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Abstract. Third-eye stereo analysis evaluation compares a virtual im-
age, derived from results obtained by binocular stereo analysis, with a
recorded image at the same pose. This technique is applied for evaluating
stereo matchers on long (or continuous) stereo input sequences where no
ground truth is available. The paper provides a critical and constructive
discussion of this method. The paper also introduces data measures on
input video sequences as an additional tool for analyzing issues of stereo
matchers occurring for particular scenarios. The paper also reports on
extensive experiments using two top-rated stereo matchers.

1 Introduction

Modern applications of stereo analysis require that stereo matchers work accu-
rately on long or continuous binocular input video data. For example, in vision-
based driver assistance, those data are recorded for any possible traffic scenario
[9]. Robust matchers need to work accurately for various scenarios. In general
it is expected that there is no single best matcher; an adaptive selection of a
matcher (within a given ‘toolbox’) appears to be a possible solution.

The third-eye method of [11] provides stereo analysis performance evaluation
for long or continuously recorded stereo sequences. For a current application
of this method, see [12]. We provide in this paper a critical and constructive
discussion of this method, pointing to weaknesses and also outlining ways how
to overcome those. Video data measures are used to discuss solutions and to
propose ways for a detailed analysis of situations where a stereo matcher fails
(and should be improved accordingly), extending our initial discussion of data
measures in [10].

For testing, the eight long trinocular stereo sequences of Set 9 on EISATS [4]
have been used (each 400 stereo frames long, except the ‘People’ sequence which
is only 234 frames long); see Fig. 1. The tested stereo matchers are iterative semi-
global matching (iSGM) [7] and linear belief propagation (linBP) [10]. Both apply
the census transform as the data cost function, and linBP uses a truncated linear
smoothness constraint [5]. Both stereo matchers, iSGM and linBP, rank high on
the KITTI stereo benchmark suite (www.cvlibs.net/datasets/kitti/).

The paper is structured as follows: Section 2 provides used notations and
definitions. Section 3 illustrates interesting cases when using the third-eye ap-
proach. Section 4 discusses the use of data measures for solving critical cases
and for discussing stereo performance more in detail. Section 5 concludes.

www.cvlibs.net/datasets/kitti/
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Fig. 1. Examples of frames of the eight sequences in Set 9. Upper row, left to right:
sequences called ‘Barriers’, ‘Bridge’, ‘Dusk’, and ‘Midday’. Lower row, left to right:
‘Night’, ‘People’, ‘Queen’, and ‘Wiper’.

2 Fundamentals

The third-eye method [11] requires that three calibrated cameras record time-
synchronized the same scene. In case of Set 9 on EISATS [4], the cameras are
placed on a bar on the left, center, and right position behind the windscreen
of the ego-vehicle (i.e. the car the stereo-matcher is operating in). Two of the
images, the center or reference image, and the right or match image, are used to
calculate a disparity map by the chosen stereo matching algorithm. The disparity
map is used to map all the pixels in the reference image into that position in
the left or control image where the pixel value would be visible from the pose
of the left camera. This calculated virtual image V is then compared with the
control image C, for example by using the normalized cross correlation (NCC)
index used as a quality measure:

MNCC(V,C) =
1

|Ω|
Σ(x,y)∈Ω

[V (x, y)− µV ][C(x, y)− µC ]

σV σC
(1)

The domain Ω contains only those pixels which are successfully mapped from the
reference image into the domain of the virtual image (i.e. non-occluded pixels);
µ and σ represent mean and standard deviation of the corresponding images.

Due to possibilities of a misleading influence of homogeneous intensity re-
gions, [6] suggested to use a further restricted set Ω which only contains pixels
locations which are in distance of 10 pixels or less to an edge pixel in the ref-
erence image. We use this modified NCC-mask measure, called MNCC Mask, as
our standard measure for the third-eye approach.

Having stereo sequences of length 400 (or 234 in one case) in our test data,
the measure MNCC Mask produces a real-valued function for each used stereo
matcher on such a sequence. We also define data measures on input data of
one of the cameras (e.g. variance of intensities or of Sobel edge values), or by
comparing images recorded by two of the cameras (e.g. MNCC between left and
center image). Those data measures also define real-valued functions, and they
are motivated as follows:
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Homogeneous images are a difficult case for stereo matching, thus we con-
sidered the variance of intensity values in reference and match image. Typically
those variances of reference and match image are about the same, so we only
use the standard deviation Sigma left of the reference image.

