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Abstract. Today’s stereo vision algorithms and computing technology
allow real-time 3D data analysis, for example for driver assistance
systems. A recently developed Semi-Global Matching (SGM) approach
by H. Hirschmiiller became a popular choice due to performance and
robustness. This paper evaluates different parameter settings for SGM,
and its main contribution consists in suggesting to include a second order
prior into the smoothness term of the energy function. It also proposes
and tests a new cost function for SGM. Furthermore, some preprocessing
(edge images) proved to be of great value for improving SGM stereo
results on real-world sequences, as previously already shown by S. Guan
and R. Klette for belief propagation. There is also a performance gain for
engineered stereo data (e.g.) as currently used on the Middlebury stereo
website. However, the fact that results are not as impressive as on the
.enpeda.. sequences indicates that optimizing for engineered data does
not neccessarily improve real world stereo data analysis.

1 Introduction

Stereo algorithms are currently evaluated either on selected images with
calculated ground truth, or on real-world stereo sequences, such as typical
for driver assistance systems (DAS). Interestingly, evaluation results differ; for
example, algorithms performing well on engineered image examples may fail on
real-world sequences [7].

This paper evaluates variants of the SGM algorithm of [5] both on stereo
images of the Middlebury stereo website? as well as on real-world image
sequences of the .enpeda.. test image website.* It discusses various parameter
settings and possible preprocessing steps.

1.1 Semi-Global Matching

The SGM algorithm approximates the minimum of a 2D energy function by
minimizing multiple 1D energies, employing a dynamic programming scheme.
The energy function consists of a data term and two smoothness terms. The first
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smoothness term penalizes small disparity changes of neighboring pixels with a
rather low penalty c; to allow slanted surfaces. The second term penalizes larger
disparity changes with a higher penalty c;. This second penalty is independent
of the actual disparity change in order to preserve depth discontinuities. The
previously mentioned 1D energies are defined as minimum cost paths L, that
start at each border pixel of the image and are traversed in direction a.

A direction is basically a digitized line, and all digital lines of identical slopes
are considered to be equivalent. Usually eight directions are sufficient in SGM to
obtain high-quality results. For a digital line in direction a, processed between
image border and pixel p, we only consider the segment pops . . . p,, of that digital
line, with py on the image border, and p,, = p. The cost at pixel position p (for a
disparity d) on the path L, is recursively defined as follows (for i = 1,2,...,n):

La(pi,d) = C(p;,d) + min|[La(pi—1,d),
La(pi—1,d —1) +c1, La(pi—1,d + 1) +c1,
min La(pi-1, 4) + c2] — min La(pi—1, 4)

where C(p,d) corresponds to the data term and is the similarity cost of pixel
p for disparity d. The costs of paths L,, for all (say, eight) directions a, are
accumulated at a pixel p, for all disparities d with 0 < d < dyu4., and the
disparity dope with the lowest cost is finally selected.

To achieve subpixel accuracy it is proposed to fit a parabolic curve through
costs of disparities dopt — 1, dopt, and dopt + 1, and to take the position of the
minimum. Outliers may be filtered by applying a small median filter. For a given
stereo pair of images, one image serves as base, and the other one is matched
against the base image.

To enforce the uniqueness of a disparity map (for a given stereo pair), roles of
base and match images are swapped, which allows to calculate a second disparity
image. In a final consistency check, a pixel is labeled valid if the difference of
corresponding disparities (in both disparity maps) does not exceed 1; otherwise
the pixel is labeled invalid.

[6] identifies invalid disparities either as occlusions or mismatches. For
subsequent validation of those, a discontinuity preserving interpolation method
is proposed in which valid disparities are propagated into adjacent invalid
disparities. This propagation uses, similar to the SGM step, a number of
(say, eight) directions, and generates possible values, one for each direction.
The original paper suggests to treat mismatches and occlusions differently, by
choosing the second lowest value for occlusions (since this value would rather
come from the background), and to use the median value as a fair representative
for a mismatch. For further details of the algorithm and instructions for
implementation, see [5, 6].

1.2 Experimental Setup

We classify potential parameters of an SGM algorithm into primary and
secondary parameters.



