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Abstract— The report about the ECCV 2012 Robust Vision
Challenge summarized strengths and weaknesses of the winning
stereo matcher (Iterative Semi-Global Matching = iSGM).
In this paper we discuss whether two variants of a Belief
Propagation (BP) matcher can cope better with events such as
sun flare or missing temporal consistency, where iSGM showed
weaknesses (similar to the original SGM). The two variants
are defined by the use of a census data cost function on a
5 × 5 window and either a linear or a quadratic truncated
smoothness function. An evaluation on data with ground truth
showed better results for the linear smoothness function. The
BP matcher with the linear smoothness function provided then
also better matching results (compared to iSGM) on some of
the test sequences (e.g. images with sun flare). The third-eye-
approach was used for the performance evaluation.

I. INTRODUCTION
The ECCV 2012 Robust Vision Challenge1 provided real-
world stereo sequences for a comparative evaluation of
stereo matchers. The report [12] summarized strengths and
weaknesses of the winning stereo matcher iSGM, which
stands short for Iterative Semi-Global Matching [7]. In
terms of [11], this report identified situations which are
unsatisfactorily solved by iSGM. In particular, it mentions
“streaking/noise and similar to original SGM [8], bad in sun
flare, temporal consistency”. Figure 1 illustrates a result for
sun flare.

Fig. 1. Sun flare issue of iSGM as identified in [12].

In this paper we discuss whether two Belief Propagation
(BP) matchers, characterized by either linear (linBP) or
quadratic (quaBP) smoothness terms, can cope better with
such situations.
The paper is structured as follows. Section II specifies briefly
the used stereo matchers. Section III illustrates the perfor-
mance on stereo data with ground truth (Set 2 of EISATS
[2] and KITTI data [10]), and the ‘appealing performance’
of the census cost function on those data (see also [5], [9]).

1 hci.iwr.uni-heidelberg.de/Static/challenge2012/

Thus, we use uniformly the census cost function in iSGM as
well as in linBP and quaBP. Section IV applies then the third-
eye-approach of [13] for evaluating the performance of those
three stereo matchers on real-world data which do not come
with ground truth. For this evaluation method it is required to
have at least trinocular stereo data, as, for example, provided
in Set 9 of EISATS [2]. Unfortunately, the ECCV 2012
Robust Vision Challenge did not provide trinocular stereo
data. Thus, the paper is limited on the use of data from Set 9
of EISATS; however, this set contains one sun flare sequence
and also one wiper sequence, which are of particular interest
for this study. Section V introduces the novel subject of
correlating video data measures with challenging events in
video sequences, and Section VI concludes.

II. STEREO MATCHING ALGORITHMS

We use pairs of rectified stereo images L (left or base images)
and R (right or match image) of size M × N of time-
synchronized video sequences. Let Ω = {(x, y) : 1 ≤ x ≤
M ∧ 1 ≤ y ≤ N} be the set of all pixels in an image L or
R. A disparity fp = xL − xR is the off-set in row direction
in an epipolar line y, for p = (xL, y). A dense disparity
field defines a labelling f on Ω. Let dmax be the maximum
disparity between base and match images.

A. Data Cost Functions for Stereo Matching

Cost function for stereo matching have been discussed, for
example, in [5], [9]. We will refer later to common cost
functions without defining them here. However, because we
decided to focus on the use of the census cost function, we
provide its definition here. This cost function is based on the
census transform [16].
The census transform uses intensity differences within a
window around a pixel (x, y). For simplicity, assume a
window of size (2k+1)2 in an image I . The census transform
maps pixel intensities in the window into a bit string ξ(x, y)
as follows:

ξ(x, y) =
k�

i=−k

k�

j=−k

� (I(x, y), I(x+ i, y + j))

where
�

denotes the bit concatenation, and

� (u, v) =

�
1 if u > v

0 if u ≤ v



The cost function Ccensus is then the Hamming distance
between the bit string ξL(x, y) in the base image and the bit
string ξR(x + ∆, y) in the match image, defined by off-set
∆.

