
Visual Lane Analysis and Higher-order Tasks

- A Concise Review -

Bok-Suk Shin, Zezhong Xu, and Reinhard Klette

All three authors are members of the .enpeda..
(Environment Perception and Driver Assistance)

Project at the Department of Computer Science

The University of Auckland, New Zealand

The second author is also with the Computer Science Department,

Changzhou Institute of Technology, Changzhou, China.

4 September 2013

Abstract

Lane detection, lane tracking, or lane departure warning have been the
earliest components of vision-based driver assistance systems. At first (in
the 1990s) they have been designed and implemented for situations defined
by good viewing conditions and clear lane markings on highways. Since
then, accuracy for particular situations (also for challenging conditions),
robustness for a wide range of scenarios, time e�ciency, and integration
into higher-order tasks defines visual lane detection and tracking as a
continuing research subject.

The paper reviews past and current work in computer vision that aims
at real-time lane or road understanding under a comprehensive analysis
perspective, for moving on to higher-order tasks combined with various
lane analysis components, and introduces related work along four inde-
pendent axes as shown in Fig. 2. This concise review provides not only
summarizing definitions and statements for understanding key ideas in
related work, it also presents selected details of potentially applicable
methods, and shows applications for illustrating progress.

This review helps to plan future research which can benefit from given
progress in visual lane analysis. It supports the understanding of newly
emerging subjects which combine lane analysis with more complex road or
tra�c understanding issues. The review should help readers in selecting
suitable methods for their own targeted scenario.
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1 Introduction

Lane detection and tracking are subjects of vision-based driver assistance, safety
warning systems, robotics, or autonomously driving platforms. The first systems
have been designed and implemented in the 1990s, such as RALPH [109], GOLD
[16], SCARF [30], MANIAC [67], or LANA [76, 77]. Lane detectors and trackers
are o↵ered in cars and trucks since the late 1990s. The 2006 paper [95] provides
a review on solutions based on computer vision (as this paper does as well),
and presents then in detail the lane detector VioLET. The survey [14] covers
all the sensing modalities used for lane detection (e.g., also radar and LIDAR);
it identifies a general work flow and discusses systematically the involved steps,
but without going much into details of cited papers.

Vision-based techniques can potentially work for the widest spectrum of sce-
narios (compared to other sensing modalities), and are also very cost e�cient
with respect to the used hardware. Tra�c environments are still designed for
human drivers, not for autonomous driving. The design addresses very much
the visual abilities of human drivers. Vision-based driver assistance is thus sup-
ported by the given tra�c environments. However, the human driver combines
many clues for understanding roads and tra�c. Current research is typically
still focused on individual components such as lane detection, lane tracking,
curb detection, tra�c sign recognition, road surface modeling, vehicle tracking,

Figure 1: Framework for visual lane analysis when aiming at solutions for
higher-order tasks.

2



pedestrian tracking, and so forth, which all contribute for a human driver to
the understanding of the road environment. Future systems will integrate more
individual components, using general concepts such as learning, adaptation, or
model-building.

Studies on lane detection and tracking propose typically a specific method
considering defined tra�c scenarios, and addressing processing issues related
to the proposed method, without analyzing dependencies between proposed
method and considered scenarios. For instance, the reviewing papers [16, 37,
71, 95] already summarized lane models and lane analysis methodologies, but
did not yet point to the di↵erent inherent complexities of scenarios, a subject
which comes recently more into focus; the review in [95] contains already a table
listing driving conditions (i.e. scenarios) and lane detector models.

This survey aims at presenting developments in visual lane analysis, i.e. sub-
ject areas which are directly related to visual lane detection and tracking. The
provided references are obviously selective due to the already existing enormous
number of publications, which are by far more than what could possibly be
listed in such a survey. However, we were curious about the particular (new)
techniques of computer vision used in visual lane analysis. We aim at providing
basic definitions, and illustrate them by giving details and examples. This is
one of the di↵erences of our review to [14, 95], and we also di↵er by lists of
discussed subjects, and by being a little more recent.

The paper is structured as follows. Section 2 provides basic definitions for
lane analysis. Models for Lane Analysis are reviewed in Section 3. Section 4
discusses potential methodologies and methods with examples.

The basic tasks of visual lane analysis and lane tracking, combined with
higher-order tasks, and challenges defined by applications, are dealt with in
Section 5. Section 6 discusses the spectrum of scenarios aiming at characterizing
particular di�culties. Section 7 concludes.

2 Visual Lane Analysis for Higher-order Tasks

After considering a wide range of proposed methods (see our bibliography), it
appears to be impossible that one standardized work flow could also cover tasks
of increasing complexity. A standardized work flow, as outlined in [14], is in the
scope of lower-order lane analysis tasks, possibly including some hierarchical
processing. The complexity and combination of higher-order tasks, combined
with visual lane analysis, leads to classes of techniques incorporating learning,
classification, automated model building, adaptation, and so forth.

Figure 1 indicates a framework when aiming at developing combined systems
benefiting from already existing modules. Such an integration can benefit from
unifying definitions or statements, key ideas or details of related work, or the
current spectrum of already existing applications.

In general, higher-order tasks are defined by interaction with other mod-
ules in a complex driver assistance system. Examples of higher-order tasks are
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Figure 2: The scope of visual lane analysis. There are finite numbers of entries
on methodology and model axes, and there is an unlimited diversity of scenarios
and applications,

the combination of visual lane analysis with driver monitoring (e.g. for under-
standing the driver’s attentiveness to the lane-keeping task [9, 48, 113]), with
ego-motion analysis (i.e. the analysis and prediction of the trajectory of the
ego-vehicle on the 2D road manifold, e.g. when calculating the lateral position
of the ego-vehicle on the road), with location analysis (e.g. for improving the
spatial accuracy of GPS data by identifying the position on the road), with ve-
hicle detection [123], or with navigation (e.g. by projecting the proposed route
into the real-world view of the recorded scene [49, 100, 107, 128]). Higher-order
tasks are discussed in Section 5.2.

Our concise review uses independent coordinate axes for spanning a space
of proposed solutions for visual lane analysis: the axis of models, the axis of
methodologies, the axis of applications, and the axis of scenarios . See Fig. 2
for a sketch of this 4-dimensional space. Details for those axes are presented in
Sections 3 to 6.
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Figure 3: Left: single-lane roads below the historic city of Guanajuato. Right:
unpaved two-lane road between Cachi and Cafayete.

2.1 Fundamental definitions

A lane L is defined by su�cient width for driving a road vehicle. It is the space
between a left and a right lane border, being arcs �l and �r respectively. The
detection of lane borders might be even a challenge for human vision due to
vanishing markings, existing lane markings are covered (e.g. by parked vehi-
cles), lighting-related issues (e.g. shadows or sunstrike), or multiple or confusing
markings. Thus, we do not formalize further at this general level.

For two extreme examples of di�cult lane identifications, see Fig. 3. For
the shown underground road intersection, various visual clues (e.g. light in
the tunnel) help to understand the geometry of the road. For a narrow two-
lane road it is convenient to assume a wider lane as long as oncoming tra�c
is not demanding two equally-wide lanes. Note: the localization of a lane is

Figure 4: Left: bird’s-eye view. Right: perspective view. Courtesy of the
authors of [135]. Notations illustrate common coordinates in both views, with
‘hz’ for ‘horizon’ and ‘VP’ for ‘vanishing point’.
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Figure 5: Left: parallel arcs. Right: parallel middle arc. A middle arc and
constant width also defines the two outer parallel arcs.

not always uniquely defined in the real world; it may depend on tra�c flow or
driving comfort if there is no unique lane marking.

