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ABSTRACT
We present a method for refining disparity maps generated
by a stereo matcher for the purpose of computational pho-
tography. We automatically fill holes in disparity maps, re-
move noisy artefacts, and enhance visible object geometries
based on available disparity and image data, for the pur-
pose of generating visually appealing depth representations.
The key idea is that we use image features (e.g. edges) of
the base image (say, the left image of the stereo pair) for
enhancing the corresponding depth map. To achieve this,
we analyse the base image by spectral matting, and then
revise disparity values by a weighted median filter. Experi-
ments show that our method is able to fill holes (i.e. pixels
where depth information is unavailable), to revise inaccu-
rate object edges, and to remove speckle noise and invalid
step-edges from the given depth information. Besides photo
editing, results provided by our method can also be used for
image segmentation or object detection.

Categories and Subject Descriptors
I.4.8 [Image Processing and Computer Vision]: Scene
Analysis

Keywords
Stereo vision, Stereo refinement, Matting, Computational
photography

1. INTRODUCTION
Depth information encoded in images is widely used in com-
puter vision or graphics for image segmentation, object de-
tection, 3D reconstruction, 3D visualisation, and other tasks.
Various sensors are developed for estimating depth in the
real world, such as binocular stereo [2, 3], structured light-
ing as used in the Kinect [8], depth from defocus (DFD) [14,
15], a light field camera [13], 3D laser imaging systems [1],

or just GPS and existing georeferenced models [9]. Among
these sensors, binocular stereo is the dominant method used
for outdoor scenes, and the underlying methodology is close
to human visual cognition.

We intend to use generated depth maps for computational
photography; for example, changing illumination, simulating
fog effect or out-of-focus blur. Stereo vision provides imper-
fect results for various reasons, even when using a stereo
matcher such as iSGM [4].1 We state here just three of such
reasons (see Figure 1):

First, depth values for some pixels in the base image are
unavailable, represented by holes in the depth map. Those
holes can be due to occlusion, which is inherent for stereo
vision, or to low confidence in stereo matching results at
those pixels (see stereo confidence measures in [6]). Such
holes can be tolerated to some extent for object detection
or distance measurement tasks, but photo editing or image
segmentation tasks require a dense depth map, with possible
relaxation regarding accuracy.

Second, the depth map may include speckle noise, and may
represent inaccurate 3D object edges (i.e. occlusion edges).
The issue is especially noticeable for objects with a fine (i.e.
detailed) geometry, for example crowns of trees. It is easy
to notice this issue from Figure 1, right. For photo editing,
object detection, or image segmentation tasks, clear and ge-
ometrically meaningful edges are often more important than
accurate depth values at pixels close to those edges.

Third, a depth map may involve invalid step-edges. Stereo
matching methods detect disparities between base and match
images, which are typically measured in integers only (i.e.
distances in pixel coordinates). The depth of a point is in-
versely proportional to its disparity value. Thus, depth does
not change smoothly when only using integer disparities. For
example, if 2 and 1 are the disparity values of two adjacent
pixels then depth varies by factor 2 at those pixels.

We observe that (e.g.) the base image contains some in-
formation about scene geometry which is of potential use
for enhancing the depth map. Based on this observation,
we present a novel depth-refinement method which provides
some kind of (e.g. approximate) solutions to the three prob-
lems mentioned above. Our method takes as input a base

1iSGM was the winning stereo matcher of the “Robust Vi-
sion Challenge” at ECCV 2012



Figure 1: Results of a stereo matcher are imperfect. Left: Base image. Middle: A disparity map generated by
OpenCV’s SGBM matcher. Right: Transparent layers of base image and disparity map illustrate accuracy issues.

image of a stereo pair, as well as a corresponding dispar-
ity map generated by a stereo matcher. We generate an
enhanced dense disparity map.

Our method is defined by a four-step process which basi-
cally differs from our method applied in [10] (where mean-
shift segmentation has been used for disparity map enhance-
ments):

• First, we preprocess the given disparity map by revis-
ing disparities in the sky region, and by suppressing
incorrect information on the left-hand side of the dis-
parity map (typically caused by occlusion).

• Second, the base image is segmented into several com-
ponents by spectral matting; we refer to [11] for this
technique. The resulting matting components serve as
masks in the following refinement process to protect
and to enhance object edges.

• Third, we create a disparity layer for each matting
component by running a weighted median filter on the
pre-filtered disparity map within the segment defined
by the component.