B. Iterative Semi-Global Matching

Semi-global matching (SGM) was proposed in [8]. In the se-
quel, various modifications have been published with respect
to search strategy, used cost functions, or build-in smoothness
constraint. For example, the program iSGM [7] introduced
iterations into the SGM scheme.
We briefly recall the basic SGM strategy. The cost for pixel
correspondences between base and match images is first
derived for all possible disparities 0 ≤ ∆ ≤ dmax. Using
dynamic programming, the correspondence cost is computed
along a set (usually of two to eight) scanlines of different
directions. This leads to the computation of final disparities
based on a the-winner-takes-all evaluation.
Costs are accumulated along an oriented scanline, thus
defining the dense labelling function f for all disparities. For
a partial energy function Es(f) at stage s, disparities need
to be assigned at the previous stages first. This is defined
recursively as follows:

Es(f) = Ds(∆) +Ms − min
0≤∆≤dmax

Es−1(f) (1)

where Ds(∆) is the matching data cost between pixels in L

and R defined by off-set ∆. For the data cost we decide for
using the census cost function on a 3×9 window as specified
for iSGM in [7]. Term Ms is defined as follows:

Ms = min






Es−1(f)

Es−1(f − 1) + Pa

Es−1(f − 1) + Pa

min
0≤∆≤dmax

Es−1(f) + Pb

(2)

where Pa and Pb are regularization penalties for enforcing
disparity consistency along a scan-line, basically only defin-
ing a ‘two-step’ Potts model (i.e. penalty Pa if disparity
difference 1 at an adjacent pixel along the path, or penalty Pb

if the difference exceeds 1). Input parameters are penalties
Pa and P

�
b, and Pb is derived as follows:

Pb(x, y) = max
�

P �
b

|L(x−1,y)−L(x,y)| , Pa + κ

�
(3)

where κ > 0. As Pb is derived from image data differences,
and assuming that depth discontinuities ‘usually’ occur at
intensity discontinuities, Pb aims at improving the matching
performance at such places. For further details, in particular
for a description of the used program iSGM in our experi-
ments, see [7].

C. Belief Propagation

The use of belief propagation (BP) for stereo matching was
popularized by [3]. Disparities between 0 and dmax are labels
in this context, and a labelling function f is updated in the
array of size M×N . Each pixel has assigned belief values for
any of the possible disparities, and influences the decisions

of the adjacent pixels (in the next iteration) by its belief
values. Figure 2 illustrates the propagation of belief values
assuming 4-adjacency for the underlying belief propagation
network.

Fig. 2. Belief propagation: p influences pixels q in one step, and thus
(indirectly) also pixels r in the next step

Labels are assigned by energy (cost) minimization for the
generated labelling function f . The cost is defined by data
cost Ed(p) at a pixel p (which was called Ds above for
SGM) in the base image and smoothness (or discontinuity)
cost Es aiming at spatial consistency of the generated labels.
Assume m

t
p→q to be the message from pixel p to its adjacent

pixel q at iteration t (see Figure 2, left):

m
t
p→q(fq) = min

0≤lp≤dmax

{(Es(fp, fq) +Hp, q(fp))} (4)

where

Hp,q (fp) = Ed (fp) +
�

r∈A(p)\{q}

m
t−1
r→p (fp) (5)

and A(p)\{q} denotes adjacent nodes of p excluding q (see
Figure 2, right).
An optimum labelling f would minimize

�

p∈Ω

Ed(fp) +
�

(p,q)∈A

Es(fp, fq) (6)

where A is the chosen adjacency relation (such as 4-
adjacency). If BP would run such that every pixel com-
municates with every pixel, the global minimum could be
achieved. However, there are time limits, and practically
we can only use a limited number of iterations, possibly
combined with a hierarchical or alternating strategy for being
more efficient.

Parameter Value
Iterations t 24

Pyramid levels 1
Data cost function Census

Cost function window (width× height) 5× 5
Scaling factor b

of discontinuity function 1.0
Truncation value c dmax/8

TABLE I
CONFIGURATION PARAMETERS FOR BELIEF PROPAGATION

Our BP implementation follows [1]. However, for Ed we
decide for a 5 × 5 census data cost function. For the
smoothness term Es we use two options, a truncated linear
function (defining program linBP) or a truncated quadratic
function (defining program quaBP). For truncation, we use
dmax/8 in both cases. Table I summarizes the used BP
parameters for programs linBP and quaBP.



