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ABSTRACT
Accurate estimation of ego-motion heavily relies on correct
point correspondences in the context of visual odometry. In
order to ensure a metric reconstruction of camera motion,
we can refer to the 3D structure of the scene. In this pa-
per we present an indicator for evaluating the accuracy of
stereo-based 3D point measurements as well as for filtering
out low-confidence correspondences for ego-motion estima-
tion. In a typical binocular system, the left and right images
are matched to produce a disparity map. For a trinocular
system, however, the map can be derived indirectly via dis-
parity maps of both cameras with respect to the third cam-
era. The difference between an explicitly matched disparity
map and its indirect construction defines a transitivity error
in disparity space (TED).

We evaluate the effectiveness of TED from different per-
spectives, using a trinocular vehicle-mounted vision system.
Results presented in 3D Euclidean space, or in 2D images
show improvements of more than 7.5%, indicating that, by
taking TED into account, more consistency is ensured for
ego-motion estimation.

Categories and Subject Descriptors
I.4.8 [Computer Vision]: Scene Analysis—motion, range
data, stereo analysis, feature tracking

1. INTRODUCTION
Visual odometry (VO) is an active research topic in the field
of computer vision and robotics. Rovers on Mars demon-
strate its functionality. The development of VO is closely
related to structure-from-motion (SfM) and simultaneous lo-
calisation and mapping (SLAM) techniques. VO, SfM, and
SLAM support applications such as autonomous vehicles,
driver-assistance system, unmanned navigation, or robotics.

∗Environment Perception and Driver Assistance

VO relies on the fact that the motion of a camera can be
recovered from a set of corresponding points successfully
identified in images taken at different camera poses. De-
pending on the configuration of a vision system, the type
of available correspondences is either 3D-to-3D, 3D-to-2D,
or 2D-to-2D [1]. In the purely 2D case, there is no need to
know about the 3D structure of the scene at all, making it
a preferable choice among monocular systems such as mo-
bile phones or hand-held devices. In general, the Euclidean
metric cannot be recovered in the projective space defined
by one pinhole-type camera [2].1 Thus, the estimation of
camera motion will benefit in general from a reconstruction
of some 3D scene structure.

Accuracy of 3D measurement has a considerable influence on
the performance of ego-motion estimation. The robustness
of a VO framework is decided by its outlier rejection scheme
and how well it works when a certain percentage of noise
is present. The random sampling consensus (RANSAC) ap-
proach has been widely deployed in the context of VO to
remove wrongly associated 2D matches [1, 4]. Despite its
effectiveness, some inliers could still possess significant 3D
measurement noise, which will in turn deteriorate the recov-
ered motion.

A binocular vision system measures scene depth using dis-
parity values. This is typically done by applying a stereo
matching algorithm (e.g. [5, 6, 7, 8]) on images taken by a
left and right camera, possibly preprocessed in some way [9].
Since noisy 3D points have a considerable impact to a VO
system, it is very important to identify unreliable disparity
values before they are transformed to 3D space and used in
ego-motion estimation.

In the literature a few criteria have been proposed to evalu-
ate a disparity map (e.g. [11, 12]). One approach [13] is to
warp the left image using the left-right disparity map (see
Fig. 1 for an example). By studying the difference between
the warped image and the real one, disparity values are as-
sessed. Another approach is to calculate an inverse disparity
map (i.e. right-to-left mapping) and compare the obtained
disparity values. In this work we generalise such an idea to
a multi-camera system having more than two cameras.

The rest of this paper is organised as follows. In Section 2

1Distance information can be derived from monocular infor-
mation to some degree using calibrated bird’s-eye views or
other techniques; for example, see [3].



Figure 1: A captured view (top) and its disparity-
warped reconstruction obtained from another cap-
tured image and calculated disparities (bottom).

we briefly describe the typical VO framework and motion
recovery algorithms used to test the proposed method. In
Section 3 we propose a consistency indicator for disparity
evaluation. Experimental results are shown in Section 4.
Section 5 concludes.