Lane analysis can be in the perspective view of the recorded image, or in a
calculated bird’s-eye view; see Fig. 4. A lane L is represented by a 2-dimensional
(2D) smooth surface L(u, v) between both borders (i.e. when not aiming at
analysing unevenness of the lane), assuming some 3-dimensional (3D) XY Z
Cartesian world coordinate system. Formally,

L(u, v) = (X(u, v), Y (u, v), Z(u, v)) (1)

for parameters (u, v) in a 2D set, also called a ground manifold. In case of a
planar lane, we have a ground plane (illustrated by the xy-coordinate system
on the left of Fig. 4, thus u = x and v = y in this case), and one of the three
coordinates in L(u, v), denoting the height, is then always equal to zero.

The two borders of a lane are often assumed to be parallel; two arcs �l and
�r are parallel if �l is an envelope of congruent circles (i.e. of constant radius
r) centred on �r. Figure 5 illustrates parallel arcs for the case of a planar 2D
manifold. Note that parallel arcs are not defined by translating one arc into the
position of the other. Figure 4, left, shows translation-equivalent arcs; those
two arcs are not parallel.

Themiddle line between two parallel arcs is defined by circles of radius r/2, if
r is the radius of the circles defining the two outer parallel arcs. A lane between
two parallel borders has constant width. Borders of roads (or lanes) are usually
designed by clothoid segments [6, 36]. An Euler spiral, also known as clothoid,
is an arc whose curvature changes linearly with the arc’s length; using t for arc
length parametrization and initial curvature (0) at length t = 0, we have that

(t) = (0) + c · t (2)

for t � 0 and a defining constant c � 0. The clothoid model can represent
straight lines ((0) = c = 0), circular arcs ((0) > 0 and c = 0), and smooth
transitions between both.
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Figure 6: Left: lane departure. Middle: coming too close to the middle line.
Right: unsteady driving.

The ego-vehicle is the vehicle where the system is operating in. A four-
wheeled vehicle is commonly represented by the bicycle model [126]. For a more
recent discussion of this model, see [108]. However, in this survey it is su�cient
to identify the ego-vehicle with a position (i.e. a point on the road) and a
direction, defining an arc by driving on a road.

Ideal lane keeping is defined by driving along the middle line of a lane.
Lane departure is the crossing of one of the two lane borders. Irregular driving
is defined by deviations from the middle line of a lane, such as, for example,
coming too close to a lane border, or by unsteady driving. See Fig. 6.

2.2 Evaluation of lane analysis

Weighting the reliability of lane detection algorithms has been addressed in
[15, 24]. Performance evaluation based on ground truth is discussed in [17]. See
also test data with ground truth on EISATS as mentioned earlier in this paper.

The website www.mi.auckland.ac.nz/EISATS o↵ers trinocular1 rectified stereo
video data (400 frames for each sequence). EISATS also provides ground truth
(i.e. approximate truth defined by measurements or human interaction) for lane
detection for those eight sequences. Trinocular data o↵er the possibility to eval-
uate the robustness2 of lane detection for three monocular sequences all showing
“in principle” the same scene, “just” from slightly di↵erent viewing positions.

3 Models for Visual Lane Analysis

Above we provided a ‘very high-level’ definition of a lane L and of its two borders
�l and �r. There is no more specific formal definition of a lane due to given
diversities, but a general ability of human observers to identify lanes in road
images (possibly also di�culties in identifying those; compare Fig. 3).

1
Suitable for stereo performance evaluation using the third-eye approach of [98].

2
In general we define robustness by high accuracy across a defined range of scenarios.
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Any formalized lane model is only an approximate representation of a partic-
ular class of geometric or visual appearances. Lane departure warning systems
require an appropriate detection range. For example, [95] states that a mini-
mum range of 30 meters is required to accurately predict the trajectory of the
ego-vehicle in relation to detected lane borders.

Models for the geometric shape of a lane describe lane borders either by an-
alytically specified curves, or by sequences of individual border points, forming
some kind of irregular but ‘systematic’ pattern. Curves may often not match
an actually irregular lane border, and when using individual points it might be
di�cult to initialize a border again after having it lost in a tracking process.
Examples of curves are straight line segments (i.e. a linear model), or parabolic
or hyperbolic arcs.

In this section we review diverse models discussed in previous work on lane
analysis, addressing the axis of models in the scope of lane analysis, as shown
in Fig. 2.

3.1 The linear model

The linear model appears to be appropriate for typical highway scenarios or a
relatively short detection range. Short lane border segments can be approxi-
mated by straight line segments. A detection range of 30 m often already con-
tradicts the straight segment assumption. For very precise straight lane border
detection, see [142, 143].

Obviously, lane borders can always be assumed to be piecewise straight, but
the length of those straight segments may often be below reasonable limits.
The piecewise linear model is applied in [81, 84, 101, 146]. For non-linear lane
borders, angles need to be calculated between subsequent straight segments.

3.2 Isolated points

It is also possible to model lane borders by isolated left and right border pixels in
individual image rows, and to control consistency between such isolated border
pixels in subsequent image rows [62, 64, 66, 149].

Example 1 (Use of four parameters per image row): Figure 7 illustrates a
model for using isolated points Pl = (xl, y) and Pr = (xr, y) as the left and
right lane border points. They are identified in one image row y, defining a
centre point Pc = (xc, y). Assuming a zenith point Pz at a constant height H
above Pc in the real world, the zenith angle ↵ defines points Pl and Pr. The
perspective view is mapped (based on a calculated homography) into a bird’s-
eye view; slope angles �1 and �2 approximate the angles formed by the lane
borders with lines in vertical direction. Altogether, four parameters xc,↵,�1,�2

define the intersection of image row y with one lane. The consistency between
parameter-quadruples in subsequent image rows can be controlled by a particle
filter in 4-dimensional particle space. For a detailed description, see [72].
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3.3 The parabolic model and its extensions

The parabolic arc model has been commonly applied, either in the ego-vehicle
coordinate system [87, 95, 97], or in the coordinate system of perspective images
[83]. A parabola often fits lane marking better than the (piecewise) linear model.
Obviously, it also cannot model any shape of a lane border. For example, the
transition from a straight arc into a circular arc [68] is usually constructed by
using a clothoid.

In [103, 124], third-order arcs are also used to model the horizontal curvature
of a lane. A second-order model is deployed in [103] to model the vertical
curvature of a lane. Higher-order models come with the drawback that they are
more sensitive to detection noise. Temporal filtering is appropriate when using
such models for robust detection. Instead of a parabolic model, some authors

Figure 7: Lane model based on isolated points [149]. Top: model, assuming a
planar road. Bottom, left: Sketch of a perspective 2D lane view in an input
image. Bottom, right: Sketch of a bird’s-eye image of the lane. See text for
further explanations. Courtesy of the authors of [64].
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Figure 8: Hyperbolic model. Left and right lane borders are modelled by two
asymptotes which define a vanishing point VP(uH , vH) on the horizon. Courtesy
of the authors of [132].

[104, 150] also use a circumference model.

3.4 Hyperbolic models

Hyperbolic arcs are considered in [77, 132] for lane shape modelling. See Fig. 8;
the tangential lines l1 and l2 are defined by lane or road borders. The left road
border is modelled by an asymptote defined by l1 and the horizon. The right
road border is similarly modelled by an asymptote defined by l2 and the horizon.
Lines l1 and l2 vanish at point VP(uH , vH) on the horizon; see [132] and also
[36].

3.5 Clothoid models

Segments of clothoids are used for road construction to support that only steady
changes of steering angles are needed when driving from a straight into a curved
road section. Clothoids have been proposed in [37] for lane or road modelling,
and used in [34, 50, 78, 93].

A clothoid road section is defined by a sequence of constants c1, . . . , cm for
subsequent clothoid segments of the road border.3 When using the clothoid
model for lane analysis, that constant c needs to be estimated which defines the
curvature increment of the current lane section.