III. VIDEO SEQUENCES WITH GROUND TRUTH

Matching accuracy can be determined by the absolute differ-
ence between computed and ground truth disparity, assuming
that a ‘reasonable’ ground truth is available. An accuracy
measure (i.e. an error) is defined by the percentage of pixels
in Ω where ground truth assigns a positive disparity, but the
difference to the assigned disparity exceeds a threshold τ ,
such as 1 or 2.

A. Set 2 of EISATS

Set 2 of the EISATS benchmark website (by Daimler A.G.
and the .enpeda.. group Auckland, see [15]) provides syn-
thetic stereo sequences with accurate ground truth. From this
set we discuss experiments with Sequence 2 in this paper.
By being a synthetic sequence, the capturing environment
is ideal, without any lighting variations between images in a
stereo pair. The images are of resolution M×N = 640×480,
with dmax = 58 pixels.
1) linBP vs quaBP: We use the first 90 images of this se-
quence for a comparative evaluation of linBP versus quaBP,
with τ = 2. See Figure 3. Clearly, linBP outperforms quaBP
for the selected data. Thus, we only discuss linBP in the
sequel in this brief paper.

Fig. 3. linBP vs. quaBP: % of pixels with error > 2 on Sequence 2

2) Data cost functions for linBP: We use linBP to evaluate
various data cost functions on a 5 × 5 window including
the absolute difference (ABS), Birchfield-Tomasi (BT), and
census. Figure 4 shows (as a typical example) the percentage
of error pixels for τ = 2 pixels on the first 20 images of the
considered sequence. This is just a brief re-confirmation of
the discussion in [5], [9] for this synthetic sequence.

Fig. 4. Data cost functions: % of pixels with error > 2 on Sequence 2

B. The KITTI Dataset

These real-world sequences come with ground truth provided
by a laser range-finder [10], [4]. Shown scenes have high
complexity and there are other challenges like lighting vari-
ations among stereo pairs. The training dataset consists of

Fig. 5. KITTI training data example. Top: reference image, middle: ground
truth, bottom: linBP disparity map

194 images, where ground truth (dmax = 255) is provided
with or without occlusion. For an example of the KITTI
dataset, see Figure 5. It shows colour-coded disparities for
linBP and the ground truth disparity map.
1) Data cost functions for linBP: We repeat the experiment
for linBP as specified before for the synthetic sequence. We
show results for the first 20 KITTI training stereo frames,
compared with no-occlusion ground truth data and τ = 2; see
Figure 6. This again shows that census has the best matching
accuracy compared to other two cost functions, especially its
robustness with respect to brightness differences.

Fig. 6. Data cost functions: % of pixels with error > 2, KITTI training
data

2) linBP vs. iSGM: Using the census cost function for both,
we compare linBP with iSGM using the complete training
dataset with non-occluded ground truth disparities. Figure

Fig. 7. linBP vs iSGM: % of pixels with error > 2 on KITTI training data

7 shows this comparison for τ = 2. For this data set and
τ = 2, iSGM outperforms linBP with respect to the mean
error. See Table II for mean error and standard deviation.
However, this order changes for τ = 3. Errors are computed
using the KITTI stereo development kit.
To further analyse the matchers behaviour over the whole
sequence, we compute the winning count: a matcher having



Mean (%) Standard deviation (%)
iSGM linBP iSGM linBP

2 pixel 12.22 12.45 5.23 6.02
3 pixel 9.40 9.23 4.41 5.14

TABLE II
LINBP VS ISGM: COMPLETE KITTI TRAINING DATASET

lesser error % wins for that image. For τ = 2, surprisingly,
the winning count is 99 for linBP, and 95 for iSGM. These
numbers show that linBP is winning more often, even though
its mean error % is higher than that of iSGM. Because
linBP also has a higher standard deviation than iSGM, this
suggests that the iSGM % error is more often closer to its
mean error. Whereas, the linBP error is more often below
the mean, but to nullify that, for a few images the error is
much higher than the mean. This explanation makes sense to
us, as occasionally, BP message passing fails to propagate in
certain regions (e.g. across ‘strong’ intensity edges) leading
to more errors in disparity matching.
The winning count for τt = 3 further develops to 124 for
linBP and 70 for iSGM.
Table III shows the comparison of linBP with iSGM on the
KITTI test dataset. Out-Noc is % of erroneous pixels in non-
occluded areas, and Out-All is % of erroneous pixels in
total.2 Avg-Noc is the ratio “average disparity / end-point
error” in non-occluded areas (1.2 for iSGM and 1.7 for
linBP), and Avg-All is the ratio “average disparity / end-
point error” in total (2.1 for iSGM and 2.7 for linBP.