2. VISUAL ODOMETRY
Visual odometry approaches use inter-frame point corre-
spondences to derive camera motion. A generic binocular
VO framework is depicted in Fig. 2. The detection and
tracking of key points are the building blocks of a VO sys-
tem. The 3D coordinates of a tracked key point are acquired
using stereo matching and triangulation techniques. The lo-
cations of traced key points and their 3D coordinates are
then taken as input to an ego-motion estimator, possibly
followed by bundle adjustment (e.g. [14]) which is option-
ally carried out to optimise the solved motion. Depending
on the type of point correspondences, a variety of ego-motion
estimators have been developed. In this section two popular
motion recovery algorithms are reviewed.

2.1 3D-to-3D: Horn’s Analytical Solution
Given a set of point correspondences xji → xj+1

i where xji
and xj+1

i in R2 denote the 2D image coordinates of a tracked
feature Fi in frame j and j+ 1, respectively, and a 3D mea-

surement function g : R2 → R3. The motion of the cam-
era can be estimated by solving for the rigid transformation
(R, t) which minimises the functional∑

1≤i≤N

‖R · g(xji ) + t− xj+1
i ‖2 (1)

The analytical solution of Equ. (1) is given by B. K. Horn
in [15].

2.2 3D-to-2D: A Perspective-n-Point Solver
The error term measured in Euclidean space as formulated
in (1) tends to result in highly unstable estimation. The
impact is significant especially in the case when g relies on
disparity values, as a slight error in disparity space could
lead to a great difference in Euclidean space. A more robust
solution is to estimate the motion (R, t) in projective space.

Given a projection function Π : R3 → P2, with

Π(x) 7→

f 0 cx
0 f cy
0 0 1

x (2)

parametrised over f , the focal length, and (cx, cy), the prin-
cipal point. Mapping 7→ denotes equality up to a scale. The
error term can be modeled as follows as the sum of squares
of reprojection errors:∑

1≤i≤N

‖Π(R · g(xji ) + t)− xj+1
i ‖2 (3)

Finding pose parameters (R, t) that minimise (3) has been
well studied in the literature on solving the perspective-n-
point (PnP) problem. In this work we adopt an efficient PnP
solver proposed in [17]. The algorithm first selects four arbi-
trary reference points in 3D space to transform the Cartesian
coordinates g(x) to barycentric coordinates. Given that ap-
plying a rigid transformation to g(x) does not change its
barycentric representation, a linear system is constructed

Figure 2: Pipeline of a binocular VO system.



under such invariances. By solving an over-determined sys-
tem, the optimal solution (R, t) is obtained. The algorithm
scales well when the number of point correspondences grows.

3. TRANSITIVE DISPARITY ERRORS
In this section we define the transitivity error in disparity
space (TED) of a generalised multi-camera system, and then
study its property in practice using a trinocular setup. (Fol-
lowing the proposed idea, the approach can be generalised
to four or more cameras.)

3.1 TED
Consider a disparity-defined coordinate transformation δ :
R2 → R2 and a function M : R2 → Rn. We define the
warping of M via δ as

φ(M, δ)(x) = M(x+ δ(x))(x) (4)

Function φ generates the warping of an image (see Fig. 1 for
an example) when M : R2 → R. Furthermore, it can be ap-
plied to construct the concatenation of two transformations

τ(δ01, δ12) = δ01 + φ(δ12, δ01) (5)

where δ01 and δ12 are coordinate transformations defined by
disparity maps of image pairs (0, 1) and (1, 2), respectively.

Due to the transitivity in the disparity space, one may use
τ to synthesise the disparity map δij of an image pair (i, j)
where i 6= j via intermediate maps δik1 , δk1k2 , ..., δkmj , with-
out explicit stereo matching. In particular, given a con-
struction sequence S = (i, k1, k2, ..., km, j) where s ∈ S de-
notes a referenced image, the synthetic disparity map δ′ij =
∆(1,m+ 2)) is recursively constructed where

∆(p, q) =


τ [∆(p, q − 1),∆(q − 1, q)], if p < q − 1

δSpSq , if p = q − 1

0, otherwise

(6)

The construction of the derived disparity map δ′ij starts from
concatenating δik1 to δk1k2 , as formulated by Equ (6). The
concatenated map is in turn combined with δk2k3 . The in-
tegration continues until the last disparity map δkmj is in-
corporated into the concatenation.

