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Abstract. Lane-border detection is one of the best developed modules
in vision-based driver assistance systems today. However, still there is a
need to improve for challenging road and traffic situations, and also a
need to design tools for quantitative performance evaluation.
This paper discusses and refines a method to generate ground truth for
lane markings from recorded video, applies two lane-detection methods
to such video data, and illustrates then the proposed performance evalu-
ation by comparing calculated ground truth with detected lane positions.
This requires performance measures, and they are also proposed in this
paper.

1 Introduction

Vision-based driver assistance systems became already standard modules in
modern cars, supported by the availability of high-computing power using low
voltage only (e.g. purpose-designed FPGA solutions), small and accurate cam-
eras, able to fit in any vehicle, and progress in the methodology of computer-
vision solutions.

Lane border detection, being a component of vision-based driver assistance
solutions, has been studied for more than twenty years, and there are robust
solutions available for road environments where lane markings are clearly visible,
such as highways or multi-lane main roads.

Vision-based lane detection supports lane departure warning, lane keeping,
lane centring, and so on [1]. Despite the many algorithms and approaches avail-
able, an ongoing concern [1, 9] is the lack of a proper ground truth estimation
to evaluate the efficiencies and accuracies.

Usually the easiest way, most publications use to validate how well their
approach works, is using their naked eye for the validation. Building a ground-
truth data base can become really difficult as roads are not generic in any single
country alone, not to mention the diversity around the world. Roads can be well
built or not, have proper markings or no marks at all, are urban or countryside
roads, have solid lane markers or painted dashes lane borders, and so forth. The
environment is only one factor, the other factor is the equipment, such as the
type of camera used (e.g. image resolution, gray-level or color, bits per pixel, or
geometric accuracy).
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It appears that generating ground truth for lane detection needs to reflect a
lot of parameters, to make sure to create a trust-worthy ground truth. Digitally
simulated ground truth was created by Revilloud et al.[10] but they found out
that when adapting their lane detection algorithm running to their synthetic
ground truth, it did not work very well on real data as their approach mainly
focuses on the ground texture for detecting lines. They stated a need for another
solution for ground truth generation.

There is another obvious solution: generate ground-truth manually, sup-
ported by some graphics routines for drawing lines. However, considering frame
rates of 25 Hz at least, and the need to generate ground truth for long video
sequences, this would just to be too much a tedious task.

Borkar et al. [2] developed a technique using time slices and splines to gener-
ate ground truth from any type of road image sequence recorded in an ego-vehicle
(i.e. the vehicle the vision system is operating in). The approach works reason-
ably well on clearly marked roads, but the involved interaction also comes with
the risk of human error and limited usability. In this paper we provide an im-
provement that makes the ground-truth generation process easier to use, and
which also helps to generate ground truth for larger diversity of recorded video
data.

Figure 1 already illustrates the subject of this paper. Ground truth and
estimated lane borders are both shown in the image on the left, with a magnified
window on the right. It is necessary to compare quantitatively ground truth with
estimated lane borders.

We found that it was quite easy to re-implement the method proposed by
Borkar et al. [2]. Potentially it works as long as there are some markings in the
frames which identify the lanes, When selecting points on lane markings and the
points are not at the center of the drawn lines, then this may lead to errors. We
provide solutions by using standard image processing techniques to make the

Fig. 1. Left: Ground truth and calculated lane markings. Right: Magnified window of
the image shown on the left. The white lines are calculated ground truth, and the
yellow dots are calculated lane-border positions. Note that algorithms for lane-border
detection not necessarily provide curves; it might be just isolated dots.



Ground Truth and Performance Evaluation 3

whole process easier, and to reduce the errors in of point selection, going thus
further towards a fully automated solution.

The paper is structured as follows. Section 2 provides a brief explanation
of the drawing technique by Borkar et al. and of our improvements. Section 3
recalls a lane-border detection method, published by Jiang et al. in [6], which
we implemented and used for illustrating performance evaluation. Section 4 dis-
cusses the may how to quantify performance by introducing measures. Some of
the actual experiments are reported in Section 5. Section 6 concludes.

2 Ground Truth by Time Slices

Evaluations of computer vision techniques based on available ground truth be-
came a widely accepted approach for improving methods, for identifying issues
and to help to overcome those. Current examples are the KITTI benchmark suite
[4, 7] and some of the sequences on EISATS [3, 8]. These are websites offering
long video sequences, more that 100 frames each, for testing vision algorithms on
recorded road scenes. Lane-marking ground truth has been not yet considered
there so far. So far, really challenging video data are only suggested for subjec-
tive evaluations of algorithmic performances, such as during the Robust Vision
Challenge at ECCV 2012 [11]. Altogether, this seems to illustrate the difficulty
of providing usable ground truth for lane detection.

