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Abstract

This report accompanies the program calibn provided for multiocular

stereo vision. It briefly explains the related theoretical fundamentals and

the used procedures before illustrating the performance by a few experi-

mental results.
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1 Introduction

Calibration of geometric imaging parameters is a fundamental task in the field

of computer vision. Obtaining the imaging parameters allows accurate modeling

of the incident ray of each pixel, and once backprojected the light paths can be

used to estimate 3D structure of the scene.

Calibrating an image sensor is essentially to find the inverse mapping from

image space to world coordinates, given a set of 3D-to-2D correspondences

(x, y, z)→ (u, v). Any object that once imaged produces such correspondences

can be selected as a calibration target. In this work we consider the use of a

planar chessboard as the target, as the making of such target is easier and the

manufacturing accuracy can be controlled.

Many mature camera calibration packages such as OpenCV calib3d mod-

ule [1] and Matlab Camera Calibration Toolbox [2] are available. These tools,

however, are originally designed for monocular and binocular configurations,

and their straightforward extension to multiocular case leads to consistency is-

sues. In this work, we demonstrate why directly applying a stereo calibration

algorithm on each camera pair fails, and how the problem is solved.

This report is organised as follows. In Sections 1.1 and 1.2, classical monoc-

ular calibration approaches and an extension to binocular calibration are re-

viewed. In Section 2, the adopted nonlinear camera model is described. In

Section 3 we propose our multiocular calibration strategy, which is then evalu-

ated in Section 4. Section 5 concludes this report.

1.1 Monocular Calibration

In the very beginning of the development, the direct linear transform (DLT)

technique was adopted to solve the calibration problem before any sophisticated

algorithms are proposed [3]. The DLT method treats the imaging process as

a linear transform and solves the projection matrix directly. Post-processing is

therefore required to extract the intrinsic and extrinsic parts of the parameters
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from the estimated matrix.

In 1987, R.Y. Tsai proposed perhaps the earliest popular c amera calibra-

tion algorithm [4]. Credited by his name the method has been well-known as

Tsai’s method by the community. The method first calibrates camera’s intrin-

sic parameters and the x, y components of extrinsic parameters, then the z

components is estimated by enforcing orthonormality. Tsai’s method is able to

calibrate a camera from a single image.

A decade later Z. Zhang published an approach that soon became the de

facto standard based on the image of an abstract geometry entity - the absolute

conic [5]. The imaging of the calibration plane can be described by a homog-

raphy. Given a homography, the orthogonality and normality of the rotation

matrix respectively determine two out of six degrees of freedom of the image

of the absolute conic (IAC). Since the IAC is defined by the camera’s intrinsic

parameters and is invariant to the derived homography, a linear system can be

constructed by stacking constrains of many (at least 3) observed homographies.

Zhang’s method first recovers the intrinsic parameters by solving the IAC, then

the extrinsics are determined using the solved intrinsics.

In the practice the parameters estimated using any of the described tech-

niques are never used directly. Instead, they are served as an initial guess for the

nonlinear optimisation stage carried out right after applying a chosen calibration

algorithm.

1.2 From Binocular to Multiocular

The monocular calibration is extended to calibrate stereo camera rigs. Provided

by the OpenCV [1] library the subroutine stereoCalibrate implements a

state-of-the-art stereo calibration used widely by the community. The algorithm

first independently calibrates each camera’s intrinsic parameters and the pose

of the calibration target in each view. Since the target’s poses estimated from

the first and the second cameras can be inconsistent, the algorithm chooses the

first camera-derived pose as the reference, and the target pose derived from the
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second camera is used only for the estimation of extrinsic parameters. Again,

one has to work out the inconsistency of the estimated extrinsic parameters.

A workaround to alleviate the impact of inconsistency as implemented by the

subroutine is to decide the extrinsic parameters by averaging1.