3.6 Spline models

Splines are piecewise polynomial curves; the connection points of polynomial
segments are called knots, and it is commonly the goal to ensure smoothness of

3
See Fig.7.11 in [36] for an example.
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splines at knots. Splines are defined by a sequence of knots, also called control
points, and a specified type of used polynomials. When using the spline model
for lane analysis, parameters of that polynomial need to be estimated which
defines the current lane border. According to [148], a spline-based lane model
was first proposed in [133] using Catmull-Rom splines which ensure smooth
changes of tangents between subsequent spline segments. In [135], the spline
model was further studied by using cubic B-splines which are capable to describe
a wider range of lane geometries.

For each frame, estimate at first the vanishing points of pairwise disjoint
regions of interest (ROIs), then use them as control points for the calculation of
B-splines. A lane is modelled as a centre line with lateral o↵sets. A fundamental
assumption for the methods presented in [133] and [135] is that there are parallel
lane markings.

In [71], a cubic spline model is used for model fitting (i.e. of a lane border).
Detected pixels on lane markings are connected to form short line segments, and
then fitted (based on hypotheses) using a cubic spline model and the popular
RANSAC technique. Parallelism of lane markings is frequently assumed when
using a spline model; see, for example, [133, 135, 150]. This assumption also
helps to identify lane markings on both sides if a centre-width model is used as
in [41].

3.7 Snakes

Snakes are splines defined by minimizing di↵erences to edges or object borders
in images (called energy-minimization). They are a common way to describe
the geometric shape of 2D regions in images [69]. Snakes have been used in
[135, 144] for lane border modelling. [135] uses B-snakes with three control
points for this purpose. The assumption of parallel lane borders can be used to
ensure robustness in cases of shadows, noisy image data, or missing or incorrect
lane markings. Lane detection reduces here to the identification of a current
set of three control points. However, in [134] it was discussed that this model
“lacks the flexibility to model the complex shape of some roads.”

3.8 3D models

Lane detection can also be based on 3D road models, see [102, 103, 144, 145],
typically using stereo vision. The road is modelled in [103] as a 3D surface
defined by horizontal, vertical curvature, lane width, and roll angle. This allows
the elimination of (often simplifying) assumptions of a planar road, constant
pitch angle, or any absence of a roll angle. Gradient information is used in
[25] for modelling lanes; this information is useful for suppressing influences by
shadows, highlights, or sun glare.
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Table 1: References for Models.

Models Features References

Linear Appropriate if detection range is limited, [84, 81]
short detection range, highway scenarios. [101, 146]

Isolated points Modelling by isolated left and right border pixels, [62, 64]
possible for irregular lane borders
Control of consistency between isolated border pixels
by a particle filter [66, 149]

Parabolic Fits lane marking better than the simple linear model, [6, 68, 83, 87]
commonly applied [95, 97, 103]

[104, 124, 150]

Hyperbolic Models lane shape by two asymptotes which
define a vanishing point [36, 77, 132]

Clothoid Supports steady changes of steering angles from a straight
into a curved road section [34, 50]
Unreliable when the road curvature tends to vary. [78, 93]

Spline Capable to describe a wider range of lane geometries [41, 71, 133]
[135, 148, 150]

Snakes Splines that are defined by minimizing di↵erences to edges [135, 144]
or object borders

3D models 3D surface is defined by horizontal and vertical curvature,
lane width, or roll angle. [25, 102, 103]
Use of stereo vision. [144, 145]

4 Potential Methodologies

Used detection methodologies are typically logical conclusions of the selected
model. For example, the Hough transform has been originally defined for
straight segment detection and is the method-of-choice when assuming (piece-
wise) linear lane borders. As another example, a particle filter is an appropriate
choice when using isolated points for lane borders because it allows to control
control consistency between detected points in subsequent image rows.

A common strategy is to detect candidate points on lane borders by mapping
recorded images at first from the perspective view into the bird’s-eye view, and
then by applying an edge filter which is trained on detecting vertical lines rather
than horizontal lines. Those vertical edge pixels are then an input for subsequent
analysis steps.

In this section, we discuss methodologies for visual lane analysis that are
of potential use for more complex road or tra�c scenarios, thus approaching
higher-order tasks. The section addresses the axis of methodologies in the scope
of lane analysis as shown in Fig. 2.
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4.1 Hough transform methods

The Hough transform (HT) is a basic tool in image analysis for parameter esti-
mation. It is also widely used for lane detection; see, for example, [17, 43, 44,
54, 75, 96, 114, 116, 131, 142, 147]. Image features are mapped from the image
plane into the Hough space (also called the accumulator array), and the Hough
space is then analysed for detecting significant clusters. Both subprocesses are
suitable for parallel implementation. The original Hough transform [39] was de-
signed for detecting straight lines in their rho-theta parameter space (as known
from the Radon transform [110]):

� : ⇢ = x cos ✓ + y sin ✓ (3)

The HT was later generalized to detect arbitrary shapes mapped under some
geometric transform [13]; straight segment detection is the simplest but not the
only option of analysing geometric objects in a parameter space. A two-step
adaptive generalized HT for the detection of non-analytic objects (under weak
a�ne transformations) is introduced in [40]. The statistical Hough transform
(SHT) was introduced in [31], already illustrating their use by providing a lane
detection example. According to [86], the SHT overcomes shortcomings of the
HT when doing lane detection.

Example 2 (Statistical Hough transform): In contrast to the standard HT, the
SHT uses all (or randomly selected) pixels and their gradients as observation
data to generate a continuous probability distribution of the HT variables. At
each participating pixel p, we estimate the direction ✓ of the image gradient
(Ix, Iy) at p; this estimate and pixel location p = (x0, y0) define a straight line
� : y = m(x � x0) + y0 passing through p with slope m = Iy/Ix. Straight line

�1 : y = �mx intersects � at (x1, y1), and this defines ⇢ =
p

x2
1 + y21. Thus

we have both parameters ✓ and ⇢ of a straight line passing through p = (x, y).
Now we increase the value at (✓, ⇢) in the Hough space by the magnitude of the
gradient at p.

The resulting discrete non-zero accumulator values in the Hough space can
then be analysed for significant clusters by using density estimations, what de-
fines the statistical character of this transform. This might usually lead to more
detected lines than actually needed. A final selection of lines can be supported by
the following model: directions of left border, right border, and middle line are
about equal, and the distance between left border and middle line, and between
right border and middle line are also about equal.

4.2 Bird’s-eye view

The mapping of the recorded perspective image into a bird’s-eye view (or top
view, or orthogonal top-down projection) is a common module in lane analy-
sis techniques. It is possible to apply an inverse perspective mapping (IPM)
based on camera calibration data [16, 18, 46, 86, 99], or to calculate simply
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a homography based on a mapping of four calibration marks on the road into
the perspective view [65]. Left and right lane markings are almost directionally
aligned in the bird’s-eye view, which brings convenience for subsequent image
analysis [82]. See Fig. 9, top row, for an example.

Example 3 (Inverse perspective mapping): Assume a planar road. We map
the recorded perspective view into a top-down parallel projection called the bird’s-
eye view. The IPM is one of the possible methods to be used. It requires the
knowledge of camera intrinsic (focal length and optical centre) and extrinsic
(pitch angle, yaw angle, and height above ground) parameters.

We only consider one camera for this transform. Assume that the left-handed
world coordinate system XwYwZw is centred at the camera optical centre, and
di↵ers only by rotation from the 3D camera coordinates Xc, Yc, Zc. Pixels in the
recorded image have coordinates u and v, and are at location (u, v, 1, 1) in the
camera coordinate system using homogeneous coordinates. The optical centre
has coordinates (cu, cv) in the image plane. We assume focal lengths fu and fv
in u and v direction. Axis Xc is assumed to be in the ground plane XwYw (i.e.
there is no roll). We have pitch ↵ and yaw �, with c1 = cos↵ and c2 = cos�,
and s1 = sin↵ and s2 = sin�. Let h be the height of the camera’s focal point
above the ground plane.