Stereo matching is supported by having image features such as edges or
corners. There are complex edge detectors such as that of [2], or very simple
edge detectors such as the Sobel operator. For avoiding a bias introduced by
the edge detector we use the simple Sobel operator and measure the standard
deviation Sigma Sobel of operator values |Cx|+ |Cy| on control image C.

An important assumption for stereo matching is that both images are cap-
tured in the same environment, with just small changes due to a minor variation
in view point or viewing direction. For example, see [3] where this is discussed
for stereo vision in astrophysics. We decided to use the above NCC measure
between reference and match image as our third data measure NCC leftright.

We intend to compare two of such real-valued functions having the same do-
main, not in a rigorous sense of direct analysis, but with respect to the curves
‘behavior’, such as the distribution of local minima or maxima. For discus-
sions about special kinds of, or comparisons between functions, see, for example,
[1,3,8,14]. One option is to study or compare the derivatives of the functions.
But, working in discrete domains, that implies a need to choose a neighborhood
of some size and a method for approximating derivatives.

Thus we decided to keep one function f fixed as a reference, and to apply a
transformation to the other functions g which allows us to define an analytical
distance between the new function gnew and f , thus defining an alternative
relationship between functions. The defined distance will not be a metric in
the mathematical sense because we do not aim at symmetry, and the distance
between two different functions (e.g. two constant functions with different values)
can be zero when applying our distance measure.

Let µf and σf be the mean and standard deviation of function f . Given are
two real-valued functions f and g with the same discrete domain and non-zero
variances. Let

α =
σg
σf
µf − µg and β =

σf
σg

gnew(x) = β(g(x) + α) (2)

As a result, gnew has the same mean and the same variance as function f . Now
we define our distance function in the common L1 way, as, for example, described
by [1]:

d1(f1, f2) =

∫
|f1(x)− f2(x)| dx (3)

Our distance is then defined by d(f, g) = d1(f, gnew). Indeed, this distance mea-
sure is not symmetric. However, we identify the value of d(f, g) with the struc-
tural similarity between both functions: lower values for d(f, g) mean that g is
structurally close to f .
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Fig. 2. Illustration of four pairings of functions.

Figure 2 shows pairs of real valued functions on a discrete domain. Func-
tion Sigma left represents the standard deviation of intensity values in the refer-
ence image, and function Sigma Sobel represents the standard deviation of Sobel
edge values for the reference image. Function NCC leftright represents the NCC-
measure when comparing the reference and the match image of the sequence.
Function NCC Mask is the defined standard measure for the third-eye approach.

The two functions in the upper left image of Fig. 2 have different means
and different variances. The upper right shows both functions after Sigma left
was scaled to have the same mean and the same variance as NCC Mask. The
lower row shows two already scaled pairings of functions. Subjective inspection
shows inconsistencies between both functions in the lower left, but ‘fairly good
structural similarity’ for both functions in the lower right (when zooming into
the figure). Obviously, those subjective inspections can also be replaced by an
analytical analysis by calculating the sum of absolute differences in function val-
ues, as specified by Equ. (3) and by our distance measure d(f, g) = d1(f, gnew).
In general, if a distance value d(f, g) is less than half of the standard deviation
σf used for scaling then both functions are considered to be structurally similar.

3 Discussion of Third-Eye Results

Concluding from visual inspections of calculated disparity maps for all the eight
test sequences (and many sequences for earlier projects) we see a very close
correspondence between calculated values of the NCC-Mask measure and the
actual performance of studied stereo matchers. So far the assumption was that
a value of the NCC-Mask measure below the 70% mark is an indication for a
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Fig. 3. Dusk sequence. Upper row, left to right: Control image, reference image, and
match image. Lower row, left to right: Disparity maps for iSGM, linBP, and NCC-Mask
plot for eleven frames from 298 to 309.

failure. However, in the current study we refined this threshold: we recommend
to define it in dependency of data measure values for the given stereo frame, for
example on the standard deviation of the gradient in the reference image.