Obviously, several drawbacks exist in the stated algorithm. First, the target

has to be observed by all cameras for each view. This can be an issue when

calibrating a multiocular camera system, as the overlapped field of view shrinks

as more cameras are considered. Second, estimating extrinsic parameters using

a averaged pose is not an elegant solution and the accuracy heavily depends on

the selection of reference camera. The development of improvements over the

naive approach is therefore required. Key contributions of the proposed method

are:

1. Automatic pairing of m cameras to establish m − 1 stereo couples with

maximised use of collected calibration data.

2. Nonlinear bundle adjustment in a unified coordinate system that simulta-

neously optimise all the system parameters to achieve a global consistency.

2 Camera Model

We follow the nonlinear camera model implemented by OpenCV. Given E =

(R, t) the extrinsics parameters consist of rotation matrix R ∈ SO(3) and trans-

lation vector t, a 3D point (x, y, z) is first projected onto the ideal normalised

image plane at z = 1 by


u̇

v̇

1

 7→


1 0 0

0 1 0

0 0 1


(
R t

)


x

y

z

1


(1)

1stereoCalibrate actually calculates the median of pose vectors.
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where 7→ denotes the projective equality (i.e. equivalent up to a non-zero scale).

Then the nonlinear distortion applies to find the distorted pixel (ŭ, v̆):


ŭ

v̆

1

 7→

u̇ 2u̇v̇ r2 + 2u̇2 0

v̇ r2 + 2v̇2 2u̇v̇ 0

0 0 0 1





1 + κ1r
2 + κ2r

4 + κ3r
6

p1

p2

1


(2)

where r2 = u̇2 + v̇2 is the radial distance, and parameters κ1..3 and p1..2 respec-

tively control the radial and tangential distortion of the image sensor. These

parameters denote the distortion coefficients. Finally the distorted pixel is trans-

formed to the observed pixel coordinates


u

v

1

 7→

fu 0 uc

0 fv vc

0 0 1



ŭ

v̆

1

 = K


ŭ

v̆

1

 (3)

where fu and fv are the effective focal lengths in longitude and latitude direc-

tions respectively and (uc, vc) is the principal point where optical axis passes

through the image plane.

Note that, the entry K12 of the intrinsic matrix is set zero. This entry

controls the skewness factor of image formation, and is modeled when K is,

more generally, an upper triangle matrix [3]. Alternatively, the skewness factor

is modeled here by tangential parameters p1 and p2.

3 Multiocular Calibration

Calibrating m cameras with a calibration target placed in n different positions

defines a m-camera n-view calibration problem. There are m sets of intrinsic

parameters, m−1 sets of camera poses and n sets of target poses to be estimated.

The pose parameters are defined by an arbitrarily selected camera space as the

reference coordinate system (therefore we calibrate only m − 1 instead of m
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camera poses, as the transformation from the selected camera to the reference

is always the identity).

The selection of the referenced camera, however, can be tricky. Due to occlu-

sion of the calibration target, one has to assume it is only observed partially by

a subset of cameras for each view. As the result, the extrinsic parameters could

not be derived directly using any single view. In this section we describe a mul-

tiocular technique that automatically finds a robust way to assemble complete

extrinsic parameters using multiple views.

3.1 Calibration Graph and Parameters Initialisation

The extrinsic parameters of a multiocular camera system can be modeled by an

complete directed graph G = (VG, EG). A vertex v ∈ V in the graph represents

a camera, and an edge eij ∈ E between vertices vi, vj denotes the coordinate

transformation from vi to vj . Assume we have vertices vi and vj with their

extrinsic parameters Ei = (Ri, ti) and Ej = (Rj , tj), the transformation on

edge eij is therefore Eij = (RjR
−1
i , tj −R−1

i ti).

Explicitly estimating all m(m− 1)/2 transformations Eij is not necessary

(and could be impossible due to view occlusion) for the recovery of extrinsic

parameters Ei, 1 ≤ i ≤ m. As the transformation of coordinate system in

Euclidean space is transitive, one can derive Eij via an agent camera vk by

concatenating Eik to Ekj . Calibrating edges ET ⊂ EG in a spanning tree

T = (VT , ET ) of G is therefore sufficient to recover all the extrinsic parameters.

