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Abstract. Eye gaze detection under challenging lighting conditions is
a non-trivial task. Pixel intensity and the shades around the eye region
may change depending on the time of day, location, or due to artificial
lighting. This paper introduces a lighting-adaptive solution for robust eye
gaze detection. First, we propose a binarization and cropping technique
to limit our region of interest. Then we develop a gradient-based method
for eye-pupil detection; and finally, we introduce an adaptive eye-corner
detection technique that altogether lead to robust eye gaze estimation.
Experimental results show the outperformance of the proposed method
compared with related techniques.

1 Introduction and Related Work

Eye gaze estimation is an active research topic in computer vision. The de-
velopment of such systems depends on the quality of the target camera, for
example a high-resolution one which focuses only on the eye region, or a simple
low-resolution webcam. The first option supports very accurate results for the
detection of eye features. Due to cost limitations or varying head poses it may
not be applicable. Images captured by a webcam typically contain the whole face
and some background, and may require noise removal or image enhancement. A
webcam is a widely used device due to its low cost.

High-resolution and infrared cameras were used, for example, in [21], with a
focus on high resolution images of the eye-region which simplifies eye-features
detection. Both papers use infrared lighting to ease eye-region detection. The
Starburst algorithm is often used for detecting the pupil, see [9, 11, 13, 14]. The
algorithm applies simple thresholding, fits an ellipse to the pupil, and then refines
the ellipse by consideration of a pupil’s “edge points”. When testing along the
basic idea of this algorithm, we noticed that it cannot be applied to noisy and
low-resolution images.

Some other researchers use a Hough circle transform for detecting the position
of a pupil [17]. When dealing with low resolution images, the first issue is the
localization of the eye center. Different methods are proposed to achieve this
goal. Typically, methods are based on the usage of an edge detector. Then, a
Hough circle transform is suggested to detect the iris or pupil [5, 7]. Published
research typically uses test images recorded under ideal lighting conditions where
the eye region is not dark, e.g., due to the shadows. The curvature of isophotes



(i.e. points of equal intensity) is used in [19] to design a voting scheme for the
localization of the pupil. Next, they extend the method by using SIFT features
for each pupil candidate and match such features with examples from a database
before obtaining a final decision. The approach in [12] is based on an ensemble
of randomized regression trees.

An extension to Logarithmic Type Image Processing (LTIP) is presented in
[4]. The parametric extensions of LTIP models were used to built a reliable auto-
focus mechanism for cameras working under extreme light conditions. According
to facts presented by the authors, LTIP resembles properties of the human visual
system. It can be used to enhance images acquired under extreme lighting.

This paper provides an eye gaze detection method for using a low resolution
camera, especially also for challenging lighting conditions. Recorded images are
assumed to contain an entire face region. The proposed algorithm consists of four
major steps. At first, we apply a face-detection algorithm using Haar-features.
Then we detect the eye region followed by a processing step to find the eye-pupil.
Inspired by the work in [18] we implement pupil localization by analyzing gra-
dients in the eye region. The method defines a function which takes a maximum
at a location where many of the gradients intersect. This location is expected to
correspond to the position of the pupil. Finally, in order to estimate eye-gaze,
we detect the eye corner. Eye-corner detection in [23] proposes a method based
on spatial filtering and the application of corner-shape masks. More recent work,
e.g. [2, 22], uses Harris corner detection with additional improvements such as
active shape models (ASM). The authors of [6] also follow [23] and use addi-
tionally weighted variance-projection functions for determining approximately
the corner area. In this research we use FAST features [16] with added adaptive
thresholds for eye-corner detection.

We evaluate our eye-gaze detection algorithm based on experimental results
performed on the BioID database [3] and video sequences recorded from different
subjects under various lighting conditions.

2 Proposed Method

The method is structured into five steps: face and eyes detection, adaptive bi-
narization, pupil detection, eye corner detection and gaze estimation.

2.1 Face and Eyes Detection

A fundamental requirement for any eye-tracking system is accurate face and eye
socket detection. This can be achieved by Haar-like object detectors which were
proposed in [20] and improved in [10]. Under non-ideal lighting conditions it is
possible that one half of the face is darker than the other half. By applying face
partitioning into two halves, and by changing the detector parameters for each
half, we obtained better results under non-ideal lighting conditions than when
using a standard detection approach. This idea was inspired by [15].