Primary and Secondary Parameters. Penalties ¢; and ¢y are primary
parameters of the cost accumulation step of the algorithm. Hirschmiiller
suggested to adjust ¢y to the magnitude of the local intensity gradient. As a
simple approximation, co is divided by the intensity difference of the current
and the previous pixel. If, after such an adjustment, co < c¢1, we set co = ¢1 + 1.

Any other parameter is considered in this paper to be secondary. The
objective now is to derive normative statements about secondary parameters. For
that we define a reference configuration of secondary parameters, and evaluate
image pairs based on ground truth, for all the possible combinations of ¢; and
ca, with ¢; = 0,...,50 and ¢; incremented in steps of 5, and ¢3 = 0, ...,250 and
co incremented in steps of 25.

We then change only one secondary parameter, evaluate for all combinations
of ¢; and ¢y, and compare the results with the reference configuration. For
our reference configuration we implemented the algorithm as described in the
previous section but without subpixel accuracy. Also for simplicity reasons we
treated occlusions and mismatches equally by simply choosing the lowest valid
value of propagated disparities.

Costs are computed using Birchfield and Tomasi’s similarity measure [2]. A
3 x 3 median filter is used for eliminating outliers, and the described consistency
check ensures the uniqueness of the solution. No smoothing of the input images
is done prior to this processing, and parameter co is adjusted by intensity
differences.

For our experiments we decided for the Tsukuba sequence from the
Middlebury stereo website, taking image scenel.row3.col2.ppm to be the left
and scenel.row3.col3.ppm to be the right input image. The disparity range was
chosen to be limited by d,q. = 18.

We evaluate the error at all pixels, and consider a disparity to be false if it
differs from the ground truth. Results (i.e., percentage of bad pixels) are shown
in Table 1. The ‘Mean 1/4’ error value is calculated by taking the mean of the
best 25% of the error results, and the ‘Mean 1/2’ by taking the mean of the
best 50%. Numbers in brackets (after median, minimum and maximum values)
specify the corresponding (¢, ¢3) configuration. We now describe changes of
parameters and present obtained results.

Table 1. Errors in % for the reference configuration of secondary parameters.

Mean 1/4 Mean 1/2 Mean Median Min Max

Reference parameter 13.1 13.5 19.3 14.3 / (40,125) 12.8 / (20,125) 90.1 / (0,0)

Use of Smoothing or Median Filters. We applied either a 3 x 3 ora 5 x 5
smoothing filter on the input images prior to processing them with the SGM
algorithm:
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Minimum error values are printed in bold in Table 2. This experiment
indicates that using a small 3 x 3 smoothing kernel generally improves the results

of SGM, independent of the setting of ¢; and cy. A larger kernel seems to have
a negative influence on results.

Table 2. Results for different smoothing filters.

Mean 1/4 Mean 1/2 Mean Median Min Max
Reference parameter 13.1 13.5 19.3 14.3 / (40,125) 12.8 / (20,125) 90.1 / (0,0)
Smooth 3x3 11.4 11.9 17.7 12.9 / (30,125) 10.4 / (10,0) 86.0 / (0,0)
Smooth 5x5 13.5 142 19.8 152 / (35,150) 12.4 / (10,0 86.3 / (0,0)

Now, a 3 x 3 median filter is used as part of the reference configuration. We
extend the window size of the median filter to 5 x 5 and 7 x 7 while leaving the
rest of the reference configuration unchanged; see Table 3.

Table 3. Results for different median filters.

Mean 1/4 Mean 1/2 Mean Median Min Max
Reference parameter 13.1 135 19.3 14.3 / (40,125) 12.8 / (20,125) 90.1 / (0,0)
Median 5x5 129 135 18.8 14.3 / (40,125) 12.6 / (20,125) 88.6 / (0,0)
Median 7x7 13.1 13.7 18.7 14.5 / (40,100) 12.7 7 (20,125) 88.4 / (0,0)

Best results are typically obtained when using the 5 x 5 median. In cases of
the overall mean and the maximum value, smaller error values are obtained for
the 7 x 7 median. In general it seems that a 5 x 5 median performs better than

a 3 X 3 median, for any configuration (c1, c2). However, the improvement seems
to be minor.