Building ground-truth data base for lane sequences requires generating curves
indicating where the actual lane border is located in an image. Borkar et al. create
an image called a time slice by selecting points from each frame of the given
sequence, and apply spline interpolation for those selected points to generate
ground truth. See Figure 2. In this paper we illustrate results for the same data
set as used by Borkar et al. in [2], Sequence 1 consists of 1372 frames, each
having a resolution of 640× 500 pixels.
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Fig. 2. A time slice is created by using a stack approach, combining single rows of
pixels from each image frame into one sequence. This figure follows a figure given in
[2], but using modified notation.
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Fig. 3. Samples of generated time slices. The images have 497 rows, meaning that 497
frames contributed each one row to those generated time slices.

For generating n > 0 time slices, as defined in [2] for any given video sequence,
we extract n rows of pixels from each frame at fixed row locations. The distance
between subsequent rows should be around 20 to 30 pixels, assuming a standard
640× 480 VGA image format. For n, a value between 3 and 5 is reasonable.

Each of the n fixed rows, accumulated over time, defines a time slice: the row
from Frame 1 goes into the bottom-most row, the row from Frame 2 into the
next, and so forth.

See Figure 3 for examples of two time slices calculated for the same image
sequence but for different fixed rows. After creating n > 0 different time slices, [2]
suggests to manually select a number of points on the left and right lane borders,
and to apply curve fitting using cubic spline interpolation. This generates new

Fig. 4. Results of applying curve fitting by interpolating manually selected points to
the time slice shown on the right in Figure 3. The interpolated curves are shown as
thin white curves following the lane markings.
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Fig. 5. Final results (white curves) after propagating points from time slices into the
image sequence and interpolating those points. The image is a frame from one of the
data sets provided by Borkar et al., see [2].

points between the few chosen points and connects them together; see the thin
white curves shown in Figure 4.

After repeating the same curve generation on each of the n > 0 time slices,
[2] propagates all the created points from those time slices into corresponding lo-
cations (on the fixed rows) in the original frames. The the authors of [2] re-apply
curve fitting once again, by interpolating curves in the recorded frames. This fi-
nally generates the proposed ground truth data for each data sequence. Figure 5

Fig. 6. Generated time slices from Sequence 1 of the used data set, using rows 245
(left, top), 290 (left, bottom), 320 (right, top), and 380 (right, bottom).
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Fig. 7. Interpolated curves for row 380 after using our automated point location ap-
proach.

shows ground truth generated this way; see also Figure 1 which illustrated such
type of ground truth already together with lane detection results applying an
adaptation of the algorithm of [6], briefly described in the next Section.

The approach of [2] is easy and reasonably time-efficient in generating ground
truth data on different types of video sequences. The problem we experienced is
the uncertainty in selecting points in the time slices.

These points should be ideally in the center of the lane borders. See Figures 5
and 4 for visible deviations from an the ideal line. The index of the fixed row
(i.e. further down in the frame, close to the ego-vehicle, or further up, thus away
from the ego-vehicle) has impacts on accuracy: the further away the more likely
that manually located points are not supporting ground truth curves being in
the center of lane markings. Figure 6 shows result for four time slices for row
indices 245, 290, 320, and 380.

Fig. 8. Left: Generated ground-truth curve with the original interactive approach.
Right: Generated ground truth when using our edge-operator based automated ap-
proach.
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Our approach: We decided to apply a Canny edge detector on generated
time slices and use an automated center correction between detected (left and
right) edges of lane borders to find the center points. This not only provides
automated point selection, it also improves the accuracy.

See Figure 7 for the automatically generated result for row 380 and compare
with Figure 6, right, bottom. Differences are also illustrated in Figure 8.

3 Lane-Border Detection

For performing a comparison of ground truth with calculated results by using a
lane-border detector, we decided for using two totally different techniques. The
first is an adaptation of the technique described in [6]. This method uses a lane
border model, originally proposed in [12], defined by isolated left and right lane
border points in one image row. See Figure 9.

Assume we detect points PL and PR in one image row for locations of a left
and a right lane border. Angle 2α at an assumed fixed height H above the center
PC , being half-way between PL and PR, and slope angles β1 and β2 at PL and
PR (with lane borders in a calculated bird’s eye view of the frame) define three
more parameters of the used lane model. Altogether, the x-coordinates of PL and
PR, α, β1, and β2 define a 5-dimensional space for locating a pair of lane border
points in one image row. [6] suggested to use a particle filter for propagating such

Fig. 9. Lane model based on isolated points [12]. Top: model, assuming a planar road.
Bottom, left: Sketch of a perspective 2D lane view in an input image. Bottom, right:
Sketch of a bird’s-eye image of the lane. See text for further explanations. Reproduction
of a figure by courtesy of the authors of [5].
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Fig. 10. Illustration of our Hough-transform based lane border detection method, using
data from EISATS [3]. In this case we even detect edges of lane borders, e.g. clearly
visible in the image on the right and the middle lane border.

pairs of lane border points upward in the recorded frame. The row-component of
the Euclidean distance transform (REDT) is used for detecting center pixels PC ,
defining PL and PR this way, and the particle filter uses then previous (lower)
row results and the results of REDT for calculating pairs in subsequent (higher)
rows of a frame. The algorithm also uses temporal propagation of detected pairs
from Frame t to Frame t+ 1.

Figure 1 already illustrated (by yellow dots) located pairs of border points
using this algorithm.