To improve accuracy, a hard-coded method was also used to estimate loca-
tions where eye sockets are expected to be. Even if a Haar-like face detector
temporarily fails, non-rotated eye regions can be expected to be almost at their



previous locations. As a result, it is possible to estimate their positions depend-
ing on the face width and height. Our experiments show that the eye-region
width can be assumed to be around 33% of the face’s width, and the eye-region
height is around 25% of the face’s height. The position of the left eye begins at
about 13% from the left border of the face, and at about 27% from the top of
the face.

2.2 Adaptive Binarization

We apply four hierarchical steps to limit the eye-socket region where we search
for the pupil: binarization, edge (or contour) detection, determining the longest
contour, and image cropping.

We tested various thresholding techniques [8], e.g. a basic inverted thresh-
olding based on the minimum pixel value T of the eye region:

D(x, y) =

{
0 if S(x, y) > T
255 otherwise

(1)

This proved to be too unstable and worked only reasonable under very ideal
lighting conditions. Otsu’s adaptive thresholding had the same problems; results
were also not adaptive to lighting conditions.

Due to the failures of the above mentioned thresholding methods, we decided
to use p-tile thresholding as described in [1]. An adaptation to the light conditions
according to pixel intensities was added to the basic technique. The first step of
this method is the creation of a grey-level histogram of the image. The choice
of threshold value T depends then on the chosen percentage parameter p-value.
This parameter is a percentage value by which the size of the vector is multiplied.
By taking the total value of the multiplication result, the position in a vector is
obtained. The value hidden under this position is the query threshold value T .
Using the calculated T , we applied basic thresholding as described in Equ. (1).
In order to find an appropriate p-value, we calculate mean and mode M of pixel
intensities. By combining these two parameters we identify a parameter Ip which
determines the appropriate p-value. We describe Ip as follows:

Ip(α) = α ∗MP +
1− α
n
·

n∑
i=1

P (xi, yi) (2)

where P is the considered input window having n pixels. Following [15], this
process (i.e. calculation of p-value and binarization) is performed independently
for both eye regions. An adjustable parameter α is used to manipulate the in-
fluence of mean and mode values. Experimentally we identified α = 0.6 as the
mode intensity which led to better evaluations of the brightness of the pixels.

The next step is to perform a dilation in the binarized image and to find
the smaller eye region by cropping the window for the largest region. Results of
these steps are illustrated in Fig. 1.

2.3 Pupil Detection

We use the gradient method [18] for pupil detection due to its efficiency. Applying
the method on the BioID database [3] we obtained very reasonable results. The



method may fail in cases when the image is too blurry or the eyelashes are
very long and dark. Among all the tested methods the method led to a smaller
number of false positives. Figure 2 illustrates samples of positive and negative
results on the BioID database [3].

In a video sequence, errors can be reduced by applying some averaging over
the last few frames. At the start of the program, we spend a few seconds to cali-
brate the gradient method. During calibration, the recorded subject is expected
to look straight into the camera. After 20 frames, the averaging process starts
for subsequent pupil detection.

2.4 Eye Corner Detection

Pupil detection is followed by localizing eye corners. For corner detection we use
FAST features [16] with added adaptive thresholds. Parameters for the FAST
algorithm are adjusted depending on pixel intensities, by following the same
idea of using mean and mode values of the eye region as already discussed for
the binarization process. The eye region is divided into two parts according to
the location of the pupil, and two independent feature detection algorithms are
applied on both halves.

Some of the detected FAST features could be false positives (e.g. at eyelashes,
borders of glasses, or iris). To reject such FPs we assume that eye corners are
maximally 50% of eye width and 30% of eye height away from the pupil. All
features which satisfy this constraint are stored in a vector and averaging defines
the final feature position. For more accurate results, we find the features that
are most extreme to the left or right within the defined border.