The IPM is defined by a homogeneous transformation from the image into
the ground plane (i.e. the planar road). For projecting a pixel p = (u, v, 1, 1)
onto the road plane, apply the homogeneous transformation matrix A =

h

2

664

� 1
fu

c2 1
fv

s1s2 1
fu

cuc2 � 1
fv

cus1s2 � c1s2 0
1
fu

s2 1
fv

s1c1 � 1
fu

cus2 � 1
fv

cvs1c2 � c1c2 0
0 1

fv
c1 � 1

fv
cvc1 + s1 0

0 � 1
hfv

c1 1
hfv

cvc1 � 1
hs1 0

3

775

for obtaining the point Ap on the road. See, for example, [5], and also for the
inverse A�1 for mapping a point P = (x, y,�h, 1) on the ground plane into a
point (at subpixel accuracy) in the image plane. The IPM projects a window of
interest into a bird’s eye view, as shown in Fig. 9, upper row, right.

4.3 Lane markings as ridges

Lane markings of middle lines may be understood as ridges (or water sheds) if
the input image is understood as a relief map. See upper row of Fig. 10. This
figure illustrates one way for lane marking detection in original grey-level images
based on gradient information, and not based on selected candidate points. For
the definition of ridgedness, see [92].
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Figure 9: Top row: Perspective input image and bird’s-eye view. Middle row:
Edge map (i.e. detected vertical edge pixels in the bird’s-eye view) and RODT
map. Bottom row: Resulting left (green), centre (red) and right (green) pixels
of the lane, and detected lane borders (blue) projected into the original input
image. Courtesy of the authors of [64].
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Figure 10: Top row: road image with outlined ROI, its magnification, and
a 3D intensity visualization of the ROI in form of a relief map. Bottom: gra-
dient vector field superimposed on the original image of the lower of the two
lane marking segments in the ROI, and illustration of ridgedness for the same
window. Courtesy of the authors of [92].
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4.4 Euclidean distance transform

Candidate points (i.e. assumed to be in lane markings; see definition of candi-
date points above) can be analysed by using geometric algorithms. The distance
transform (DT) assigns to each image pixel its shortest distance (depending on
the chosen distance measure) to defined ROIs; in case the ROIs are the sets of
selected candidate points. It is a fundamental geometrical operator with great
applicability in computer vision and graphics, shape analysis, pattern recog-
nition, or computational geometry; see, for example, [42, 74]. The use of the
Euclidean distance measure

de(p, q) =
q
(xp � xq)2 + (yp � yq)2 (4)

defines the Euclidean distance transform (EDT) on digital images, which can be
e�ciently calculated; [45] showed that a 2D EDT can be performed by only cal-
culating two 1-dimensional EDTs. The EDT is a valuable tool for lane detection
[32].

For any pixel p of a given binary image I (representing the candidate points
q by I(q) = 1), the EDT determines a value of a distance map D as follows:

D(p) = min{de(p, q) : q pixel in I ^ I(q) = 1} (5)

Candidate points are obviously labelled by value 0; in a visualization of the
distance map they are shown as black pixels. Pixels p far away from object
pixels have large values D(p) and are shown in grey to white, where white
encodes the maximum distance.

Example 4 (Use of the RODT for detecting the centre of a lane): Let the
ROIs be the selected candidate points (i.e. vertical edge pixels), and we assume
a binary edge map I as input, with I(p) = 1 if and only if pixel p is a candidate
point. The EDT specifies the shortest Euclidean distance to any candidate point.

Now consider a modified EDT as proposed in [141], called orientation dis-
tance transform (ODT). The Euclidean distance in Equ. (4) possesses two con-
tributing components xp � xq and yp � yq in row and column direction, respec-
tively, and the ODT assigns these two components to a pixel p rather than a
final result D(p).

The row component RODT of the ODT labels each pixel only with the row
distance value to the nearest edge pixel. Moreover, these RODT values are
signed, with a positive value indicating that the nearest candidate point lies to
the right, and a negative value if it is to the left. Figure 9 illustrates in the
middle row the binary image of candidate points and the RODT map showing
absolute RODT values in grey levels. The RODT o↵ers a way to identify the
centre of a lane being a place where negative and positive RODT values meet.
The absolute value of the RODT value is also expected to be a local maximum
at the centre of a lane. A local maximum in an expected range of values can be
used to initialize lane border pixels in one image row, either for arcs starting in
this row or for a pattern (i.e. a set of points satisfying some kind of consistency
constraint) of isolated points in subsequent image rows.
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The DT is sensitive to noise in input images. Thus, it is recommended to
apply a denoising method on input images prior to a DT.

4.5 Stereo analysis

Lane analysis often still assumes a restriction on monocular video data, but
there is an increasing interest in the use of stereo data information. Real-world
data come with brightness di↵erences between left and right views. The use
of edge maps as input data for stereo matchers rather than of the original
input images has been proposed in [53] for resolving the brightness di↵erence
problem. Later on, residuals with respect to smoothing proved to be an even
better preprocessing method [129]. Another option is to use (in the stereo
matcher) data cost functions which are insensitive to brightness variations, such
as the census cost function [56]. The outcome of the Robust Vision Challenge
at ECCV 2012, using a HIC dataset,4 illustrated that stereo analysis is today
already ‘fairly robust’ even for challenging scenarios defined by events such as
rain, sunstrike, or night; the winning program iSGM is described in [57]. See
Figure 11 for an illustration of calculated (and colour-coded) depth- or disparity
maps.

Available disparity or depth data can then be used for estimating the ground
manifold, for example by calculating lower envelops of summarized vertical dis-
parities [117], or for analysing the road geometry for further features (e.g. curbs
or bumps), which will be discussed later in the paper.

Example 5 (iSGM): Semi-global matching (SGM), see [58], is one of the most
successful stereo-analysis strategies currently. Iterative SGM (iSGM), see [57],
refines the basic SGM strategy by (a) translating the parallel integration strategy
of SGM into an iterative scheme, (b) introducing a novel data structure, the
semi-global distance map (SGDM), which can be employed for e↵ective spatial
evaluation, and (c) the use of SGDMs to iteratively reduce the search space by
locking reliable disparities from a pre-evaluated disparity prior.

Horizontally accumulated costs are given a higher weight, which stabilizes
recovering road surfaces. This is especially true for challenging stereo data (e.g.
in the rain), as illustrated by Fig. 12.

4.6 Classifiers and filters

Data extracted for lane analysis are often also processed by a selected classifier.
For example, [70] proposes a probabilistic grouping of detected lane border
elements. [80] uses a Bayes pixel classifier for two features, lane colour and
edge direction, and PDFs are estimated for both features by adapting to road
conditions. Fuzzy C-mean and fuzzy-rules are defined in [130] for detecting edges

4
See hci.iwr.uni-heidelberg.de/Static/challenge2012/.
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Figure 11: Left column: Examples of input images from the ECCV 2012 Robust
Vision Challenge. Right column: Colour-coded depth maps calculated with
iSGM [57]. Courtesy of Simon Hermann.
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Figure 12: Top row: Stereo pair from the from the HIC dataset showing an ally
road on a rainy day. Bottom row: Disparity maps when using standard SGM
(left) or iSGM (right). Courtesy of the authors of [57].
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within a lane detection system Particle filters [33, 71, 82, 85, 86] or Kalman filters
[90] are common tools for lane tracking solutions.