• Finally, we calculate the enhanced disparity map by
combining those disparity layers. In such a final dis-
parity map, holes are filled, 3D object edges are re-
vised, and speckle noise is reduced.

Enhanced disparity map values are floating point numbers,
and not just integers as in the initial map.

The rest of the paper is structured as follows. In Section 2
we recall algorithms as used in our method. Section 3 pro-
vides details for our depth-refinement method. Experimen-
tal results are shown and discussed in Section 4. Section 5
concludes.

2. BASIC CONCEPTS AND NOTATIONS
This section briefly recalls computer vision algorithms that
are used in our approach.

2.1 Stereo Matching
Research on stereo vision has a long history; for example,
see [16]. The underlying methodology is close to principles

of human vision defined by identifying corresponding points
in a pair of images, defining disparities. By applying a tri-
angulation method, depth can be derived from disparities.
Two points in base and match image are corresponding if
they are projections of the same point P in the 3D world.
A point P “at infinity” (e.g. very far away such as in the
sky) defines disparity 0, and disparities increase if P moves
closer to the recording cameras.

A stereo-vision process in high-accuracy stereo-vision ap-
plications involves camera calibration (of intrinsic and ex-
trinsic camera parameters), image rectification (for map-
ping base and match image into a canonical stereo geom-
etry where epipolar lines are identical image rows in both
images), stereo matching for identifying corresponding pix-
els on epipolar lines (thus identifying disparities), confidence
evaluation of calculated disparities, and, finally, applying tri-
angulation for mapping disparities into depth. We do not
provide any (formal) details here; they can all be found in
textbooks such as [6].

Good performing stereo matchers are, for example, based on
belief propagation [2], or on semi-global matching (SGM) [3,
4]. Stereo matching aims at solving an ill-posed problem, to
identify exactly one matching pixel in a match image start-
ing with one pixel in a base image [6]; difficulties for solving
this problem arise for many reasons, and we stated three of
them above. Algorithms use a smoothness constraint which
also causes “blurred” disparities at occlusion edges. For our
purpose we like to “sharpen” disparity values at those edges;
for this reason we“merge”stereo matching results with spec-
tral matting results in the base image.

2.2 Stereo Refinement
The bilateral filter [17], also known as “surface blur”, is a
selective mean filter for image smoothing or noise reduction.
The filter does a weighted average for each pixel p in image I
in a window Wp considering both spatial distance and color
intensity distance between pixels:

Ibilateral(p)

=
1

ωp

∑
pi∈Wp

I(pi) · fc(‖I(pi)− I(p)‖) · fs(‖pi − p‖) (1)

where ‖. . .‖ denotes the L2 norm (here in R2 or R3), fc is
the kernel for color-intensity distances between pixels, fs is
the kernel for the spatial distance between pixels, and ωp is



Figure 2: Spectral matting. Left: Input image. Right: Five matting components αk(p); the three dots stand
for “and so forth”.

a normalization parameter defined by

ωp =
∑

pi∈Wp

fc(‖I(pi)− I(p)‖) · fs(‖pi − p‖) (2)

Here, fc and fs can be Gaussian functions.

The joint bilateral filter, a variation of a bilateral filter, has
been developed for depth refinement [7, 12]. This filter uses
the color information of the base image I to specify the
kernel, and then refines the corresponding disparity map d:

dJ bilateral(p)

=
1

ωp

∑
pi∈Wp

d(pi) · fc(‖I(pi)− I(p)‖) · fs(‖pi − p‖) (3)

The bilateral filter does not discard invalid information. In-
stead, it spreads inaccurate values to adjacent regions. The
joint bilateral filter omits outliers (e.g. inaccurate edges or
speckle noise). In comparison, the median filter is more
robust on outliers. The median filter is a nonlinear opera-
tion which runs through an image I and replaces each pixel
value I(p) by the median value of neighboring pixels within
a (2m+ 1)× (2m+ 1) window Wp:

Imedian(p) = median{I(pi) : pi ∈Wp} (4)

By applying a similar idea as the one underlying the joint bi-
lateral filter, the median filter can also be modified for depth
refinement (in collaboration with image segmentation) [10]:

dJ median(p) = median{d(pi) 6= NA : pi ∈Wp ∩ Sp}
for Sp ∈ S, p ∈ Sp (5)

where S is a family of image segments of I, Sp is that seg-
ment which contains p, and NA stands for ”non assigned”
(i.e. the value at a pixel location where a disparity was not
assigned due to low confidence or occlusion).