As a first case we show a situation where a failure is properly detected. We
present Frame 304 from the ‘Dusk’ sequence; see Fig. 3. Temporarily around
this frame, sun strike creates a difficult lighting situation. There are no consid-
erable changes in occluded pixels between the three camera views. Therefore, the
third-eye evaluation performance is not considerably affected by occluded pix-
els. Figure 3 shows the color-encoded disparity maps of iSGM and linBP for this
frame. Visually we observe that the performance of both matching algorithms is
not good. Both NCC-Mask measures have local minima of about 70% at Frame
304. The third-eye approach works fine in this case.

In the same sense, the NCC-Mask measure also indicates good or bad perfor-
mances as illustrated in Fig. 4. The upper row illustrates depth maps resulting
from iSGM. The left map is for Frame 176 in the sequence ‘Queen’ showing an
excellent result; the right map is for Frame 382 in the sequence ‘Dusk’ show-
ing a failure. The lower row shows depth maps for linBP for those two frames.
However, here, linBP performs not well for Frame 176 in ‘Queen’, but better
than iSGM for Frame 382 in ‘Dusk’. The third-eye approach also works fine in
general for indicating the ‘current winner’ (of all participating stereo matchers)
for a given situation. There is no all-time winner so far for the tested stereo
matchers.

The third-eye approach provides a summarizing single value for each frame,
and these summarizing values may not correspond to subjective visual evalua-
tions. From the appearance of the depth maps, iSGM performs better in detect-
ing depth discontinuity edges, thin vertical structures, or other rapid changes in
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Fig. 4. Depth maps provided by iSGM (upper row) and linBP (lower row), for Frame
176 of ‘Queen’ (left column) and for Frame 382 of ‘Dusk’ (right column).

depth. However, linBP is often performing better on large homogeneous areas.
See Fig. 5 for plots of NCC-mask measures for sequences ‘Barriers’, ‘People’,
‘Queen’, and ‘Night’. In nearly all of the shown 1,434 frames, the value of linBP
is above that of iSGM. (For plots for the remaining four sequences of Set 9 of

Fig. 5. Plots of the NCC-Mask measure for iSGM and linBP for four of the eight
sequences of Set 9 of EISATS.
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Fig. 6. Wiper sequence. Upper row, left to right: Control image, reference image, and
match image. Lower row, left to right: Disparity maps for iSGM, linBP, and NCC-mask
plot for eleven frames from 272 to 282.

EISATS, see [10].) The standard deviations of NCC-Mask for linBP, and the
distance to the scaled NCC-Mask for iSGM are (5.22, 2.58) for ‘Barriers’ (2.58 is
about 49% of 5.22), (0.87, 0.77) for ‘Bridge’ (88%), (3.77, 1.91) for ‘Dusk’ (50%),
(1.61, 1.16) for ‘Midday’ (72%), (13.03, 3.15) for ‘Night’ (24%), (7.14, 4.27) for
‘People’ (59%), (2.96, 2.24) for ‘Queen’ (75%), and (4.86, 1.55) for ‘Wiper’ (32%).
According to our 50% rule defined at the beginning of the next section, we con-
sider both NCC-Mask curves as being structurally similar for ‘Barriers’, ‘Dusk’,
‘Night’, and ‘Wiper’, on the other four sequences both stereo matchers behave
‘qualitatively different’. This analysis is our first important contribution to the
application of the third-eye approach.

A second important comment about the third-eye approach: summarizing
numbers do have limitations when interpreting. The more accurate detection
of 3D details by iSGM compared to linBP is not (!) expressed in the obtained
number, but the NCC-mask curves express in general accurately the ups and
downs in a matcher’s performance.

