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Tracking of 2D or 3D Irregular Movement
by a Family of Unscented Kalman Filters

Junli Tao and Reinhard Klette

Abstract—The paper reports about the design of an object tracker which utilizes a family of unscented Kalman filters,
one for each tracked object. This is a more efficient design than having one unscented Kalman filter for the family of all
moving objects. The performance of the designed and implemented filter is shown by using simulated movements, and
also for object movements in 2D an 3D space.

Index Terms—unscented Kalman filter, detection-by-tracking, 2D/3D tracking.
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1 INTRODUCTION

O BJECT tracking is an important task for
many applications, such as for robot

navigation, surveillance, automotive safety, or
video content indexing. Based on trajectories
obtained through tracking, some advanced be-
haviour analysis can be applied. For instance,
the pedestrian trajectory can be analysed to
warn a driver if trajectories of the vehicle and
of the pedestrian are potentially intersecting.

For multiple object tracking, tracking-by-
detection methods are the most popular algo-
rithms. A detector is used in each image frame
to obtain candidate objects. Then, with a data-
association procedure, all the candidates are
matched to the existing trajectories as known
up to the previous frame. Any unmatched
candidate starts a new trajectory. Since there
is no perfect detector that detects all objects
without any false positives and false nega-
tives, sometimes objects are missed (i.e. they
appear in the image but are not detected), or
background windows are incorrectly detected
as being objects. Such false-positive or false-
negative detections increase the difficulty of
tracking.

Occlusion by other objects or background is
one main reason that causes the detection to
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fail and increases the difficulty for tracking(e.g.,
identity switch). Some algorithms [22] [1] pro-
pose to track objects in the 2D image plane.
The occlusion problem is handled either us-
ing part detectors and tracking detected body
parts, or adopting instance-specific classifiers
to improve performance of data assignment.
However, tracking in 2D image plane itself
increases the ambiguity for data association.
A tall person nearby, and a small person far
away, for example, may appear very close to
each other in the image, and probably the small
person is occluded by the tall one in some
frames. but they are actually several meters
away from each other. Thus, often, and also
in this paper, stereo information is adopted to
improve the tracking performance [6] [12] [14],
and multiple pedestrians are tracked in 3D
coordinates.

Tracking objects with irregular movements in
3D space is a challenging task due to totally
unknown speed and direction. In this paper,
the application of an unscented Kalman filter
(UKF) is demonstrated which can also handle
nonlinear (actually: fully irregular) trajectories
in 3D space. For the original paper on UKF,
see [19]. Similar work is proposed in [14]. But
instead of modelling the motion of the vehi-
cle and the pedestrians separately, we straight
forward model the relative motion between
them, and no ground plane is assumed, objects
moving in 6 degree-of-freedom can be tracked
properly. Different types of model are tested
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and compared in both simulation and real se-
quences.

2 RELATED WORK

Multiple object tracking attracts much of at-
tention recently in computer vision research.
Today, an update of the review [24] from 2006
should also include work such as in [1], [5], [6],
[12], [13], [15]–[18].

Kalman filters (KF) are extensively adopted
to deal with tracking task. KF is a recursive
Bayesian filter, firstly, using motion informa-
tion to predict possible position, followed by
fusing the observation (detection) and pre-
dicted position. A linear Kalman filter is used
for tracking (see, e.g., [24]) when movement
can be approximated by linear models. Ob-
viously, a linear model is not true for most
of the cases. The extended Kalman filter (EKF)
was designed [21] for handling a nonlinear
model by linearizing functions using the Taylor
expansion extensively. For example, an EKF
has been used for Simultaneous Localization and
Mapping (SLAM) [9], and for pedestrian track-
ing [23]. Particle filter were used to handle
the task in [2]. Similar performance as EKF is
reported in [6].

The UKF can handle a nonlinear model by
using the unscented transform to estimate the
first and second order moments of sigma points,
which represent the distribution of a predicted
state and predicted observations, and it ap-
pears that the UKF does this better than the
EKF [8]. Thus, in this paper, an UKF is used
for tracking multiple, irregularly moving ob-
jects in 3D space, which is a ‘highly nonlinear’
problem.

3 UNSCENTED KALMAN FILTER

The unscented transform (UT) is the core part
that makes UKF able to handle nonlinear mod-
els. Let L be the dimensionality of the system
state xt−1|t−1 at time t − 1. If the system noise
(process noise Q and measurement noises R)
is not additive, the state is augmented before
UT. In our case, the random acceleration is
introduce as the process noise, thus, the state
augmented with a process noise vector, is de-
noted by x

(a)
t−1|t−1, called vectors. The dimension

of the augmented vector, depends on the pro-
cess model, which is illustrated in Section 4.2.
Let xt|t−1 denote the predicted state at time t
when passing xt−1|t−1 through process function
f . Let yt|t−1 be the predicted observation at
time t when passing xt|t−1 through observation
function h.