The constructed map δ′ij can be further compared with δij ,
the explicitly established one. Their differences should, to
some degree, indicate the confidence of the estimated dis-
parity values. We denote the absolute difference |δij − δ′ij |
as the transitivity error in disparity space (TED).

In the binocular case, TED is defined reflectively. Consider
S = (0, 1, 0), it yields

δ′00(x) = ∆(1, 3)(x) = δ01(x) + δ10(x+ δ01(x))(x) (7)

whereas the normalised indicator

ε00(x) =
1

|δ′00(x)− δ00|+ 1
=

1

|δ′00(x)|+ 1
(8)

is known as left-right consistency [8]. Figure 3 visualises
the described consistency indicator applied to a trinocular
system, with the third camera as being the agent for the
synthesis of a left-right disparity map.

Figure 3: TED-based disparity consistency indicator
fused with a captured image. Red pixels indicate a
high consistency value up to 1.0, while blue pixels
show low consistency close to 0.

3.2 Evaluation of Effectiveness
The effectiveness of TED determines its value in identifying
unreliable stereo matches. In this work we evaluate TED by
using it as a criterion in correspondence selection for ego-
motion estimation.

Assuming that image key points are perfectly tracked, the
remaining dominating factor for motion estimation accuracy
is the 3D structure. If the removal of measurements with
higher TED leads to improved motion recovery, it is reason-
able that the shifted 3D data have better quality, and so do
their disparity values. This way, the effectiveness of TED is
assessed.

Cautions have to be taken in the context of VO when adopt-
ing TED as a point selection criterion. Motion estimation
could be spatially biased if the used 2D features are detected
locally. Also, if strong correlation exists between TED and
disparity values, this leads to the removal of either near or
far points, which also introduces a spatial bias in 3D space.

To study these issues, we ran several tests on 1.8 millions
of tracked key points of a real dataset. The dataset was
recorded using a vehicle-mounted trinocular vision system.
Observations are provided in the following subsections.

Figure 4: Mean TED values of tracked features and
their distribution in the image.



Figure 5: Point density with respect to TED and
disparity values obtained by using a block matcher
(top) and a semi-global matcher (bottom). The entries
are colour-coded in a logarithmic scale.

3.3 Spatial Distribution of TED
To show the spatial correlation between key points and their
TED, we accumulate and average TED values found on each
pixel. The result is shown in Fig. 4.

It appears that the evenly distributed TED presents no
strong locality in the image. Note that some pixels close
to the left and right borders show very high TED (≥ 2σ).
These pixels, however, present only roughly 1% of all the
tested key points.

3.4 Distribution in Disparity Space
It is very important to understand the distribution of TED
in disparity space. A significant correlation between TED
and disparity values leads to truncated 3D structures af-

Figure 6: Probability density functions of TED in
disparity space. Key points with TED greater than
the median show a similar distribution as the re-
maining.

ter applying TED as a filtering criterion. Since noise at
far points in disparity space is magnified nonlinearly in Eu-
clidean space [10], the truncation will directly affect the
motion-estimation error. In this case, it is difficult to tell
whether the improvement (or the deterioration) is caused
by the removal of bad measurements according to TED, or
whether it is a consequence of range-data truncation.

The density of key points in disparity space with respect to
TED is shown in Fig. 5. Tests has been conducted for dif-
ferent matching algorithms, namely a block matcher (BM)
and a semi-global matcher (SGM [5]), among which similar
results are observed. The majority of key points have low
TED (≤ 1.5 pixels) and lie in the first 30% of the disparity
space that ranges from 0 to 64.

To further study how the TED-based filtering impacts the
distribution of key points in disparity space, we cut on the
median TED to divide the tracked key points into two equally
sized groups. The distributions, depicted in Fig. 6, are
nearly identical, indicating that using the median TED as
the threshold does not cause a depth-truncation effect.