Example 6 (Use of particle filter for lane detection): The state vector X =
(xc,↵,�1,�2)T is defined by the parameters of the lane model (see Example 1
and Fig. 7), without yc, as yc will be calculated incrementally by applying a fixed
step �, starting at a chosen row yc0 in the bird’s-eye image. For re-sampling, an
observation model is used which determines each particle’s importance factor.
Based on the RODT information, it is reasonable to assume that points on lane
borders (i.e. close to detected edges) have small distance values, while those on
the centre of a lane (i.e. no detected edge nearby) have large distance values. In
terms of the used lane model, points (xcn , ycn) have large distance values, and L1

and L2 coincide with short lines of pixels which all have small distance values.
Tracking step n is identified by ycn = (yc0 + n · �). It calculates the lateral
position of the left border point of the lane from the predicted state vectors, with
X̂i

n(x̂
i
cn , ↵̂

i
n, �̂

i
1n , �̂

i
2n) for the ith particle.

Pl and Pr only represent the lateral position of border points, for simplicity.
The left position is calculated as follows:

P i
l = x̂i

cn �H · tan ↵̂i
n (6)

Next, the sum Si
L1

of the distance values along line segment L1 equals

L1/2X

j=�L1/2

���d
⇣
P i
L + j sin �̂i

1n , ycn + j cos �̂i
2n

⌘��� (7)

Here, d(·, ·) is the signed distance value from the RODT. Si
L2

can be calculated
in an analogous way. The distance value for the centre point (xi

cn , ycn) equals
d(xi

cn , ycn). Finally, RODT-based importance factors of particles can be calcu-
lated from Si

L1
, Si

L2
, and d(xi

cn , ycn).

4.7 Lane tracking

Lane tracking is defined by a sequence of repeated detections; it is appropri-
ate to use information from previous detection results to facilitate the current
detection. Actually, there are two aims when utilizing previous information,
namely to improve the computation e�ciency as well as the accuracy of the
current detection; continued accuracy defines robustness.

The level of achieving e�ciency and robustness at the same time depends
on the complexity of a given scenario. Defined mechanisms for propagating
detection results may slow down the process, or lead to inaccurate results. Lane
detection in some situations (e.g. on a highway) is easier compared to others
(e.g. on an urban road), depending on road conditions and the quality of lane
marks. In conclusion, when performing lane tracking, it is possible to pay more
attention to computation e�ciency for less challenging situations, but more
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Figure 13: A possible e�cient lane tracking scheme when using isolated points
and RODTs as in Example 4: Left- and right lane border points in uppermost
N �k+1 image rows at time t are used as initial values for lowermost N �k+1
image rows at time t + 1; the value of k is defined by ego-motion. Courtesy of
the authors of [64].

attention to robustness for challenging situations. Thus, we may classify lane
tracking methods into categories of being e�cient (for simpler scenarios) or
robust (for a larger variety of scenarios).

4.7.1 E�cient lane tracking

E�cient lane tracking methods are designed for situations characterized by good
road conditions and a good quality of lane marks (such as on a highway). In
such situations, some of the previously detected lane border points can be repo-
sitioned in the image due to estimated ego-motion (i.e. the motion of the ego-
vehicle), and then used as priors for a ‘quick’ refinement process due to the
actual data in the image at time t + 1. See Figure 13 for a graphical sketch
of such an approach. If arcs are used for lane modelling, then tracking can
also be performed by “tracking curves in dense visual clutter“ [60], leading to
interesting problems in computational geometry.

Example 7 (E�cient lane tracking when using isolated points): When a lane
is described by isolated points, as described in Example 1, its location is repre-
sented by two sequences {PLn : n = 0, 1, . . . , N} and {PRn : n = 0, 1, . . . , N}
of points on its left and right lane border in the bird’s-eye image (or similarly,
by those points mapped back into the original image). The value of N is deter-
mined by the desired forward-looking distance. The tracking of a lane through
a recorded image sequence is then simplified as tracking of such two sequences

of points. The location defined by sequences {P (t)
Ln

} and {P (t)
Rn

} at time t are
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already partially driven through by the ego-vehicle at time t + 1, depending on
its ego-motion, to be determined by available sensors and/or visual odometry.

The detection process of {P (t+1)
Ln

} and {P (t+1)
Rn

} at time t+ 1 may be composed
of three steps: (1) adjustment of points detected at time t due to ego-motion,
(2) detection of new points, and (3) refinement of point localization according
to values of the RODT for the bird’s-eye edge map. For example, in [62, 64, 66]
this was detailed as follows: assuming a straight move from t to t+ 1, we have
that

P
(t+1)
Ln

= P
(t)
L(n+k)

, P
(t+1)
Rn

= P
(t)
R(n+k)

(8)

for n = 0, 1, . . . , N � k, where k is determined by the driven distance between t
and t+ 1. Because k is typically small, only a few new points

{P (t+1)
Ln

, P
(t+1)
Rn

: n = N � k + 1, . . . , N}

need to be detected. For example, assuming smoothness of lane borders we can
simply initialize for n = N � k + 1, . . . , N as follows:

P
(t+1)
Ln

= P
(t+1)
Ln

, P
(t+1)
Rn

= P
(t+1)
Rn

(9)

In a concluding refinement step, those initial predictions {P (t+1)
Ln

} and {P (t+1)
Rn

}
need to be adjusted due to the actual image data in frame t + 1. For example,
simply by shifts in x-coordinates by

d(P (t+1)
Ln

, ycn) and d(P (t+1)
Rn

, ycn) (10)

for all the N +1 points, where d is short for RODT values of the current bird’s-
eye edge map.

E�cient lane tracking schemes are designed for speed without reducing accu-
racy for the scenarios they are designed for. The technique in the given example
above works well on highway-like situations because there are only minor vari-
ations expected between subsequent frames. However, outliers occur caused by
some noisy non-border edge points, possibly removed by a higher-level control
mechanism (e.g. to aim at smooth lane borders).

4.7.2 Robust lane tracking

Urban roads di↵er from highways by an increased complexity of environments
which are possibly of relevance for accurate lane detection. In such situations,
the focus shifts on robustness [8, 61, 71]. Robust lane tracking can continue
to utilize (potentially) detection results from previous frames up to time t, but
needs to investigate more closely for the current frame t + 1 for deriving a
possible alternative for detection results. Occlusions are one of the problems for
lane tracking, and [140] discusses way to resolve related issues.

Figure 14 illustrates the use of three potential alternatives within an isolated-
points approach as illustrated by Example 4. A maximum-likelihood comparison
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Figure 14: Robust lane tracking when using isolated points and RODTs as in
Example 4. Courtesy of the authors of [64].

is used to decide for one of the three alternatives. Obviously, this costs more
time compared to the design model of e�cient tracking, but aims at a more
careful analysis at time t + 1. Robust lane tracking can also be performed at
selected time slots t+4t, t+24t, . . . only, for some value 4t > 1, with e�cient
lane tracking in between.

Example 8 (Robust lane tracking when using isolated points) This process is
described as an extension of Example 7, and illustrated in Figure 14. Multiple
alternatives are considered at time t+1, thus aiming at selecting the best possible
match with the actually recorded frame at time t+1. For example, in [62, 64, 66]
this was detailed as follows:

For the first alternative
�
P 1
Ln

, P 1
Rn

�
, we do as in e�cient lane tracking, but

introduce a control mechanism to prevent lane border points from diverging (e.g.
caused by imperfect road conditions); for example, di↵erences between subse-
quent x-coordinates can be limited by a threshold.

For the second alternative
�
P 2
Ln

, P 2
Rn

�
, we perform lane detection as de-

scribed in Example 4, that means we consider frame t+ 1 as being independent
of frame t, initialize the four parameters xc,↵,�1,�2 (i.e. one particle) for one
row, and propagate those values bottom-up, row by row, by selecting the four
parameters in the next row using a particle filter.