Use of Different Numbers of Paths. Hirschmiiller suggested in his paper
[5] that “the number of paths must be at least 8 and should be 16 for providing
a good coverage”; results in Table 4 confirm his statement.

Table 4. Results for different median filters.

Mean 1/4 Mean 1/2 Mean Median Min Max
Reference parameter 13.1 135 19.3 14.3 / (40,125) 12.8 / (20,125) 90.1 / (0,0)
Path 4 14.3 14.5 21.3 14.9 / (50,75) 14.0 / (30,25) 90.1 / (0,0)
Path 16 13.0 135 19.0 14.5 / (40,100) 12.7 / (20,175) 90.1 / (0,0)

Eight paths lead to better results than four paths. Improvements are about
1% by comparison. Also, choosing 16 paths results in lower errors. However,



improvements in this experiment are around 0.1 %. In practical applications like
DAS, where real time performance is crucial, such a marginal quality gain would
not justify any increase in computational time.

2 Use of Second Order Prior and New Cost Function

We suggest a possible improvement of SGM results by adding an additional
penalty during the cost accumulation process, based on a second order prior.
The idea is that a configuration of disparities should be favored for which the
second order derivative at p; is small. This should equalize the high penalty co
which is added regardless of the discontinuity.

2.1 New Smoothness Term

Consider three consecutive pixel positions along a path L., say p;—1, p;, and
Ppi+1, with disparities d;_1, d; and d;41, respectively. This defines a triangle in
3D space, with disparities being the third coordinate. The angle « at (p;,d;) can
easily be computed using the formula

a2+ b2 — 2
2ab

. = arccos (

(see Figure 1) with

a=|[(pi—1,di-1), (pi, di)||2
b= |[(pi,di), (Pit1,diz1)]l2
c=||(pi—1,di=1), (Dit1,dit1)||2

[| - ||2 is the Euclidean distance. The goal is to favor smooth transitions (i.e.,
we need a function that increases the penalty when the angle gets smaller, and
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Fig. 1. Estimation of second order prior.



decreases when the angle gets larger). Since the maximum possible angle is T,
we choose

™

C3 = (a 10) - T
as a function of a and of an external scalar 7. Positions p;—; and p;y1 are
determined by pixel position p; and direction a. Thus, c3 is basically a function
of disparities d;_1, d;, and d;11 (and of 7). We now need to compute c3 at every
p;, for every d during the accumulation. Thus, when computing the penalty we
already know the disparity at p;. We have to select an a-priori disparity d.
with the most likely minimum cost at p;+1 (i.e., most likely to be selected as
dopt). We select

Ame = mAin C(pit1,4)

to be a ‘good guess’. Now we may write c3 as a function of the disparity only,
chosen for the previous position (p;—1) (i.e., c3(dprev)). Define

mp = mAin La(pi-1,4)

which is the disparity with the current minimum cost on the path at the previous
position. Also define the cost at pixel p for disparity d on the path L, as follows:

La(p,d) = C(p,d)+ min[La(pi—1,d), La(pi—1,d — 1) +c1 + c3(d — 1),
La(pi—1,d+1) +c1 +c3(d + 1), mAin La(pi—1, A) + 2 + c3(dmp)]
—HlAiIlLa(pi—l,A)

For results of this approximation, see Table 5. With the exception of the overall
mean, the errors tend to be slightly reduced when using a second order prior.
The constant 7 was set to be % However, this is just an initial experience with
including a second order prior. More experiments and modified approaches (say,
with other parameter settings for 7 or function ¢3) should be performed in future;
this may just define a new direction of research.