2.3 Image Matting
Image matting refers to the problem of accurately extracting
foreground objects from an image I [18], defining a set F of
foreground pixels, partially overlapping (near borders) with
a set B of background pixels. Mathematically, the observed
image I is modelled as a linear combination of foreground

F and background B by using a matting parameter α:

I(p) = α(p) · F (p) + (1− α(p)) ·B(p) (6)

with α(p) ∈ [0, 1].

The matting problem can be generalized by considering mul-
tiple matting components αk(p). Figure 2 illustrates five of
such components. Consider K components, specifying K
layers F1, ..., FK :

I(p) =

K∑
k=1

αk(p)Fk(p), for αk(p) ∈ [0, 1],

K∑
k=1

αk(p) = 1

(7)
The vectors [α1, . . . , αK ]> denote the matting parameters of
the image, which specify the contribution of each layer to
the final color observed at each pixel location p.

Image matting can be seen as “soft” image segmentation.
Compared to “hard” segmentation [5], image matting can
represent object edges more accurately, especially for com-
plex structures which contain detailed sub-pixel information.
Typically, image matting methods include user interactions
such as the generation of a trimap or of some scribbles which
indicate definite foreground or definite background pixels.

Spectral matting [11], which is used in our method, can au-
tomatically segment an input image into several matting
components. The method analyzes the smallest (by mag-
nitude) eigenvectors of the image’s Laplacian matrix, and
obtains the matting components via a linear transformation
of those smallest eigenvectors.

3. DEPTH REFINEMENT
Given is a base image I and a corresponding disparity map
d. Let Ω be the rectangular Ncols × Nrows set of all pixel
locations of I.

3.1 Depth Map Pre-Filtering
Sky is typically present in outdoor photos, and the sky region
is often large and of little texture. Stereo matching results
in such a region often contain mis-matches in large image
regions. For outdoor photos, we detect sky regions in I,



Figure 3: Disparity map refinement. Left: Input disparity map d. Middle: Pre-filtered disparity map d̂. Right:
The final result.

and set the corresponding values in d uniformly to 0, which
marks the sky region as being at infinity.

Blue sky and cloud regions have both high values in the blue
channel of I. Thus, we define a pixel p to be a sky pixel if p
is in the upper half of Ω (i.e. in Ωupper), and its blue channel
value B(p) is larger than a threshold Tsky:

d(p) = 0 if p ∈ Ωupper ∧B(p) > Tsky (8)

We use Tsky = 0.8 ·Gmax in experiments, where Gmax is the
maximum level in any of the three color channels of I.

Due to the nature of stereo vision, a part of the scene on the
left-hand side (i.e. in Ωleft) of image I is not included in
the match image. Thus, accurate depth information of this
region cannot be generated by stereo matching. In general, a
usual practice is to discard I and d on Ωleft. For the purpose
of photo editing, we aim at repairing data in Ωleft based on
available information. We remove erroneous information in
Ωleft; resulting gaps are repaired by the process discussed
in Section 3.3.

We identify outliers in Ωleft by using the calculated disparity
map d, since cases of occlusion can be understood in terms
of estimated distances to objects. First, we consider a pixel
location p = (xp, yp) to be in Ωleft if

xp <
1

Ncols
·
Ncols∑
x=1

d(x, yp) + Crelax (9)

i.e., the mean disparity value in a row specifies how far Ωleft

extends into this row. We use Crelax = 0.02 · Ncols in ex-
periments. Next, we identify d(p) as being an outlier if this
value deviates too much from the mean disparity in its row.
We set d(p) = NA if p ∈ Ωleft and∣∣∣∣∣d(p)− 1

Ncols
·
Ncols∑
x=1

d(x, yp)

∣∣∣∣∣ > Toutlier (10)

We use Toutlier = 0.3 · dmax in experiments, where dmax is
the maximum disparity in d. Let d̂ be the pre-processed
disparity map. See Figure 3, middle, for an example.

3.2 Matting
In order to protect or enhance the occlusion edges of objects
in d̂, we employ the spectral matting method [11] to segment
the input base image I into K layers defined by matting

components α1, ..., αK . Figure 2, right, shows five of those
generated matting components for the input image shown on
the left. Those components serve as masks in the following
refinement process.

The spectral matting method is build on the observation
that the smallest eigenvectors of a matting Laplacian L span
the individual matting components of the image I. Thus,
recovering those matting components is equivalent to finding
a linear transformation of the smallest eigenvectors.