For the third alternative
�
P 3
ln
, P 3

rn

�
, we project previous points at time t into

the frame at time t + 1 (according to ego-motion) and optimize the location
of an initialized point in row y by applying a particle filter for this row (e.g.
by selecting randomly more candidates ‘nearby’), very similar to the bottom-up
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approach for the second alternative.
Those three alternatives are then compared using a maximum-likelihood ap-

proach based on a likelihood function p(z|k), with z for observed features and the
kth alternative, for k = 1, 2, 3. Value p(z|k) denotes the probability of observing
a lane border correctly by alternative k when considering features z, with the
maximum likelihood estimation written as follows:

P ⇤ = arg max
k=1,2,3

p(z|k) (11)

For specifying the likelihood function p(z|k), we may derive information about
the width of the lane, and use RODT values.

For estimating the width of the lane for frame t+ 1, we assume a Gaussian
distribution with mean W (defined by the mean width of the lane in frame t)
and variance aW , for 0 < a < 1; for k = 1, 2, 3 we have that

pkwidth =
1

aW
p
2⇡

exp(�
(P k

rn � P k
ln

�W )2

2a2W 2
) (12)

We may use RODT values to evaluate the possibility that k = 1, 2, 3 detects
correctly lane borders:

pkrodt = b exp(�c · (d(P k
rn) + d(P k

ln))
2) (13)

where constants b > 0 and c > 0 are determined by the importance ratio between
pwidth and prodt. (For example, b2 = 1 and c2 = 0.001.) The final value of the
likelihood function can be calculated by

p(z|k) = pkwidth · pkrodt, k = 1, 2, 3 (14)

The comparison of p(z|k = 1), p(z|k = 2), and p(z|k = 3) selects the alter-
native with the largest likelihood value as being the final detection result in the
nth row of the input image at time t+ 1.

5 Tasks and Applications

Road environments need to be understood with respect to the road surface
(planar, slope of some percentage of increase or decrease), road features such
as curbs or drawn markers (pedestrian crossing, writing on the road, and so
forth), and, complex road geometries at intersections, roundabouts, exits of
highways, and so forth. Lane detection and tracking is an important component
for obtaining meaningful results in those areas.

The road environment of the ego-vehicle is analysed for di↵erent tasks, such
as updating permanently the potential space for “escape routes“ in case of a
suddenly detected danger for human safety, informing about lane departure,
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Table 2: References for methodologies.

Methodologies/Examples Features References

Hough transform/ Detection of straight lines or of
arbitrarily parametrized shapes. [17, 31, 43, 44]

Statistical Hough transform: Contribute to the lane hypothesis. [54, 75, 96, 116]
Example 2 Run-time optimization proposals [131, 142, 143, 147]

Bird’s-eye view/ Mapping of recorded perspective view [16, 18, 46]
Inverse perspective mapping: into orthogonal top-down projection [64, 65, 82]
Example 3 [86, 99]

Euclidean distance transform/ Using fundamental geometric operator
with applicability [32, 42, 45]

RODT: Row-component only. [64, 74]
Example 4

Stereo analysis/ Solutions by using distance data [51, 53, 56]
Semi-global matching: Suitable for real-time driver assistance [57, 58]
Example 5 Designed for challenging scenarios.

Classifiers and filters/ Process a probabilistic grouping of detected
lane border elements [33, 64, 71]

Particle filter:example 6 [82, 85, 86]

Lane tracking/ Computationally e�cient and robust for
complex road scenarios [8, 60, 61]

E�cient,Robust lane tracking: [62, 64, 66]
Example 7, 8 [71]

or for projecting proposed navigation routes into the real-world video data,
correctly onto the lanes available for driving.

This section discusses lower-order tasks which are basic components for
higher-order tasks, and higher-order applications which combine multiple mod-
ules or approaches. The section addresses the axis of applications in the scope
of lane analysis as shown in Fig. 2.

5.1 Lower-order tasks

Identifying and tracking lanes in recorded video data is the basic task in visual
lane analysis. Examples of subsequent lower-order tasks (i.e. not addressing
other modules of driver assistance) are the detection of lane departure or of
irregular driving, the estimation of the 2D manifold L(u, v) of the road ahead,
or of the free space where the ego-vehicle can navigate without any collision [11].
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5.1.1 Road modelling

Roads (or lanes) are detected as surfaces (or manifolds) in 3D space in [91].
Road shape is defined in [124] by geometric features. Figure 15 shows a change
in road curvature of a winding road using a B-spline road surface model.

Road surfaces are often approximated by using lower envelops of v-disparity
maps [55, 79]. [117] proposes a region growing method for vertical road mod-
elling, which iteratively performs a least-square fit of a B-spline to a region of
selected points; experiments show that this method outperforms two techniques
based on v-disparity maps only.

A special subject is the presence of windscreen wipers [118] which partially
obstruct the view of the used cameras. Figure 16 illustrates the comparative
use of three stereo matchers for detecting road surfaces. The used matchers
are semi-global matching (SGM) and graph cut (GC), both using a census cost
function, and belief propagation (BP) using a gradient end-point error cost
function. A wiper is visible in the left image. The wiper can only be seen by
one camera, and it is thus impossible to find any matching pixel pairs for the
image region it covers. Stereo matchers respond di↵erently to this situation.

Figure 15: Calculated 3D road surface of one lane using a B-Spline-based
manifold model. Courtesy of the authors of [91].
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Figure 16: Input image with windscreen wiper, example of a depth map when
using SGM stereo analysis, detected road surface using a BP stereo matcher.
and detected road surface using a GC stereo matcher. Courtesy of the authors
of [118].

5.1.2 Lane markers

[5] detects lane markers in bird’s-eye views of urban streets by fitting Bezier
splines to detected lines, aiming at being robust and time e�cient. [12] detects
lane markers following a similar approach using detected edges and segments for
understanding lane markers. The detection of pedestrian crossings is discussed
in [89].

[23] provides a general introduction into road mark detection and the impor-
tance of discussing driver monitoring and road understanding as a connected
subject. [22, 27] detect on-road markers such as lane, pedestrian crossings, speed
bumps, and stop lines for the autonomous vehicles.

5.1.3 Curbs

Curbs are modelled in [106] as straight or curved driving area delimiters. Dense
stereo vision is used in [105] for curb detection, based on a created digital eleva-
tion map (DEM) for the road environment ahead of the ego-vehicle. Conditional
random fields are used in [122] for curb reconstruction. Results indicate that
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the approach is able to deal with curbs of di↵erent curvature and varying height.
See Fig. 17.

[121] contains a temporal filter approach for real-time curb detection and
reconstruction. The paper conclude an ability of the proposed method to yield
accurate reconstruction results up to a distance of 20 m to the camera. Regard-
ing limitations it is stated that curbs violating the used assumption too much
(such as those of small tra�c isles) cannot be reconstructed. [139] uses LIDAR
data for curb detection.

5.1.4 Corridor

Paper [63] defines a corridor as a “constant-width road patch ahead that will be
driven through ‘shortly’, with constraints from physical lane borders as well as
driving direction and the lateral position of the ego-vehicle“. See Figure 18 for
an illustration. The width w + " of the corridor is defined by the known width
w of the ego-vehicle and some safety increment " > 0.

The calculation of corridors not only requires single or multiple lane detec-
tions but also an understanding of the trajectory of the ego-vehicle (to be derived
from motion sensors or visual odometry), and of obstacles ahead (derived from
stereo vision or other sensors), see [65].

Figure 17: Top: Results of the proposed polynomial curb detection algorithm
in [105]. The figure on the right shows a 10 % uphill road. Courtesy of the
authors of [105]. Bottom: Reconstruction results of scenes with curbs covered
by snow. Although there is no sharp height discontinuity at the curbs, the
actual lane border is estimated with good accuracy. Courtesy of the authors of
[122].
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Figure 18: A comparison of detected lanes and corridors. The corridors are
shown as green or red regions; ‘red’ indicates a detected lane change. Corridors
are limited by obstacles. Courtesy of the authors of [63].

