introduction for each sequence, including driving environment,
main objects, or special features.

1. Sequence 2007-03-06 121807 (Figure 1) features normal traffic density on an
Autobahn, with a standard safety fence between opposite traffic directions.
However, normal lanes have been cut in width and shifted to the right, with
several slow large trucks in the right lane.

2. Sequence 2007-03-07 144703 (Figure 2) features medium traffic in an urban
area. The host car goes straight and turns then to the left. There are a few
pedestrians walking on the footpath, some cars in parking lots, or waiting
to join the traffic.

3. Sequence 2007-03-15 182043 (Figure 3) features a rural road with only in-
coming traffic. Starting from the 156th frame, a squirrel appears in the scene
and runs across the road, in front of the host car. The scene appears dark



Fig. 2. Sequence 2007-03-07 144703, called Sequence 2 or Save-Turn Sequence.

Fig. 3. Sequence 2007-03-15 182043, called Sequence 3 or Squirrel Sequence.

Fig. 4. Sequence 2007-04-20 083101, called Sequence 4 or Dancing-Light Sequence.

and wet. Vehicles in a distance can only be distinguished by head lights,
with reflection on vehicles and road surface.

4. Sequence 2007-04-20 083101 (Figure 4) shows a one-way road (two-lane high-
way) in mountainous area. The host car follows a small car and passes a few
larger trucks. There are many shadows of trees on road and vehicles. Illu-



Fig. 5. Sequence 2007-04-27 145842, called Sequence 5 or Intern-on-Bike Sequence.

Fig. 6. Sequence 2007-04-27 155554, called Sequence 6 or Traffic-Light Sequence.

Fig. 7. Sequence 2007-05-08 132636, called Sequence 7 or Crazy-Turn Sequence.

mination changes significantly several times. The lighting between left and
right images also varies.

5. Sequence 2007-04-27 145842 (Figure 5) features a straight country road with
both incoming and outgoing vehicle traffic. A cyclist drives toward the main



road from a perpendicular direction and turns left at the intersection. This
simulates a dangerous situation between the cyclist and the vehicle.

6. The host car stops during the first half of Sequence 2007-04-27 155554 (Fig-
ure 6) in front of a traffic light. It then goes into the opposite lane because
of a construction site which blocks the other lane. At the end of the road
construction area, another vehicle and a cyclist appear in the scene. The
sequence features a road in a forest, with fine texture caused by trees.

7. In the first 30 frames of Sequence 2007-05-08 132636 (Figure 7), the host
car is waiting on the roadside. Later, it goes into the central lane and turns
left at the intersection while an oncoming vehicle is driving towards it. The
sequence features a very dangerous situation where both vehicles almost
collided.

These sequences, selected by Daimler AG, Germany, provide a multi-facetted
challenge for stereo and motion analysis algorithms.

3 Approaches and Examples

Filtering or edge detection are important processes, to be considered for these
sequences. However, here we only sketch briefly the three “core approaches”.

3.1 Stereo Analysis

Typically, we are interested in dense (approximate) depth maps rather than in
sparse depth data. Difficulties in finding corresponding points in pairs of stereo

Fig. 8. Two dense depth maps calculated by applying dynamic programming on the
Dancing-Light Sequence, using a double-propagation strategy. Courtesy by Darren
Troy, Auckland.



Fig. 9. Edge detection followed by belief-propagation allows to calculate this dense
depth map for the Construction Site Sequence; see [7].

images do have many reasons (see, for example, [11], also for some of the earlier
algorithms which have been designed for stereo analysis; for recent techniques,
see [16] and the website vision.middlebury.edu).

We illustrate two examples of stereo analysis approaches. [5] proposed a spe-
cial dynamic programming approach, basically for a pair of stereo images, in
which the disparity matrix of a line is used as additional input for the calculation
of the disparity map of the subsequent image line. This can now be generalized
when having sequences of stereo pairs: additionally, the disparity matrix of the
same line, but for the previous stereo pair, is also used. See Figure 8 for a result
using this approach of propagating results within the same pair of images, and
also along the time scale. This allowed for a substantial improvement.

Figure 9 illustrates another extension of a well-known approach due to the
specific properties of the given image sequences. Here, belief-propagation was
not performed on the given image pairs but on Sobel edge images of those. See
[7] for details.

Instead of using gray-level representations of depth maps (as in these two
examples), it also proved very informative (e.g., at Daimler AG, Germany) to
use a color scheme, such as green for further away, and red for very close. This
color scheme also reflects common color interpretation where red means danger
and green stands for peace.