Table 5. Results for 2nd Order Prior

Mean 1/4 Mean 1/2 Mean Median Min Max
Reference parameter 13.1 135 19.3 14.3 / (40,125) 12.8 / (20,125) 90.1 /7 (0,0)
2nd Order Prior 12.8 13.2 19.5 14.0 / (40,25) 12.2 / (20,200) 76.6 / (0,0)

2.2 New Cost Function based on Signal Deviation

The reference configuration of the SGM algorithm uses the BT cost function [2].
This function computes the cost at pixel p; as follows: Let I,,, be the intensity



value of pixel p; in the base image and I,, the intensity for the corresponding pixel
in the match image, for disparity d. Intensities in both images are interpolated
using intensities of previous or subsequent pixels along the epipolar line. For
example, let Ip, , , = % Iy, + % - I, , be an interpolated value at p;, just
using the prev1ous pixel. The absolute difference of min(lp,_, ., I, Ip,,,,,) and
min(ly, , ;14 1g,,,,,) is then used for the final matching cost.

This new scheme for cost calculations considers a 1D window around pixels
p; and ¢;. Usually, this window should have a size of w = 5 or w = 7. We take

the mean of the sum of absolute intensity differences,

with three options for §;. This value is one of the following:

(Sj ‘I IqJ + - IPL)
2) 0 = |Ip, — 1y,
5] ‘I ’ Im - IQil

The first two options can be interpreted as a mean deviation from the intensity
signal of the match image compared to the signal of the base image. Thus, this
similarity is not only (as in BT) based on intensity differences at pixel locations,
but also on the ‘structure’ of the signal. See Table 6.
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Fig. 2. The cost function and the structure of the signal: the intensity value of ¢; is
shifted such that we have I,, — I, = 0. The cost at p; is the mean of all absolute
differences within the selected neighborhood.



Table 6. Results for different window sizes for new cost function.

Mean 1/4 Mean 1/2 Mean Median Min Max
Reference parameter 13.1 13.5 19.3 14.3 / (40,125) 12.8 / (20,125) 90.1 / (0,0)
Cost opt.]1 w=5 13.1 133 16.5 13.8 / (50,200) 12.9 / (35,25) 52.1 /7 (0,0)
Cost opt.1 w=7 14.1 143 18.0 15.0 / (25,175) 14.0 / (45,50) 46.4 1 (0,0)
Cost opt.2 w=5 124 12.6 16.3 13.0 / (25,225) 12.1 / (35,50) 44.8 1 (0,0)
Cost opt.2 w=7 12.7 129 16.2 13.3 / (25,100) 12.6 / (30,25) 41.8 / (0,0)
Cost opt.3 w=5 11.3 11.7 14.6 12.4 / (35,125) 10.9 / (35,50) 52.6 /(0,0)
Cost opt.3 w=7 11.3 11.7 14.6 12.7 / (10,50) 11.0 / (20,75) 472 1 (0,0)

For option (1), by shifting the intensities by offset (I, — I,,), the difference
of intensities at j = ¢ becomes zero. See, for example Figure 2. The intensity
signal around ¢; is shifted, and differences are taken at new positions. This
option emphasizes almost completely the structure of the signal, and not so
much intensity differences. This might be of value if changes in lighting occur
between both images of a stereo pair. However, results are similar to the reference
configuration if input images do not show such changes in lighting.

Option (2) leaves intensity values unshifted, and simply computes the mean
of the sum of differences. This option emphasizes intensity differences as well as
the structure of the signal. See the lower signal of the match image in Figure 2.
Results are about 1% better than for the reference configuration.

Option (3) improves results by about 2% compared to the reference
configuration, which is certainly very good! The difference to option (i) is that
we subtract the absolute value of the offset. A geometric interpretation of (iii)
is still missing.

2.3 Best Configuration

Finally we choose a best configuration by picking from every analyzed secondary
parameter the, to our opinion, best option (i.e., we choose eight paths for the
accumulation, also considering the computational cost, use a 5 x 5 median filter
for outliers, a 3 x 3 smoothing kernel, and option (2) for the cost function because
we have a geometrical motivation and improvement).

Fig. 3. Left: ground truth of Tsukuba. Middle: result of SGM wusing the reference
configuration. Right: result of SGM using the best configuration.