In a video sequence, the errors can be reduced using temporally averaged
positions of eye corners. We describe our algorithm by the following equations.
First, we define the mean feature position A(x, y) in one iteration as follows:

A(x, y) =

n∑
i=1

f(xi, yi) if Py − by + c ≤ fyi
≤ Py + by (3)

where f is the set of detected features, Py is a pupil location, by is an off-set for
y-values, and c is an adjusting parameter. In our experiments we consider c as
equals to 20% of the height of the eye region. The new corner position can be
described as follows:

C(x, y) =


E(x,y)+A(x,y)

2 if (Py − by + c ≤ Ey ≤ Py + by) ∧
(Px ± bx ≤ Ex ≤ Px ± bx + d)

E(x, y) if Ax < Px − 0.3 · bx
A(x, y) otherwise

(4)

Fig. 1. Steps for extracting smaller eye regions. Left to right: Input image, p-tile thresh-
olding, dilation result, and the final cropped eye region.



Fig. 2. Examples of pupil detection on BioID images. Both images on the left supported
correct detections, and the other two led to incorrect detections.

where E(x, y) is the most extreme (towards left or right) feature, by is again a
y-offset and bx is an offset for x values, P (x, y) is the pupil location, and d is an
adjusting parameter, which is experimentally set to an optimum value of 24% of
the width of the eye region for the inner corner, and to 15% for the outer corner.
The sign in front of bx depends upon whether we calculate a new position for
the inner or outer corner.

Finally we need to check whether our new corner candidates are not too far
away from the averaged corner position of the last few frames, described as

Af (x, y) =
1

20

20∑
i=1

C ′(xi, yi). (5)

after having already the first 20 frames (before this time the average corner
position is not yet calculated for avoiding false results). The final corner position
is as follows:

C ′(x, y) =

{
C(x, y) if (Afx− 10 < Cx < Afx + 10) ∧ (Afy− 10 < Cy < Afy+ 10)
Af (x, y) otherwise

2.5 Gaze Estimation

We consider the distance between the pupil and the eye corners for estimating
the horizontal direction. We also use the distance between the center of an eye
region and the pupil for estimating the vertical direction.

First, we define a line segment which connects both eye corners. Then we
calculate the distance from the pupil to the line as follows:

d =
(Px − Sx) · (Dy − Sy)− (Py − Sy) · (Dx − Sx)√

(Dx − Sx)2 + (Dy − Sy)2
(6)

where P (x, y) is the pupil location, S(x, y) is the one corner position, and D(x, y)
is the other one. We also calculate the distances between x-values of the pupil
and both corners. Then we check the values of these three distances.

The information from both eyes is used in order to avoid estimation errors.
For example, for our camera parameters, if the distance from the pupil to the
line is less than -2 pixels, we assumed that the person is looking downward; if it
is less than 3.5 and more than -1.8 we assume that the person is looking straight
forward; if it is more than 3.5 we consider that the person is looking upward.



To determine whether a person is looking to the right or to the left, first, we
check whether the distance between pupil and the outer left corner is less than
18 pixels. At the same time we check whether the distance between pupil and
inner right corner is less than 20. To reduce errors, we also check whether the
distance from the inner left corner and the outer right corner is more than 28. If
‘yes’ then we assume that the person is looking to the right. Similar conditions
are checked for looking to the left. If none of the conditions are fulfilled then we
assume that the person is looking straight forward.

3 Experimental Results

First, we performed face and eye-socket detection on the BioID database [3].
A combination of Haar-feature based eye detection and a hard-coded method
for detecting eye sockets provided good results; only 0.15% of correctly detected
faces had incorrectly detected eyes. Adaptive binarization also provided very
good results: above 99.5% of images had a smaller eye region cropped correctly.

As a next experiment, we tested our method on six different subjects under
different lighting conditions, including varying colors, from natural light con-
dition to different artificial lights, obtained from various light sources. All the
video sequences had a resolution of 640×48 pixels. Test subjects were at various
age and of different gender. We also used two different webcams, one external
and the other one integrated in a laptop. We used the first 20 frames for system
calibration and for estimating potential pupil and eye-corner positions, in order
to calculate mean positions for these eye features. Then the subjects were asked
to look several times in four basically different directions (up, down, left, and
right), and in four additional directions (e.g. upper left and right, bottom left
and right). All results are recorded, frames are analyzed, and error rates are cal-
culated. The evaluation of results has its limits; for example, with a naked eye, it
is not feasible to determine the exact direction of the subject’s eye gaze in dark,
noisy, and low-resolution images. In order to evaluate the results it was assumed
that a false detection of eye corners or of the pupil causes incorrect eye-gaze
estimation. This might not be exactly true always. In some cases, pupil or eye

Fig. 3. Samples of eye-gaze detection under various lighting conditions.