5.1.5 Free space

The free space is defined to be a connected region adjacent to the position of
the ego-vehicle “where navigation without collision is guaranteed“ [11]. See
Fig. 19. The authors of [11] use the model of an occupancy grid (a 2D array
for the bird’s eye view which models occupancy evidence), where occupancy is
defined by having an obstacle within a cell of this grid, assuming a planar road
environment and only obstacles of positive height.5 Kalman filtering is used to
improve the stereo analysis results on recorded video data when analysing for
obstacles.

Obviously, free space detection is a permanent task for autonomously driving
vehicles. See, for example, [27] for a multi-sensor approach (also using LIDARs)
for environment detection and mapping, also known as simultaneous localization
and mapping (SLAM). [139] uses LIDAR data only for lane detection.

[137, 138] uses stereo vision for modelling road surfaces by B-splines, applies
then a road-obstacle segmentation algorithm for deriving the free space. Fig-
ure 19 illustrates with in the middle that a planar ground manifold assumption
is invalid in the depicted scene, and that it yields errors in free-space estima-

5
The occupancy grid is called ‘evidence grid’ in [90].
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Figure 19: Top, left: Results for a highway and a freeway. Courtesy of the
authors of [11]. Top, right: Road manifold approximation for synthetic and real
scene. Courtesy of the authors of [117]. Bottom: Free space (right) for the scene
shown on the left. Courtesy of the author of [136].

tion, but (bottom of the figure) a vertical road approximation, using a spline
representation, supports more accurate free space estimation.

5.2 Higher-order tasks

There is a fluent border between lower and higher order; we consider a task as
“higher-order” if more than just one basic task is addressed; higher-order tasks
are defined by interaction with other modules in a complex driver assistance
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system.

5.2.1 Lane-departure and wrong-lane warning

Lane-departure warning (LDW) is an important application of lane detection
and tracking systems, especially of value for professional drivers (trucks or long-
distance busses). For multi-sensor systems, using cameras and GPS data, see,
for example, [29]. Sensor fusion for LDW is discussed in [80, 130], and [59]
proposes a fuzzy-rule-based expert system for LDW. Real-time LDW using an
FPGA implementation of a specially designed algorithm is the subject of [94].

Driving on the wrong side of the road is addressed by wrong-lane warning
systems, which require to understand a multi-lane environment [127].

5.2.2 Detection of driver attentiveness

Driver’s attentiveness monitoring is an integrated challenge for autonomous
driving and ADAS systems. Understanding the attention level helps to deter-
mine when to warn a driver and when to take preventive action. For detecting a
driver’s attentiveness, complex tasks are necessary to be solved by a comprehen-
sive analysis which classifies attentive and inattentive states, with considering
a driver’s states, the tra�c environment, or other vehicle’s moves and states.

[9, 48] utilized an integrate system which combines driver gaze and head
pose with road scene features, lane tracking, and tra�c signs. [26] reviews a
wide range of technologies for driver inattention monitoring, which introduces
concepts, measures of inattention, and related commercial products.

5.2.3 Real-view navigation

Real-view navigation is expected to replace navigation based on computer-
generated synthetic views. Real video data need to be projected to the driver of
the ego-vehicle like being viewed from the current position (e.g. simply recorded
if lighting conditions allow to do so), and analysed with respect to the proposed
navigation path and the actual lane geometry.

The basic idea presented in [28] (see Figs. 20 and 21) has been implemented
for a prototype of a video-based car navigation system developed by the Elec-
tronics Telecommunications Research Institute (ETRI). [49] designed a naviga-
tion system showing real-view image servicing routes and various other guide
information. [1] proposed a navigation system which overlays computer graphics
elements on live video captured by the in-vehicle camera.

5.2.4 Head-up display systems

A head-up display (HUD) is a virtual screen which appears in the windshield,
displaying indicative information, and guiding the route with graphical compo-

32



nents. The driver looks forward without turning head or eyes down to see the
provided information, and its position can be controlled by understanding the
pose of the driver’s head. It is di�cult to match the location and direction of
lanes with projected virtual objects, and to calculate a driver’s head direction
and gaze for understanding the viewing angle.

[100] is one of the many publications which present the concept of both AR
navigation and HUD system in cars.

See Figs. 22 Recently, high-end cars start to use coloured HUDs to display
combined real-view and navigation information. This new technology provides
the opportunity to present not only current tra�c or road information (e.g.
current speed and speed limit, gear position, or fuel gauge) but also directional
indicators or attention signs into the correct viewing direction of the driver,
aligned with the visible real world. [128] introduces a capable AR-HUD system
for installation in a vehicle, and [107] designed an AR-HUD system with object
recognition, head tracking and projection of tra�c information.

6 Diversity of Scenarios and Evaluation

A scenario or situation is defined by current road geometry, other tra�c par-
ticipants, or environmental influences, such as tra�c events( road intersections,
highway exits, or roundabouts, challenging viewing or lighting conditions (e.g.
shadows, night, rain with running wipers, snow, or fog), occlusions caused by
pedestrians or other closely driving vehicles, moving objects in the tra�c scene

Figure 20: This block diagram shows three modules: a road object recognition
module for understanding road features such as lane markings and lane colour,
an AR-based visualization module (AR stands for “augmented reality”) for su-
perimposing route guidance on a live video, and a situation awareness module
for understanding dynamic tra�c situations. Courtesy of the authors of [28].
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Figure 21: Example of two screenshots for real-view navigation. Courtesy of
the authors of [28].

such as trees along the road.
We discuss some challenges depending on scenarios. The section addresses

the axis of scenarios in the scope of lane analysis as shown in Fig. 2. Due to rarely
existing explicit alignments between scenarios and proposed methods we do not
include a summarizing table into this section, as for the previous three sections.
This points to a need to address assumed conditions for a proposed method more
clearly, already starting with ways how to characterize conditions (scenarios)
by statistical or descriptive models. Evaluations based on data provided with
ground truth are a step towards such characterizations.

Figure 22: Left: a sketch in 2004 pointing to future work on mapping naviga-
tion data into the windshield; the yellow line is projected onto a virtual screen
for highlighting the road. Understanding of the driver’s head pose is needed
[100]. Such projections (onto a virtual screen) are reality by now. Right: HUD
technology appears in cars currently projecting information into windshields or
mirrors. Image in the public domain [7].
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Table 3: References for tasks and applications.

Applications Features References

Road modelling Detect road surfaces (manifolds), and shape [91, 117]
[118, 124]

Lane markers Using detected edges and segments. [5, 12, 22]
Important for subjects related to road understanding [23, 27, 89]

Curbs Considered to be straight or curved driving area delimiters [105, 106, 121]
[122, 139]

Corridor Understanding of the expected space the
ego-vehicle will drive in [63, 65]

Free space A region the ego-vehicle can drive in without collision [11, 27, 137]
Permanent task for autonomous driving vehicle. [138, 139]

Lane-departure and Using multi-sensor, camera, GPS data. [29, 59, 80]
wrong-lane warning Warning when vehicle moves out of lane,

or drives in wrong lane [127, 130]
Understanding of the trajectory of the vehicle

Driver attentiveness Understanding status of driver, [9, 26, 48]
and surround information tra�c and driving environment, including other vehicles

Real-view 3nd generation car navigation system, [1, 28, 49]
navigation Real view-based services providing realistic

and dynamic information

Head-up display Presenting current tra�c or road information, [100, 107, 128]
system guiding a route with graphical components.

Head tracking, projecting a corresponding view
with tra�c information.