3.2 Motion Analysis

Motion estimation for these sequences should provide information about move-
ments of objects (speed, trajectory) as relevant for each sequence, often for
identifying possible courses of conflict. Motion analysis starts in computer vi-
sion typically with optic flow calculation [2, 9, 13], assuming that this leads to
approximate calculations of the local displacement (of corresponding points be-
tween two continuous image frames). However, a few experiments with those
sequences will reveal immediately the difficulty in applying optic flow algorithms
successfully to those sequences, which are often blurry or fine textured (e.g., in
trees).



Two typical basic assumptions behind optic flow algorithms are as follows:
the brightness of the scene should be about constant, and local displacements
must be small. However, both are not satisfied in those sequences. For example,
the illumination changes often in one sequences, due to shading patterns of trees,
or there is even different lighting for left and right camera. Object segments also
move often very fast within images.

Again, sequences allow stabilization of results along the time scale (see, for
example, [10]), and larger motion vectors can also be analyzed by using hier-
archical approaches (see, for example, [14]). It is also recommended to apply
relatively “advanced” edge detection first (such as a Canny edge detector, and
not just the Sobel operator), and then analyze motion vectors only along those
edges. See Figure 10 for an illustration.

Fig. 10. Left: Canny edge image (inverted) for the Intern-on-Bike Sequence. Right:
Only those edge pixels where the optic flow magnitude exceeds a threshold. Direction
of optic flow is shown by hue, and length of vector by intensity (image also inverted).
Courtesy by Xuan Guo, Zhongxia Ma, and Hao Xue, Auckland.

3.3 6D Analysis

Fusing stereo and motion analysis results together (i.e., 3D plus 3D, called 6D
vision in [6]), into one consistent interpretation of the scene, may allow to extract
objects and their movement.

An intersection approach for fusion is to take all those pixels where motion
information is evaluated as being reliable, and use the depth values at those pixels
for combining motion and depth (or, vice-versa). However, this only allows to
label very sparse pixel. Another idea is to segment depth maps, and to assign
uniform motion vectors to those segments.

The use of Kalman filtering (see the book [8] or the online-tutorial [17]) is
recommended to “smooth” and stabilize the movement of extracted features,
and to generate more precise estimates. For example, [4] proposed this for the
tracking of detected feature points, and [6] generalized this for an intersection
approach.



Figure 11 illustrates a simple background removal strategy which uses camera
calibration data which are provided for the seven test sequences (with respect
to the camera’s coordinate system, which is registered with respect to the car’s
coordinate system):

[INTERNAL]

F = 820.428 # [pixel] focal length

SX = 1.0 # [pixel] pixel size in X direction

SY = 1.000283 # [pixel] pixel size in Y direction

X0 = 305.278 # [pixel] X-coordinate principle point

Y0 = 239.826 # [pixel] Y-coordinate principle point

[EXTERNAL]

B = 0.308084 # [m] width of baseline of camera rig

LATPOS = -0.07 # [m] lateral position of camera

HEIGHT = 1.26 # [m] height of cameras

DISTANCE = 2.0 # [m] distance of camera to rear axe

TILT = 0.06 # [rad] tilt angle

YAW = -0.01 # [rad] yaw angle

ROLL = 0.0 # [rad] roll angle

The camera’s coordinate system is left handed: looking into driving direction
along the z-axis, the x-axis points to the right, and the y-axis to the sky. The
car coordinate system to camera coordinate system transform is the translation
defined by “latpos”, height, distance, followed by a rotation defined by tilt, yaw,
and roll. A positive tilt means looking downward, a positive yaw means looking
to the right, and a positive roll means clockwise.

Static background is anything what moves just (about) opposite to the move-
ment of the host car. For calculated motion vectors, only those remain where
the frame-to frame motion and the related depth information does not indicate
a background situation. These are shown as dark dots in Figure 11.

Fig. 11. 6D vision result, showing only moving object points which are not classified
as being static background. Clustering of the shown dots allows identification of those
three cars and of the bicyclist. Courtesy by Xuan Guo, Zhongxia Ma, and Hao Xue,
Auckland.



4 Proposed Evaluations

For evaluating stereo or motion algorithms, or combined 6D vision results on
these real-world sequences, we divide meaningful features or objects (visible in
these image sequences) below into examples of categories. Each group has its
own characteristic properties and level of difficulty to be analyzed. By testing
the ability to detect objects of different groups correctly in those sequences, an
algorithm’s performance can be demonstrated. (Such an algorithm is not defined
by one task such as edge detection or optic flow calculation, but by a complex
task of understanding a group of objects, or particular features in this group.)
For evaluation, each algorithm has to run on all seven sequences.

Vehicles. The ability to detect any vehicles in any situation within the space of
relevance is the key feature for algorithms to be used to assist in road driving.
(A car parking along the roadside may start any moment.) In general, moving
vehicles at close or medium distance (as in Figure 12) can be detected applying
either stereo or motion analysis. The numbers of false-positive or false-negative
counts defines the first evaluation criteria. The sequences contain various
situations of vehicles where detection appears to be difficult:

1. Vehicles that are far away from the host car. Their contours are not very
visible in dark environments such as in the Squirrel Sequence (see Figure 13),
especially if also partially occluded. This group of events is certainly difficult
to be detected by either stereo or motion analysis alone. Disparity and local
displacement values are very small. Individually, analysis results may be
confused with noise, but combined (6D) they form possibly a detectable
cluster.