Out-Noc (%) Out-All (%)
iSGM linBP iSGM linBP

2 pixel 8.04 11.78 10.09 13.87
3 pixel 5.16 8.66 7.19 10.81
4 pixel 3.87 7.06 5.84 9.22
5 pixel 3.15 6.02 5.03 8.18

TABLE III
EVALUATION ON KITTI TEST IMAGES FOR LINBP AND ISGM

From those summarizing numbers it appears that iSGM
outperforms linBP on those real-world data. Because the
ground truth of KITTI test dataset is unavailable to the end-
users, it is not possible to compute the winning count on this
dataset.

IV. VIDEO SEQUENCES WITHOUT GROUND
TRUTH

The KITTI data do not come with challenges such as
sun flare, rain, wipers, or low light. We use the third-eye-
approach, as defined in [13], for evaluating the quality of
stereo matchers on real-world video data for the common
case that disparity ground truth is actually not available.
This requires trinocular recording (at least). The ECCV 2012
Robust Vision Challenge did not provide trinocular stereo
data. However, there are trinocular test sequences available,
for example in Set 9 on EISATS [2].

2 With these results, linBP would have ranked 13th at [10] on 5th Jan,
2012, while iSGM on second place.

A. The Third-eye-approach

Recording is with three calibrated and time-synchronized
cameras. Two cameras provide the base (or left) and match
(or right) images L and R for stereo analysis, respectively,
and the third camera provides image T which is used for
evaluation (and could also be used for trinocular stereo
analysis).
Calculated disparities and calibration data allow us to map
the base image L into a virtual image V at the pose of
the third camera. Due to the geometric transform and due
to occlusions, some pixel values in the virtual image V

remain undefined. Because there might be brightness issues
between images L and T , we are using the normalised cross
correlation (NCC) for comparing defined image values in
V with those at the same pixel location in T , at any time
t (only specified in the following formula for the set Ωt

of pixel locations (x, y) with defined values in V ) of the
recorded sequence:

SNCC(t) =
1

|Ωt|
�

(x,y)∈Ωt

[T (x, y)− µT ][V (x, y)− µV ]

σTσV

Symbols µ and σ denote mean and standard deviation of the
corresponding images, and |Ωt| is the cardinality of this set.
This similarity measure SNCC equals 1 in case of absolute
identity, and decreases in magnitude with the ratio of differ-
ences between V and T at positions in Ωt. For reducing the
effect of mismatches within homogeneously textured regions
in L (or T ), paper [6] also suggested to use a modified
measure, where Ωt only contains pixel locations which are
in distance 10 or less to an edge pixel in L. This defines
similarity measure SNCCmask.

B. Set 9 of EISATS

We are now testing iSGM and linBP on Set 9 of EISATS
[2]. This set contains eight trinocular sequences, each of 400
stereo frames, grey-level images of size M×N = 640×480,
recorded at 10 bit per pixel [6], [14]. Sequence are ‘Barriers’
(crossing a bridge with road blocks on one side, very close
to the ego-vehicle), ‘Dusk’ (a sun flare sequence), ‘Harbor
bridge’ (same bridge but without road blocks), ‘Midday’
(hilly suburban road), ‘Night’ (with dense traffic), ‘People’
(pedestrians crossing in front of the ego-vehicle), ‘Queen
street’ (driving along a CBD street), and ‘Wiper’ (same scene
as in ‘Midday’, but now with running wipers).