Finally, as a third important comment, there are cases where the measure
provided by the third-eye approach does not coincide with what we see in dis-
parity maps of a stereo matcher due to differences between control and reference
image. In order to illustrate this phenomena, we show as an example a trinoc-
ular frame of the ‘Wiper’ sequence. In Fig. 6 we have the disparity maps given
by iSGM and linBP for Frame 277 of this sequence and the local plot of the
NCC Mask measures. From the shown disparity maps we would expect a high
NCC Mask value, but there are local minima in the functions. If we observe the
complete information of this particular frame given by all the three cameras (see
Fig. 6, upper row) we notice that the control image differs significantly from ref-
erence and match images, not by different lighting (as for the example in Fig. 3)
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but due the wiper position in the control image. Therefore, NCC Mask gives us
a low value. In the ‘Wiper’ sequence we observe the same effect for Frames 31,
185, and 216, where a low NCC Mask is incorrectly indicating a failure of the
stereo matcher.

Regarding the third comment, a simple solution is to use the NCC measure
for quantifying similarity between the control and the reference image; if the
similarity value goes below a defined threshold then the third-eye NCC Mask
value is insignificant. Typically this is only true for a very short time (as for the
moving wiper).

4 Analysis using Data Measures

We use the NCC Mask measure for iSGM as the reference function and com-
pare data measures with this function using our distance definition. Table 1
shows those distances, also listing the standard deviation SigmaNCCMask of
the NCC Mask measure for comparison. Our 50% rule: If a distance is below
50% of this standard deviation then we call the functions structurally similar.

Table 1. Distance values between NCC Mask (for iSGM) and data measures.

Barriers Bridge Dusk Midday Night People Queen Wiper

Sigma left 2.28 1.91 3.69 1.52 9.27 6.90 3.78 5.16
Sigma Sobel 2.25 1.81 4.24 2.50 9.96 9.03 3.49 6.53
NCC leftright 2.75 2.62 4.24 1.26 10.69 5.21 3.32 4.59
SigmaNCCMask 2.85 2.24 6.09 2.47 11.72 7.44 5.35 7.79

The closest to 50% is NCC leftright for ‘Midday’. This shows that structural
similarity is low between NCC Mask and the used three data measures in general.
It appears that the complexity of video data for stereo matching cannot simply
be estimated by just using a summarizing distance value for one of those three
global data measures for a whole sequence, showing (in our case) 400 frames of
one particular situation.

A more refined approach is to study the graphs of the functions of the data
measures, as we already did for NCC Mask in the third-eye approach. Scaled
functions are shown in Fig. 7, together with NCC Mask (for iSGM) which was
kept constant for scaling. Sequences ‘Midday’ and ‘Queen’ have a very low vari-
ance, and ‘Dusk’ and ‘Wiper’ represent special challenges for stereo matching
apparent by rapid drops in NCC-Mask values. Values of these curves show lo-
cally some kind of correspondence with NCC Mask, and sometimes differences.
Correspondences may explain a fail of the stereo matcher, and differences may
provide hints how to improve the stereo matcher at this particular place of the
stereo sequence.

A more refined approach is to use the local variance of data measures (e.g. for
six frames backward, the current frame, and six frames forward). We demonstrate
this for a case where iSGM failed, and discuss the data measures only in the local
context of 13 frames. See Fig. 8.
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Fig. 7. Scaled curves for direct visual comparison.

We analyze the situation around Frame 330 of the ‘Dusk’. Not only the
NCC Mask values (see figure on the left), but also the appearance of iSGM
disparity map for this frame indicates a fail in stereo matching. The figure shows
on the right the local variances of the data measures and of NCC Mask. They
all go up around Frame 330, but are nearly constant before and after.

This illustrates a general observation: at places where a fail in stereo matching
occurred, typically also one, two or all three of the data measures showed a large
local variance.

Fig. 8. Functions on the ‘Dusk’ sequence between Frames 324 to 336. Left: comparison
between scaled data measures and iSGM NCC Mask. Right: comparison of the local
variance of data measures and iSGM’s NCC Mask.
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5 Conclusions

The third-eye approach is a valuable tool for analyzing stereo matchers on long
sequences or for continuous recording. Detections of a ‘fail’ are important for
implemented systems, and this paper provided a critical discussion how to detect
such ‘fails’, and how to use data measures for a more detailed analysis, especially
at places where a ‘fail’ was detected, and where a data analysis might lead to
some ideas how to improve the given stereo matcher at this place, for the shown
particular situation.
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for providing the sources for the third-eye approach and comments on the paper.
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