2. Vehicles with similar speed and direction as the host car. A constant relative
position to the host car causes that local displacement vectors are close to
zero. Of course, this identifies “similar motion”. If the vehicle is not too far
away from the host car, stereo analysis may be used to identify a constant
distance. Object 2 in Figure 14 is a typical example in this group.

Fig. 12. Construction-Site Sequence, pair 185 of frames.



Fig. 13. Squirrel-Sequence, frame 178, left camera.

3. Vehicle causing large local displacements. A vehicle which is close to the
host car, and which moves into a significantly different direction, will fit in
general into this group. Such as Object 1 in Figure 14; the faded vehicle is
Object 1’s new position in the next frame. The local displacement between
both green “T” marks is 35 pixel, and many motion-analysis algorithms will
fail to detect that. Fusing stereo disparity and motion data in one Kalman
filter is a recommended solution. Note that the perpendicularly approaching
bicycle was about at the same position in the image for some time (constant
viewing angle, but increasing in size), and at the moment of its turn it also
falls into the category of a vehicle with large local displacements.

4. Stopping or parking vehicles. Vehicles which are not moving could be treated
as background, but they still need to be detected and interpreted by a driver
assistant system! For example, the car on the right-hand side of the road
in Figure 15 is waiting to join the traffic. Stereo disparity can provide its

Fig. 14. Intern-on-Bike Sequence, frame 132, left camera.



Fig. 15. Save-turn sequence, frame 86, left camera.

geometry and position, but other statistical systems are needed to infer that
this object is likely to join the traffic.

The identification of the trajectory (speed and direction) of the identified vehicle
in world coordinates is the second evaluation criteria.

Humans and animals . Pedestrians and animals of relevant size belong to this
group. (The cyclist counts as a vehicle. ) Generally, members in this group have
a much lower average speed than vehicles, but their motion pattern tends to
be more stochastic. The bicyclist goes toward the main road, slows down when
near the intersection, then turns the direction to avoid danger. The squirrel’s
behavior is opposite: it takes only 0.8s (20 frames) from it first appearance in
the scene to be on the road surface, and another 0.32s (8 frames) to the center
of the lane. Within this short period of time, an analysis system should find out
the object’s size, trajectory, and decide whether it is safe to continue going, or
not. However, there are not many cases of humans or animals in those seven
sequences, and, for this reason, we do not propose an evaluation criteria for this
category.

Road edges, road surface, and safety fences. Road edges are defined by
the road shoulder, lane marks, or other obstacles limiting the free space [15].
Lane detection is a standard task for highway driving.

For an ideal stereo algorithm and a perfectly flat road, surface depth is lin-
early distributed. Such a distribution defines a base plane for all moving objects,
and object movement would be constrained to 2D. This may help when analyzing
trajectories.

In real-world sequences, the surface of a road may not to be easily detectable
by its depth distribution properties, because surface texture can affect the stereo
algorithm, and some objects may obstruct the camera’s sight. Road edges can
be used to extrapolate the surface in between. Safety fences are shown some of
the sequences (see Figures 12 and 16).



Fig. 16. Traffic-Light Sequence, frame 204, left camera.

The third evaluation criteria will be further specified on the download
page for exact localization of road edges, safety fences, and road surface.

Real-world interference . There are a few events in those seven sequences
which interfere with stereo and motion analysis. It is a challenge to find solutions
to overcome them, and to deduct correct results.

Shadows on the road (see Figure 4) may significantly change the surface
texture pattern and cause false window matching. Shadow on moving vehicles
has an even worse effect, especially in motion analysis, because it may generate
some highly incorrect optic flow patterns.

Changes in illumination is another problem in these sequences. Shadow, light-
ing angle, and many other factors may cause illumination differences between two
subsequent frames, or between left and right images. Constant illumination is a
basic assumption in many stereo or motion detection algorithms. The elimina-
tion of changes in illuminations, and the reduction of impacts of shadows defines
the proposed fourth evaluation criteria. The processed image sequences can
be used as input for algorithms for criteria one to three, and should lead to
improved results.

5 Conclusions

This paper describes main features of seven real-world stereo image sequences.
We briefly discussed a few stereo and motion estimation approaches and ways
towards combined (i.e., 6D) analysis in the context of those sequences. A few
examples of results were given for illustrating the potential of those sequences
for use in performance analysis.

The paper suggests evaluation criteria to be used for testing the performance
of algorithms on these seven real-world sequences.
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