Parameters of this method include the number N of smallest
eigenvectors which participate in the linear transformation,
and the desired number K of the components. Generally, a
larger N leads to more accurate results, but also to a higher
computational complexity; the number K specifies the bal-
ance between under- and over-segmentation. We prefer over-
segmentation rather than under-segmentation. In our exper-
iments, we use N = 400 and K = 30, which lead to “good”
results for the considered input images; see Section 4. For
details of spectral matting, we refer to [11].

3.3 Weighted Median Filtering
HavingK matting components α1, ..., αK and the pre-filtered
disparity map d̂, we create K disparity layers d1, ...dK ac-
cordingly, and run the median filter in each layer dk, using
αk as a mask in order to fill holes and to remove noise.

Due to our over-segmentation strategy, normally each of the
matting components corresponds to a particular object, or
to a part of an object shown in I. Thus, by using αk as a
mask, we can limit the “interference” between different ob-
jects, and thus enhance the occlusion edges of objects. The
matting components are not always perfect. A component
αk may contain information about adjacent objects at low
values due to some color similarity. For reducing this dis-
turbance, we add a weight to the median filter:

dk(p) = WeightedMedian{< d̂(pi), αk(pi)
2 >}

where d̂(pi) 6= NA, pi ∈Wp, αk(pi) > 0, p ∈ Ω,

for k = 1, ...,K (11)

In the weighted median, we use αk
2 as weight, and Wp is

again a (2m + 1) × (2m + 1) window around p. We use
m = 0.05 ·Ncols.

Holes in d̂ may go beyond the“handling capacity”of a chosen



Figure 4: A few results of our method. Left: Base image. Middle: Original disparity map generated by the
SGBM stereo matcher in OpenCV. Right: The obtained (i.e. refined) disparity map.

(2m + 1) × (2m + 1) window, i.e. in a case where for pixel
location p ∈ Ω, all the locations in Wp have NA as value. In
this case, we run the weighted median filter iteratively on
such hole-pixels until all the pixels within the mask have a
disparity value assigned.

3.4 Merging of Disparity Layers
Having K refined layers, according to the meaning of the
matting components (see Eq. 7), we generate the final dis-
parity map dfinal by using the weighted mean

dfinal(p) =

K∑
k=1

αk(p)dk(p) (12)

Here, dfinal is now real-valued instead of integers only. Fig-
ure 3, right, shows that the holes in the original disparity
map have been filled, and occlusion edges have been cor-
rected.

4. EXPERIMENTS
We illustrate our method for a few outdoor photos, used
here with resolution 900 × 600. Figure 4 shows some re-
sults. Original disparity maps have been generated by using
OpenCV’s SGBM stereo matcher. Our experiments show that
unavailable depth information (i.e. black pixels in Figure 4)
can be filled-in in the refinement process, visually apparent

by clearer and more meaningful object edges in the refined
depth map.

For verifying the validity of our results in the context of
computational photography, we use refined disparity maps
dfinal for darkening the foreground of the base image I. See
Fig. 5. The figure illustrates that this depth-aware effect
transfers “naturally” into the shown scenes, which indicates
the quality of the refined disparity maps.

Figure 6 also shows our result for details in a taken photo.
Due to the “soft” character of image matting, disparities
change smoothly and naturally from one object to the other,
even for the shown complex object shapes.

5. CONCLUSIONS
This paper presents a matting-based stereo refinement pro-
cess for photo editing. The input data is a base image of
a stereo pair and a disparity map generated by a stereo
matcher. We pre-filter the given disparity by revising the
sky region and by removing incorrect data on the left of the
disparity map. Then, the base image is segmented into sub-
translucent components using a spectral matting method.
For each component, we create a disparity layer. We re-
vise the disparity values in each layer using a weighted me-
dian filter. At last, we combine those disparity layers using
the subtranslucent matting components, and obtain a real-



Figure 5: Verification of refined disparity maps by using a simple depth-aware application: darkening of the
foreground.

Figure 6: Details of a refined disparity map. Left: Window of the used base image. Middle-Left: Refined
disparity map using our method. Middle-Right: Overlay of base image and refined disparity map. Right:
Foreground darkening using our refined disparity map.

valued final disparity map.

Experiments show that our method can revise holes, inac-
curate occlusion edges, speckle noise, and invalid step-edges
in a given disparity maps. Results are suitable for photo
editing, image segmentation, or object detection.
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