As a second lane border detection method, we also have an implementation of
a Hough-transform based lane border detection algorithm, approximating lane
borders by line segments; see Figure 10. We skip details here.

Both outputs are qualitatively different by having isolated pairs of points in
the method following [6], but connected curves for the Hough-based method. We
discuss performance measures for the isolated points (which extends to connected
curves: every connected digital curve is actually a sequence of isolated pixels)
and for connected curves such as the Hough-transform.

4 Performance Measures

In this section we describe two measures for comparing ground truth with calcu-
lated lane borders. In each frame we only consider an interval of relevant rows,
with indices between ymin and ymax; see Figure 11.

First we describe a measure for comparing isolated points, as of relevance for
the method proposed in [6]. For each row y, with ymin ≤ y ≤ ymax, we have the
following cases to be considered for ground truth:

1. ground truth provides points on a left and a right lane border (case GTB)
2. ground truth only provides a point on the left border (case GTL)
3. ground truth only provides a point on the right border (case GTR)
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ymax

Fig. 11. Relevant rows while driving on a planar road. We are not interested in rows
too close to the ego-vehicle, and not in rows too far away.

4. ground truth provides no point in this row y (case GTN)

Analogously, we also have the cases BDB, BDL, BDR, and BDN for border
detection (BD). For example, in Figure 10, left, we do not even see the right
lane border the ego-vehicle is driving in at that moment. We consider cases as
GTL, GTR, and GTN as being defined by the circumstances, not to be penalized.

In row y, with ymin ≤ y ≤ ymax, we use the notation xGT
y,L and xGT

y,R for

detected ground truth points (if they exist at all), and xBD
y,L and xBD

y,R accordingly
for the studied border detection algorithm. The error EIP (y, t) for the case of
a BD algorithm providing isolated points (IP) in row y, with ymin ≤ y ≤ ymax,
and considering Frame t of the input sequence, is defined as follows:

EIP (y, t) =



||(xGT
y,L, x

GT
y,R)− (xBD

y,L , x
BD
y,R)||1, if cases BDB and GTB

||xGT
y,L − xBD

y,L ||1 + τ, if cases BDL and GTL or GTB

||xGT
y,R − xBD

y,R ||1 + τ, if cases BDR and GTR or GTB

τ, if cases BDN but not GTN

0 otherwise

(1)

Value τ is a penalizer for inconsistency of BD results with GT. Due to the given
resolution of 600 × 500, we decided for τ = 10. Of course, the L1-distances
(i.e. absolute values) in Equation (1) can also be replaced by another distance
measure such as a Mahanalobis distance.

This error measure provides multiple options for penalizing inconsistencies
between the BD algorithm and the ground truth. We only state here formally
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one option, defined by the use of only all those rows y0,t < y1,t < . . . < ymt,t,
with ymin ≤ yi,t ≤ ymax for i = 0, . . . ,mt where we have both GTB and BDB.
This gives us the error

EBD =
1

T

T∑
t=1

[
1

mt + 1

mt∑
i=0

EIP (yi,t, t)

]
(2)

for method BD for the whole sequence of T frames.
As mentioned earlier, because the lines provided by the Hough transform are

also composed of isolated points we can actually apply this measure for both the
method following [6] as well as for the Hough-transform based method.

For completeness we also briefly outline our second performance measure,
designed for comparing a curve provided by GT with a curve provided by BD.
Here we interpolate given BD data by a Spline curve in the interval [ymin, ymax]
of rows. There are several cases to be considered, such as an algorithm providing
isolated points does not contribute border points “close” to minimum or maxi-
mum values ymin or ymax, or BD provides left and right approximations of border
lines (defined by a very short distance between bot approximated lines), such as
illustrated in Figure 10. In this case we interpolate between both approximating
curves for being able to compare with the GT curve which represents the center
line of a lane border marking.

5 Experiments and Discussion

We tested the proposed way of ground truth generation and the proposed per-
formance measures on different data, using both the isolated-point method of [6]
as well as the Hough-transform based method as options for BD.

We selected five different sequences from different sources (data provided
by [2] and data available on [3]). Interestingly, we obtained individual measure-
ments for those sequences which come with different characteristics, defined by
frame resolution, used camera, and bit per pixel, but also by road, traffic, light,
contrast, or weather conditions.

We can add tables here, but believe that these are not very illustrative for
the reader. In summary, non of both border detection methods was the all-time
winner. Not surprising, the Hough-transform based method preforms better on
straight roads having clear lane border markings. The isolated-point technique
appears to be better suited for the more challenging conditions.

6 Conclusions

We proposed an improvement for the method proposed in [2] for generating
ground-truth for lane borders in recorded on-road video data. The proposed
addition works fine in general for going towards an automated process, and also
for identifying centers of lane border markings.
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We defined two performance measures and applied those for two different lane
border detection algorithms, representing different methodological approaches.
The evaluation is in consistency with statements, for example, in paper [8],
that the diversity of situations requires adaptive selections of techniques for
optimizing analysis results.

The proposed framework can be used to identify better algorithms which
correspond in their performance to a given situation or scenario.
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