6.1 Di�culties and challenges

Di�culties are caused by challenges in scenarios, di�culties can also occur if
a used model does not match su�ciently with the real-world (e.g. left and
right lane borders not parallel, do not match a simplified geometric curve model
such as, for example, parabolic lane borders). Di�culties are also caused if used
methodologies are not fully understood, applied under the wrong circumstances,
or just to simple to be able to deal with the complexity of the real world.

It is expected that vision-based driver assistance has to include mechanisms
for adapting applied computer vision techniques to the current scenario [73]; see
Figure 24. For analysing the performance of techniques on scenarios, those need
to be represented, e.g. by statistical properties of video data measures [125]. The
paper [62] details particular challenges for lane detectors by means of examples
and informal descriptions of scenarios. Future research might generalise such
descriptions by using, e.g., data measures as suggested in [125] and further
developed in [120].
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6.2 Discussion of adverse conditions

A simple scenario is, for example, given by clearly marked lanes on a highway,
sparse tra�c, and bright daylight without any disturbing events such as a sun
strike. Basically, edge detection followed by the standard Hough transform (for
detecting straight lines) solves the lane detection problem for such a simple sce-
nario, and thus already very much for daytime driving on a highway. However,
with variations from a simple scenario, the complexity of the lane detection task
may increase considerably.

6.2.1 Lighting and weather conditions

Lane detection at night is a special challenge [20]. [21] applies a linear lane model
for such situations. [20] also discuss ground truth generation for night-time lane
detection.

[47] deals with lighting variations, particularly shadows, and such techniques
have been applied in [3, 4, 38]. See Fig. 23 for an example of processing images
for removing shadows. The removal of shadows in the grey-level image can
be achieved in real time; a final (but not necessary for lane detection) colour
conversion into a shadow-reduced colour image would be time consuming. The
method requires that image data are recorded in three di↵erent narrow bands
such as red, green, and blue. Weather conditions have been studied in [52],
proposing the use of optic flow detection for lane recognition. [88] also discusses
situations showing heavy rain. The presence of windscreen wiper movement is
discussed in [118].

6.2.2 Multi-lane conditions

The detection of multiple lanes is considered in [10, 84, 127]. Authors assume
either lane markings [16], or scenarios without lane markings [135]. Overtaking
assistance also requires to understand adjacent lanes on a road. Multiple lane
detection based on multi-object Bayes filtering is presented in [35]. Driving on
a freeway has been discussed in [37, 78], and on urban roads in [119].

6.2.3 Tra�c and occlusion conditions

The understanding of lanes at road intersections or roundabouts defines a par-
ticular challenge which requires more research into this subject. Long-distance
lane perception, rather than just short-distance detection, is addressed in [88].
The implementation of lane detection on mobile phones is discussed in [111],
using monocular vision (i.e. of the single integrated camera) only. [82] deals
with the occlusion caused by a close leading vehicle.
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Figure 23: An illumination-invariant image can be obtained under the assump-
tions of Planckian light, Lambertian surfaces, and narrowband sensors (illus-
trated on the left). A colour-conversion (not illustrated here) can then map an
original image into an almost shadow free image. Courtesy of the authors of [3].

6.3 Performance evaluation

Typically, papers proposing a novel technique in the context of vision-based lane
analysis also provide some experimental results about accuracy (for selected
scenarios) or robustness (i.e. accuracy across a selection of di↵erent scenarios,
preferably also including challenging scenarios). For example, [115] provides a
detailed discussion about robustness of an embedded solution for lane analysis.

6.3.1 Comparative evaluation

Some papers contain a comparative analysis with another technique suggested
(by others) for the same task. By not having original sources (of the other
authors) at hand limits the meaningfulness of such comparisons. Comparing
results of di↵erent techniques on the same input data is a good compromise.

There is still no benchmark dataset of “reasonable complexity” available
which provides “reasonable ground truth” for lane-analysis tasks (for example,
comparable to the complexity of existing video data bases for stereo analysis
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Figure 24: Eight di↵erent scenarios, called barriers, dusk, harbour bridge,
midday, night, people, Queen Street, and wiper, of Set 9 of EISATS (see text for
a link to this website). Lane detection is of varying di�culty depending on the
given scenario. 38



or optic flow calculation with provided ground truth, such as on KITTI6 or
EISATS). However, KITTI started with providing 289 frames with manually
labelled road or lane areas. A larger data set is in preparation for EISATS [2];
see also Fig. 26.

Comparative performance evaluation also has its limitations; there is no
linear order of techniques with respect to all kinds of scenarios. Typically,
techniques come with their particular benefits or drawbacks, to be discussed
carefully in dependency of scenarios. An adaptive selection of techniques and
parameters appears to be a general key for optimisation.

6.3.2 Example: Comparison of three lane-detectors

For a detailed comparative discussion of three di↵erent lane detectors, proposed
in [5, 64, 119], see [62]. Examples 6 and 7 above detail the detector defined in
[64].

The paper [62] analyses particular challenges for lane detectors by means
of examples and informal descriptions of scenarios, and uses then the same
test data for comparing the three lane detectors. The test data used contains
four colour clips (1,224 frames in total) recorded in a vehicle, provided by [5],
together with a MATLAB tool for manually labelling lane marks as ground
truth (a time-consuming process).

There is no simplistic conclusion about a linear order in [62] for the compared
three methods. For the considered diversity of scenarios, there are tables, dia-
grams, figures showing examples of results (Fig. 25 is one of those), and various
discussions about particular benefits or drawbacks of the compared methods.

6.3.3 Generation of lane-border ground truth

Despite having many algorithms and approaches available for vision-based lane
analysis, an ongoing concern [14, 95] is the lack of proper ground-truth estima-
tion to evaluate e�ciencies and accuracies.

Simulated ground truth was created in [112]. After adapting a lane detection
algorithm to this synthetic ground truth, it did not work very well on real
data. The conclusion was that there is a need for another way of ground-truth
generation.

For a semi-automatic technique using time slices and splines to generate
ground truth from a road image sequence, see [17, 19, 20]. The proposed ap-
proach works reasonably well on clearly marked roads, but the involved inter-
action also comes with the risk of human error and limited usability. It appears
that the proposed approach can be improved further for reducing required hu-
man interactions. Figure 26 illustrates results of generated ground truth when
applying two di↵erent techniques, using input data provided by [19].

6
Vision benchmark suite of the Karlsruhe Institute of Technology and the Toyota Tech-

nological Institute at Chicago; see www.cvlibs.net/datasets/kitti/.
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Figure 25: Lane detection results for three di↵erent algorithms. Left: Lane
detection following [5]. Middle: Lane detection following [64]. Right Lane de-
tection following [119]. Courtesy of the authors of [62].

7 Conclusions

There is already a wide variety in proposed methods for lane analysis; the given
references below only represent a small percentage of publications in this area.
Besides, this work typically still focuses on individual components. Therefore,
this survey aimed at presenting developments in visual lane analysis towards
integrated systems combining multiple processes for one defined goal. We pro-
vided basic definitions, and illustrated models and potential methods by giving
details and examples by using independent axes.

This is one of the di↵erences of our review to previous summarizing publica-
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Figure 26: Generated ground-truth lane borders. Left: With the original inter-
active approach of [17]. Right: Generated ground truth when using an automatic
edge-operator-based approach. Courtesy of the authors of [2].

tions in the field, and we also di↵er by lists of discussed subjects (and by being
a little more recent).

The success (measured in e�ciency and robustness) of lane analysis methods
depends on the given scenario. Adaptation to scenarios appears to be a logical
consequence; there is no all-time-winner, detection and tracking methods should
be configured or selected (out of a tool box) in real time while driving. Statistical
image features, or results derived from various vision modules (e.g. for stereo
and motion analysis) for previous image frames at times < t+1 might be tested
for possible guidance of such an adaptation process.
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