4. EXPERIMENTS
A series of experiments had been designed to evaluate the
effectiveness of applying TED as a disparity quality indi-
cator to improve ego-motion estimation. The tested video
sequence was recorded by HAKA1, an experimental vehi-
cle with trinocular setup of real-time high-resolution image
sensors. The sensors synchronised capture chromatic im-
age data of 2046×1080 pixels at 30 fps. Speeded-Up Robust
Features (SURF [18]) key points are detected and tracked
through 1,926 collected frames. We implemented an SGM
algorithm to calculate dense 3D structures from disparity
maps with respect to the first and the second camera. Dis-
parity maps from these two cameras to the third are also
generated to build TED. The median of TED decides the
threshold that separates key points into two sets, and the



camera motion is estimated respectively using each point
set. At the evaluation stage, all of the key points are in-
cluded. The effectiveness of TED is evaluated in both pro-
jective and Euclidean space. Neither global nor local bundle
adjustment has been deployed.

4.1 Evaluation in Projective Space
The 3D coordinates of each tracked key point are projected
onto the image using estimated motion, and the differences
between the reprojected and the detected locations are cal-
culated. Both 3D-to-3D and 3D-to-2D ego-motion estima-
tion are carried out. The reprojection error (RPE) plots are
shown in Fig. 7.

The mean RPE drops from 0.4 to 0.37 pixels with an im-
provement of 7.5%, in the 3D-to-2D case where the motion
is solved using the EPnP algorithm. The suppression of pro-
jective errors is not obvious because it is explicitly modeled
in the PnP problem. On the other hand, in the 3D-to-3D
case the errors significantly reduce from 8.55 to 5.45 pixels.
An improvement of 36.3% is achieved.

Figure 7: Reprojection error plots of keypoints
transformed by motions estimated using 3D-to-2D
(top) and 3D-to-3D (bottom) correspondences, re-
spectively.

Figure 8: Deviations between GPS trajectory and
estimated ego-motion.

4.2 Evaluation using GPS Data
The recorded geodetic coordinates (latitude-longitude-alti-
tude, LLA) are transformed to Earth-centered Earth-fixed
(ECEF) coordinates using the WGS84 model. Since inertial
data are not recorded by the GPS unit, the rotation part of
complete motion data is not available. We instead perform
a trajectory registration technique to analyse the difference
between GPS-derived motion and the ego-motion estimated
from 3D-to-2D correspondences. The optimal registration is
calculated using the closed-form solution given by [15].

The errors between registered trajectories are plotted in
Fig. 8. Along the GPS trace of 370 metres, it shows that the
motion estimated using points with higher TED has slightly
larger deviations. The error drops by 7.6%, from 4.87 m to
4.5 m, when points with lower TED are incorporated into
the estimation of ego-motion.

We also perform 3D reconstruction of the tested sequence
using ego-motion estimates; see [16] for earlier work on 3D
roadside reconstruction. By visual inspection, it has been
found that misalignments of point clouds are significantly
reduced when TED is taken into account. Figure 9, for
example, shows multiple scans of road surfaces aligned con-
sistently using the improved ego-motion estimate.

5. CONCLUSIONS AND FUTURE WORK
In this paper we proposed a quality indicator of 3D mea-
surements based on analysing transitive errors in disparity
space. It evaluates the consistency in disparity space by inte-
grating multiple disparity maps from different camera pairs.
The experiments show that, in a trinocular setup, the ego-
motion estimate achieves improvements of more than 7.5%
in both projective and Euclidean space, when TED is used
as the point selection criterion through the pipeline of vi-
sual odometry. The results have also been visually assessed,
showing that misaligned point clouds are amended.

The experimental results show that there exists a linkage
between TED and disparity errors. For explaining such link-



Figure 9: Reduced misalignment of the centre line as marked by the red circles is observed when disparities
of lower TED are selected (right), compared with the result obtained using high TED disparities (left).

ages further, scene simulation could be helpful in providing
ground truth analysis. Also, the proposed transitivity model
is applicable to the combination of disparity maps and op-
tical flows. The presented framework can be extended to
include spatial and temporal consistency as a future work.
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