Table 7. Results for the best configuration

Mean 1/4 Mean 1/2 Mean Median Min Max
Reference parameter 13.1 13.5 19.3 14.3 / (40,125) 12.8 / (20,125) 90.1 / (0,0)
Best parameter 9.9 10.2 12.6 10.8 / (40,50) 9.1 / (15,0) 325/ (0,0)

The second order prior is included into the cost accumulation step. Results
outperform, as expected, any result obtained for modifying just a single
parameter; see Table 7.

Figure 3 shows the Tsukuba ground truth on the left. The image in the
middle shows the obtained result when using the reference parametrization, and
the image on the right the resulting disparity map for our identified ‘optimum
configuration’. Obviously, there are some major improvements.

3 Application to .enpeda.. Sequences

We also applied the discussed versions of the SGM algorithm to the sequences
of Set 1 of the .enpeda.. test image website. Our experiments confirmed that
Sobel preprocessing for those sequences is beneficial, as already shown for belief
propagation [4]; see Table 8 for edge results on Tsukuba image sequence.

Table 8. Results for edge preprocessing on Tsukuba images

Mean 1/4 Mean 1/2 Mean Median Min Max
Reference parameter 13.1 135 19.3 14.3 / (40,125) 12.8 / (20,125) 90.1 / (0,0)
Sobel Preprocessing 12.5 12.8 18.5 13.3 / (35,50) 12.2 / (20,75) 94.7 /7 (0,0)

Figure 4 illustrates results for frame 106 of the construction site sequence
(not using the original depth of 12 bits but scaled to 8 bits).

The image in the upper row, left, shows the right input image of the stereo
pair, and in upper row, right, its Sobel edge image. The depth maps in this figure
have value 200 — dopt - 5 if dope is calculated at that pixel, with dpas = 40.

The images in the middle row shows the result of applying SGM to the
original image data using the reference configuration with ¢; = 20 and co = 125,
which was the suggested primary parameter setting (left: original input, right:
Sobel images as input).

Resulting depth maps appear to be, obviously, more accurate in general with
Sobel preprocessing. (Studies for approximated ground truth are a subject for
future work.)

The images in the bottom row are results for our ‘optimum configuration’ as
described above (also with ¢; = 20 and ¢ = 125), again either on the original
data (left) or on Sobel image pairs (right).

In our experiments, we processed the sequences of Set 1 (Daimler
sequences) of the .enpeda.. test image website, using throughout our ‘optimum
configuration’ on the Sobel input data. Figure 5 illustrates examples; each row
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Fig. 4. Top: image of original input sequence (left) and its Sobel image (right). Middle:
results of SGM (reference configuration) on original image pair (left) and on Sobel
image pair (right). Bottom: results of SGM (using our optimized configuration f) on
original image pair (left) and on Sobel image pair (right).

has an original image on the left and our optimized SGM result on the right.
From top to bottom, the rows are showing the intern on bike, save turn, dancing
light, and squirrel sequences, in this order.

The squirrel sequence was taken at night which possibly contributes to
the difficulty here. The daylight sequences seem to perform reasonably well.
Improvements from the reference to the optimized configuration are obvious
especially on Sobel preprocessed images.



Fig. 5. Left: example of a right input image of the processed sequence. Right; depth
maps, after Sobel preprocessing, and using SGM with the optimized configuration.

4 Conclusions

This paper proposes a new cost function and tested it with the SGM algorithm.
It also contributes by presenting a first attempt to include an additional penalty



to the accumulation step, based on a second order prior. Results indicate that
there is a potential for performance gain and justifies more experiments for this
subject in future.

We also tested SGM on Sobel images of the Tsukuba image sequence on
the Middlebury stereo page. Results indicate that edge preoprocessing can
improve the quality of the algorithm (see Table 8). Especially the outcome of
our experiments on real-world sequences suggest that processing SGM on edge
images can also result in a big performance gain.

Obviously, the discussed options of variations in primary and secondary SGM
parameters allow for many more optimization experiments, also with respect to
possible preprocessing. However, [7] indicates that the Sobel operator compares
well against other edge operators (Canny, Kovesi-Owens) in case when using
belief propagation for disparity calculation. However, performance gains are
much better on real world sequences than on engineered data. Therefore it would
be interesting to quantify how much real world stereo analysis really benefit from
optimizating for engineered data.
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