Table 1. Percentages of correct eye-feature detections, separately for both eyes.

Number of test 1 2 3 4 5 6 7 8 9 10 11 12 13

Left eye [True positive (%)] 100 100 99 96 98 98 97 95 100 94 98 87 78

Right eye [True positive (%)] 98 100 99 100 93 96 100 95 100 77 64 57 59

corners are detected incorrectly but the detections are not too far away from
the correct position, and it is still possible to have a correct final result for gaze
estimation. Figure 3 presents results of eye-feature detection obtained for six
different subjects, where the circles are symbolizing pupil and corner positions
and a line between the corners.

Table 1 presents the final results obtained from 13 performed tests. The first
ten were performed using an external webcam with higher image quality, and
the last three are obtained using an integrated webcam in a laptop with poorer
image quality. Also, the last three tests were performed for very dark faces and
challenging lighting conditions (in shadows), as also illustrated in Fig. 3. The
table confirms that the less noisy images support better results.

We realized that the most common reason of failures are dark spots near the
eye regions (e.g. a very thick and dark frame of eyeglasses). Another problem
appears if there are multiple dark and bright areas in the same eye; then the
algorithm misses the eye-corner position and replaces it with a false-positive. We
believe that this kind of problem could be avoided by adding an eye tracking so-
lution into the algorithm. This could improve the stability of the gaze detection.
When the eyes are closed then a (non-existing) false pupil might be detected as
well; however, in most cases the eye corners are detected correctly. Our adaptive
binarization and cropping algorithm worked efficiently in all the tested cases.

4 Conclusions

The detection of face features under non-ideal lighting conditions and in low-
resolution images is a challenging issue. We had to face various complications for
detecting points of interest accurately. The proposed and implemented adaptive
algorithm ensures less vulnerability due to changes in lighting conditions. The
paper outlined a robust solution for eye-gaze detection and suggests in particular
a method for minimizing the region of interest. By using light-adapting p-tile
thresholding, the method provides robustness and efficiency over a comprehensive
range of experimental tests. For future work, the algorithm might be more stable
by adding a tracking module and eye state detection. This can further reduce
errors generated when the eyes are closed.

References
1. Al-amri S. S., Kalyankar N. V.: Image segmentation by using threshold techniques.

arXiv preprint arXiv:1005.4020 (2010)
2. Bengoechea, J. J., Cerrolaza, J. J., Villanueva, A., Cabeza, R.: Evaluation of accu-

rate eye corner detection methods for gaze estimation. Int. Worksh. Pervasive Eye
Tracking Mobile Eye-Based Interaction (2013)



3. BioID database, www.bioid.com/index.php?q=downloads/software/

bioid-face-database.html (2014)
4. Florea, C., Florea, L.: Parametric logarithmic type image processing for contrast

based auto-focus in extreme lighting conditions. Int. J. Applied Mathematics Com-
puter Science, 23:637–648 (2013)

5. Fu, B., Yang, R.: Display control based on eye gaze estimation. IEEE Int. Conf.
Image Signal Processing, Vol. 1, pp. 399–403 (2011)

6. Haiying, X., Guoping, Y.: A novel method for eye corner detection based on weighted
variance projection function. IEEE Int. Conf. Image Signal Processing, 1–4 (2009)

7. Khilari, R.: Iris tracking and blink detection for human-computer interaction using a
low resolution webcam. Indian Conf. Computer Vision Graphics Image Processing,
pp. 456–463, ACM (2010)

8. Klette, R.: Concise Computer Vision. Springer, London (2014)
9. Li, D., Winfield, D., Parkhurst, D.J.: Starburst: A hybrid algorithm for video-based

eye tracking combining feature-based and model-based approaches. CVPR Work-
shops, volume 3, page 79–86 (2005)

10. Lienhart R., Maydt J.: An extended set of Haar-like features for rapid object
detection. IEEE Conf. ICIP 2002, Vol. 1, pp. 900–903 (2002)

11. Lupu, R. G., Ungureanu, F., Siriteanu, V.: Eye tracking mouse for human computer
interaction. E-Health and Bioengineering Conference (EHB), pp. 1–4, IEEE (2013)
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