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This report provides a brief and informal introduction into stereo and motion
analysis for driver assistance. Stereo and motion analysis play a central role in
computer vision [10]. Many algorithms in this field have been proposed and
carefully studied; see, for example, [2, 14] and the website vision.middlebury.edu
for stereo and optic flow algorithms.

1 Stereo Pairs and Distance Maps

In short, a stereo pair of images allows to identify pairs of corresponding points,
and those allow to calculate the distance between the projected point in the
three-dimensional world and the recording cameras.

Fig. 1. A stereo pair captured by two cameras, installed on the windscreen of an ego-
vehicle.

The vehicle which is used to host the stereo camera platform for capturing
stereo image sequences is called the ego-vehicle. Figure 1 illustrates an example
of a stereo video sequence, recorded and processed at Daimler AG, Germany.

After years of research on ego-motion estimation [1], the automobile industry
has all the tools for producing rectified (i.e., geometrically corrected) stereo
image sequences.

Calculated distance values can then be visualized in a distance map, where
gray values represent various distance levels. Figure 2 illustrates two depth maps



Fig. 2. Two distance maps calculated by applying a dynamic programming stereo
algorithm.

as calculated in 2007 by a 4th year student (Darren Troy) at The University of
Auckland. The used stereo video sequence is the same as illustrated in Figure 1.

Typically, we are interested in dense (approximate) distance maps rather
than in sparse depth data. Difficulties in finding corresponding points in pairs
of stereo images do have many reasons (see, for example, [10], also for some of
the earlier algorithms which have been designed for stereo analysis.

We illustrate two examples of stereo analysis approaches. [4] proposed a spe-
cial dynamic programming approach, basically for a pair of stereo images, in
which the disparity matrix of a line is used as additional input for the calculation
of the disparity map of the subsequent image line. This can now be generalized
when having sequences of stereo pairs: additionally, the disparity matrix of the
same line, but for the previous stereo pair, is also used. See Figure 2 for a result

Fig. 3. Edge detection followed by belief-propagation allows to calculate this dense
depth map.



using this approach of propagating results within the same pair of images, and
also along the time scale. This allowed for a substantial improvement.

Figure 3 illustrates another extension of a well-known approach due to the
specific properties of the given image sequences. Here, belief-propagation was
not performed on the given image pairs but on Sobel edge images of those. See
[6] for details. See [15] for another example of a technique for calculating distance
maps.

2 Downloadable Stereo Sequences

Daimler AG Germany [5] provided in 2007 seven stereo sequences for research
purposes. They are captured with a calibrated pair of night-vision cameras near
Stuttgart. Each sequence contains 250 or 300 frames, and features different driv-
ing environments, including highway, urban road and rural area. The ego-motion
of the stereo platform has been correctly estimated and compensated [1], so that
the view angle is always (about) parallel to the horizon. Furthermore, camera
calibration is used for geometric rectification, such that image pairs are char-
acterized by “standard epipolar geometry” [10]. A few “black strips” around
borders of images are caused by this compensation or rectification. Figure 1
showed an example of one stereo pair in such a sequence.

The resolution of images in these sequences is 640×481. They are saved in
PGM grayscale format, and available in both big endian and little endian, for
convenient usage in different software, on www.citr.auckland.ac.nz/6D/.

3 Motion Analysis

Motion estimation for these sequences should provide information about move-
ments of objects (speed, trajectory) as relevant for each sequence, often for
identifying possible courses of conflict. Motion analysis starts in computer vi-
sion typically with optic flow calculation [?,8, 11], assuming that this leads to
approximate calculations of the local displacement (of corresponding points be-
tween two continuous image frames). However, a few experiments with those
sequences will reveal immediately the difficulty in applying optic flow algorithms
successfully to those sequences, which are often blurry or fine textured (e.g., in
trees).

Two typical basic assumptions behind optic flow algorithms are as follows:
the brightness of the scene should be about constant, and local displacements
must be small. However, both are not satisfied in those sequences. For example,
the illumination changes often in one sequences, due to shading patterns of trees,
or there is even different lighting for left and right camera. Object segments also
move often very fast within images.

Again, sequences allow stabilization of results along the time scale (see, for
example, [9]), and larger motion vectors can also be analyzed by using hierarchi-
cal approaches (see, for example, [12]). It is also recommended to apply relatively
“advanced” edge detection first (such as a Canny edge detector, and not just



Fig. 4. Left: Canny edge image (inverted). Right: Only those edge pixels where the
optic flow magnitude exceeds a threshold. Direction of optic flow is shown by hue, and
length of vector by intensity (image also inverted).

the Sobel operator), and then analyze motion vectors only along those edges.
See Figure 4 for an illustration (results by Xuan Guo, 4th year student in 2007
at The University of Auckland).

4 6D Analysis

Fusing stereo and motion analysis results together (i.e., 3D plus 3D, called 6D
vision in [5]), into one consistent interpretation of the scene, may allow to extract
objects and their movement.

An intersection approach for fusion is to take all those pixels where motion
information is evaluated as being reliable, and use the depth values at those pixels
for combining motion and depth (or, vice-versa). However, this only allows to
label very sparse pixel. Another idea is to segment depth maps, and to assign
uniform motion vectors to those segments.

Fig. 5. 6D vision result, showing only moving object points which are not classified
as being static background. Clustering of the shown dots allows identification of those
three cars and of the bicyclist.



The use of Kalman filtering (see the book [7] or the online-tutorial [16]) is
recommended to “smooth” and stabilize the movement of extracted features,
and to generate more precise estimates. For example, [3] proposed this for the
tracking of detected feature points, and [5] generalized this for an intersection
approach.

Figure 5 illustrates a simple background removal strategy which uses camera
calibration data which are provided for the seven test sequences (with respect
to the camera’s coordinate system, which is registered with respect to the car’s
coordinate system):

The camera’s coordinate system is left handed: looking into driving direction
along the z-axis, the x-axis points to the right, and the y-axis to the sky. The
car coordinate system to camera coordinate system transform is the translation
defined by “latpos”, height, distance, followed by a rotation defined by tilt, yaw,
and roll. A positive tilt means looking downward, a positive yaw means looking
to the right, and a positive roll means clockwise.

Static background is anything what moves just (about) opposite to the move-
ment of the host car. For calculated motion vectors, only those remain where the
frame-to frame motion and the related depth information does not indicate a
background situation. These are shown as dark dots in Figure 5, which resulted
from a 2007 project of Xuan Guo, Zhongxia Ma, and Hao Xue, Auckland.

5 Outlook

Research on stereo sequences as described is a current hot subjects at many re-
search centers of car companies worldwide, and also at academic institutions. See
the .enpeda.. project, www.citr.auckland.ac.nz/projects/research/, for example.
Driver assistance based on computer vision is starting to impact safety and per-
formance features of modern cars. Research tasks are manyfold, and will define
a vivid area of research for the next couple of years.
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