Costs on the edges have to be defined to form a spanning tree. In the

practice, different formations of spanning tree lead to numerically distinguishing

parameters due to data imperfections. To ensure the robustness, we define a

cost function subject to the number of shared views between cameras, which

designating to each edge a cost cij = 1/γij where

γij =
∑

1≤r≤n

br(i, j) (4)
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Figure 1: Example of a calibration graph and its MST.

and

br(i, j) =


1, if vi and vj see the target in r-th image

0, otherwise

(5)

This way, cost between strongly connected cameras are low, and the minimum

spanning tree (MST) yields a more robust initialisation of extrinsic parameters.

Figure 1 demonstrates an example of calibration graph and its MST formed

using the described cost function. In the shown calibration problem the number

of shared views between (v1, v2), (v2, v3), (v2, v4) and (v3, v4) are 7, 9, 5 and 4

respectively, while pairs (v1, v3) and (v1, v4) share no views.

We estimate the initial parameters of a multiocular system as follows. First

the intrinsic parameters are calibrated independently for each camera. The

intrinsics are then used to estimate the transformations pairwise in the MST.

The calibration fails if the MST of the calibration graph does not exist (i.e.

isolated vertex presents). calibn implements Prim’s algorithm to find spanning

trees.

Two problems remain with the initialised parameters. First, they are solved

in a linear manner whereas only algebraical errors are minimised, hence lacked

for geometrical meaning. Second, the estimations are done locally without tak-

ing global conditions into account. This could lead to highly biased estimations.

The global adjustment as described in next section is therefore suggested to be

7



carried out.

3.2 Nonlinear Optimisation

The linearly initialised parameters are further tuned using our implementation

of the Levenberg-Marquardt (LM) optimiser. LM algorithm iteratively searches

the optimal parameters β that minimises a nonlinear objective function φ :

Rd → R in the sum-of-square form φ(β) = ‖Y −f(X;β)‖2, given the observation

X → Y and the parametrised measurement function f : Rn → Rm.

In iteration k the estimate β̂k is updated as β̂k+1 = β̂k + ∆βk by solving the

augmented normal equations

∆βk = [H + λdiag(H)]−1δ (6)

with H = JTJ the Hessian matrix approximated by J the Jacobian matrix

(i.e. Jij = ∂fi(X; β̂k)/∂βj), δ = JT [Y − f(X; β̂k)] the error gradient and λ the

damping variable. The differentiation can be achieved using either symbolic or

numerical approach, while calibn calculates numerical differentiation.

The new estimate β̂k+1 is then assessed by checking φ(βk+1) < φ(βk). For

a better result the update is accepted and the damping variable is magnified to

ηλ where η is a defined multiplier, turning the optimiser toward the gradient

descent algorithm. Otherwise we reject the update and decrease the damping

variable to λ/η such that the optimiser will behave more like the Gauss-Newton

approach.

Termination criteria indicating convergence of the optimisation process are

assessed over time. The error drop and step size are considered good indicators

of convergence. In particular, we check the conditions

φ(βk)− φ(βk+1)

φ(βk)
< ε (7)
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and

‖∆βk‖
‖βk‖

< ε (8)

with the machine precision ε, which is usually set to a small positive value

below which the change is numerically meaningless [6]. Setting higher ε tends

to terminate the optimisation prematurely, while having a low ε could be a waste

of time.

In the context of camera calibration, the 3D-2D correspondences of con-

trol points are used to instantiate the minimisation problem, f actualises the

camera’s projection function, and the least square reprojection error (RPE) is

attained by the optimal parameters. In Bayesian terms, LM yields the maxi-

mum likelihood estimation of the parameters with the highest probability given

the observations, if the noises of calibration data are Gaussian.