C. Similarity Measures

We analysed the information provided by similarity measures
SNCC and SNCCmask, and also a simple sum-of-squared-
differences (SSD) comparison between virtual and third
images. The SSD measure appears to be of not much signifi-
cance for understanding the quality of stereo matchers when
using this third-eye-approach. When comparing SNCC with
SNCCmask, it appears in general that obtained confidence
results with both measures are ‘well correlated’ with visually
evaluated accuracy of stereo matching. Measure SNCCmask

provides a more detailed analysis, with more ‘valleys’ in
its curve indicating difficulties (where designers of a stereo



Fig. 9. Comparison of iSGM with linBP on four of the sequences of Set 9. iSGM performs better on Bridge, but linBP wins on Dusk, Midday, and Wiper

matcher need to check for reasons and possible solutions).
See Fig. 8 for both functions for the sequence Midday when
using iSGM, and for sequence Dusk when using linBP. In
conclusion, we decide to use measure SNCCmask only in the
sequel.

D. NCC mask Comparison of iSGM with linBP

Figure 9 shows four graphs for discussing the performance
of iSGM and linBP on four sequences of Set 9 of EISATS,
showing functions SNCCmask only for both stereo matchers.
For many of the stereo frames in those eight sequences
of Set 9, we visually evaluated that iSGM is the better
algorithm compared to linBP due to ‘appealing accuracy’
at occlusion edges. However, when summarizing by using
the SNCCmask measure, surprisingly the opposite appears
to be the dominating event (i.e. linBP appears to win more
frequently).

V. DATA MEASURES

The third-eye-approach might be possibly avoided by cor-
relating the quality of stereo matchers directly with data

Fig. 8. Functions SNCC and SNCCmask for iSGM on sequence Midday,
and for linBP on sequence Dusk

measures on stereo videos. For example, let sigma left be
the standard deviation of the base image L, NCC leftright
the NCC between L and match image R, and sigma Sobel
the standard deviation of the Sobel edge values of L. How do
such measures relate to the performance of stereo matchers
on challenging real-world data?
For comparing functions we unify their means and variances,
taking the mean and variance of function SNCCmask as
uniform goal for all the other functions. Figure 10 shows
plots of functions SNCCmask for iSGM on the sequences
in Set 9 of EISATS together with normalized plots of those
three data measures listed above.
We also calculate L1-distances d1(f, g) between normalized
functions f and g by taking

�
|f(i)− g(i)| for all frames i

in the sequence and dividing by the number of frames.
Questions are now, for example, whether a low or high value
of d1(SNCCmask, g), where g is one of the three data mea-
sures, does have a particular meaning for analysing stereo
matchers. A low value indicates that the measure might
replace the third-eye-approach on this particular sequence.
Table IV shows the distance value d1 between the three data
measure functions and the NCC-mask function for those five
sequences where values were ‘reasonably’ small. Indeed, the

Dusk Midday Queen Wiper People
sigma left 3.69 1.52 3.78 5.16 6.90
NCC leftright 4.18 1.26 3.33 4.59 5.21
sigma Sobel 5.79 2.30 3.29 5.42 5.80

TABLE IV
DISTANCE VALUES OF NORMALISED DATA MEASURES TO SNCCmask

plots for sequences Dusk, Midday, and Queen in Fig. 10
also indicate a ‘good’ correlation between SNCCmask and
data measures. We consider this as a starting point for doing
further in-depth analysis for reasons of degrading behaviour
of stereo matchers.



Fig. 10. Comparison of NCC mask of iSGM on Set 9 of EISATS with NCC mask-normalized functions sigma left, NCC leftright, and sigma Sobel

VI. CONCLUSIONS
The results came partially as a surprise to us. However,
there is also a good logic behind. BP is propagating belief
uniformly, without taking particular attention to dominating
horizontal propagations or accuracy along vertical disparity
discontinuities, as iSGM does. But the accuracy within object
regions, away from disparity discontinuities, appears to be
better with linBP. For example, in the sequence Bridge we
do have many structural details and not such a high ratio of
homogeneous regions - accordingly, iSGM is winning here.
In the Wiper sequence, the NCC leftright data measure in-
dicates correctly the actual input data situation, corresponds
to the performance of the stereo matchers, and BP is able to
cope better with those data (see also already [14]).
For testing, it would be of benefit to have trinocular data
with ground truth for challenging situations. This would
allow to correlate ground truth, similarity measures, and data
measures more in detail. We assume that these are useful
tools for identifying critical events for stereo matchers which
need to be resolved in future.
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