To apply the LM algorithm, calibn vectorises the parameters including

Figure 2: Hessian matrix (in logarithmic scale) of a 3-camera 10-view calibration
problem.
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m-set intrinsics, (m− 1)-set extrinsics and n-set target poses as

β = (µ1, µ2, ...µm, ξ1, ξ2, ..., ξm−1, ρ1, ρ2, ..., ρn) (9)

where each intrinsic vector µ = (fu, fv, uc, vc, κ1, κ2, κ3, p1, p2) encodes cam-

era’s intrinsic parameters, while ξi and ρi respectively describe the extrinsic

parameters and target poses in the 6-vector form (ax, ay, az, tx, ty, tz) with

first 3 components (ax, ay, az) define the angle-axis representation of rotation,

and last 3 components (tx, ty, tz) represent the translation. We therefore have

d = 9m+ 6(m− 1) + 6n the dimension of parameter space. Figure 2 visualises

the Hessian matrix in a real case with respect to β of the described vector form.

A vector function f parametrised over β has to be given to the optimiser to

evaluate an estimate β̂. Let (x, y, z) → (u, v) be a correspondence observed by

i-th camera in j-th image, we define reprojection error vector as

fij(x, y, z;β) = (u, v)−Π[gij(x, y, z;β);µi] (10)

where Π : R3 → R2 is the camera projection function introduced in Section 2,

gij : R3 → R3 is the coordinate transformation function

gi,j(x, y, z;β) =

R(ξi) t(ξi)

0 1


−1R(ρj) t(ρj)

0 1



x

y

z

 (11)

and R(�) and t(�) respectively represent rotation matrix and translation vector

of a given pose parameter. The parameters µi, ξi and ρj are extracted from β.

To allow finer access to the error term, we separate the x and y components of

the reprojection error vector in the implementation of f [7].
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4 Experimental Results

We applied calibn to calibrate a trinocular camera system, and the results

are compared with the direct extension of the stereo calibration comes with

OpenCV, which estimates parameters pairwise. A chessboard has been placed

in 38 poses and simultaneously imaged by 3 cameras. Figure 3 shows the posi-

tions of the calibration target observed by the first camera.

Figure 3: Coverage of 38 placements of the calibration target.

The global optimisation runs for at most 30 iterations, and we set machine

epsilon ε = 10−8 for convergence check. The root-mean-square errors (RMSEs)

of reprojected control points are plotted in Fig. 4. Significant error drops are

observed through iteration 4 to 8. In the first 4 iterations the improvement is not

Figure 4: Error plot through the global optimisation process.
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Figure 5: Control points reprojected using pairwise optimised parameters with-
out global bundle adjustment.

significant. A possible explanation is that, the linearly initialised parameters are

very close to a local optimum. In this case, an insufficient termination criteria,

say ε = 10−4, could lead to an early stop of the optimisation process.

In Fig. 5 the control points are reprojected using parameters obtained and

locally optimised by the OpenCV calibration subroutine, without global adjust-

ment. Compared to Fig. 6 which shows the reprojections optimised according

to Section 3.2, an improvement is indicated by the drops of RMSE from 0.3 to

0.07 pixels for the second and the third cameras respectively, despite the error

drop is not significant for the first camera .

Image rectification are applied to study the accuracy of calibrated parame-

ters. The rectified trinocular views are shown in Fig. 7 and Fig. 8, respectively

of pairwise and globally optimised parameters. As can be seen, the epipolar con-

straint is well preserved near the marked control points in both cases. However,

Figure 6: Control points reprojected using globally optimised parameters.
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Figure 7: Views rectified using pairwise optimised parameters without global
bundle adjustment.

Figure 8: Views rectified using globally optimised parameters.
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in the remaining (e.g. the top margin of the image) significant misalignment is

obvious in Fig. 7. This demonstrates the generalisation error due to the bias of

locally optimised parameters.

5 Conclusion

In this work we built a multiocular camera calibration tool. The proposed

method automatically establishes robust calibration pairs by solving the MST

problem. The initialised parameters are further optimised in global scale using

our implemented LM algorithm. As supported by the experimental results, the

proposed method is able to attain a globally consistent parameters. Compared

to the direct extension of stereo calibration algorithm, an improvement of 44%

in RPE is attainable.
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