The UT works by sampling 2L+ 1 sigma vec-
tors X(a)

i in the augmented state space (follow-
ing [19]), forming a matrix X (a). The covariance
matrix in augmented state space is denoted
by P(a). Let P

(xx)
t−1|t−1 be the state covariance

matrix (i.e. describing dependencies between
components of a state x). Formally,

X
(a)
0 = x

(a)
t−1|t−1

X
(a)
i = x

(a)
t−1|t−1 + (

√
(L+ λ)P

(a)
t−1|t−1)i

for i = 1, 2, . . . , L

X
(a)
i = x

(a)
t−1|t−1 − (

√
(L+ λ)P

(a)
t−1|t−1)i−L

for i = L+ 1, L+ 2, . . . , 2L

X (a) =

[
X (s)

0

]
+

[
0
X (n)

]

where λ is a positive real, a scaling parameter.
These sigma vectors can be passed through a
nonlinear function (e.g., f , h) one by one, thus
defining transformed (i.e. new) sigma vectors
(e.g., X (s)

t|t−1 and Yt|t−1 are obtained). The means
xt|t−1 or yt|t−1 and covariance matrices P

(xx)
t|t−1,

or P
(yy)
t|t−1, are obtained as follows, take h for

example:

Yt|t−1 = h(X (s)
t−1|t−1)

yt|t−1 ≈
L∑

i=0

W
(m)
i Yi

P
(yy)
t|t−1 ≈

L∑
i=0

W
(e)
i (Yi − yt|t−1)(Yi − yt|t−1)

T

with constant weights W
(.)
i . Details are given

in [19].
The UKF is illustrated as follows. At first we

initialize the state x = x0 and state covariances
P(xx) = P

(xx)
0 . For the augmented vectors, let

x(a) = (xT 0T )T

P(a) = diag(P(xx),Q)
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where Q denotes the process-noise covariance
matrix. Details about Q are given in Section 4.2.

For t ∈ (1, . . . ,∞), we calculate sigma vectors
as follows:

X (a)
t−1|t−1 = (x

(a)
t−1|t−1,

x
(a)
t−1|t−1 + γ

√
P

(a)
t−1|t−1,

x
(a)
t−1|t−1 − γ

√
P

(a)
t−1|t−1)

where γ =
√
λ+ L. The process update is

defined as follows:

X (s)
t|t−1 = f(X (s)

t−1|t−1,X
(n)
t−1|t−1)

xt|t−1 =
2L∑
i=0

W
(m)
i X

(s)
i

P
(xx)
t|t−1 =

2L∑
i=0

W
(c)
i (X

(s)
i − xt|t−1)(X

(s)
i − xt|t−1)

T

We update the sigma vectors using

X (s)
t|t−1 = (xt|t−1,

xt|t−1 + γ

√
P

(xx)
t|t−1,

xt|t−1 − γ
√

P
(xx)
t|t−1)

Yt|t−1 = h(X (s)
t|t−1)

yt|t−1 =
2L∑
i=0

W
(m)
i Yi

and update the measurement covariance ma-
trix as follows:

P
(yy)
t|t−1 =

2L∑
i=0

W
(c)
i (Yi − yt|t−1)(Yi − yt|t−1)

T + R

where R is the assumed measurement noise co-
variance, depending on the observation model
selected. Details are given in Section 4.2.

Altogether, the UKF is defined by

P
(xy)
t|t−1 =

2L∑
i=0

W
(c)
i (Xi − xt|t−1)(Yi − yt|t−1)

T

Kt = P
(xy)
t|t−1(P

(yy)
t|t−1)

−1

xt|t = xt|t−1 +Kt(yt − yt|t−1)

P
(xx)
t|t = P

(xx)
t|t−1 −KtP

(xy)
t|t−1K

T
t

4 MULTIPLE OBJECT TRACKING

Following tracking-by-detection methods,
which are popular for solving multiple-object
tracking tasks, a detector is applied in each
frame to generate object candidates which are
outputs of the detector. One UKF is adopted
for tracking one object separately, thus a group
of detected pedestrians defines a family of
UKFs to be processed simultaneously. Each
UKF tracks one detected object. The predicted
state of an UKF is used for data association;
when an observation (of the tracked object) is
available in the current frame then we update
the predicted state by using the corresponding
UKF.

4.1 Detection

Detection-by-tracking methods rely on eval-
uating rectangular regions of interest, we call
them object boxes if positively identified as con-
taining an object of interest. For pedestrian
tracking, we adopt the popular histogram of
oriented gradients (HOG) feature method and
a support vector machine (SVM) classifier, orig-
inally introduced in [4]. HOG features describe
the human profile by an oriented gradient his-
togram. An SVM classifier is able to handle
high-dimensional and non-linear features (such
as HOG features). It projects sample features
into a high-dimensional space, and then finds
a hyperplane to separate two classes. Instead
of using a sliding window, regions of interest
(i.e. inputs to the classifier) are selected by
analysing calculated stereo information (depth
and disparity maps), as proposed in [7].

Figure 1 shows several detection results in
pedestrian sequence, dots(cyan) denotes the
boxes centre that recognized as pedestrian, and
the red rectangle denotes the final detection
results. As can be seen in the results, the object
boxes may contain background, shift from the
object, or miss the pedestrians.

For the detection of Drosophila larvae (an ex-
ample of 2D movement), thresholds and con-
nected components are adopted to obtain one
object box for each larvae. Several larvae detec-
tion results are shown in Fig. 2. As the scene is
certain, the detection results are more reliable
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when compare to pedestrian sequence. But no
depth information is available here.

4.2 UKF-Based Object Tracking

As there is an unknown number of objects in
a scene, the state-dimensionality would expand
significantly if we would have decided to track
all pedestrians in one UKF; in this case, the
speed of tracking reduces dramatically when
the scene is crowded with many detected ob-
jects around. Thus, we decided for one UKF for
each detected object for tracking.

Fig. 1. The depth map on top uses a colour
code for calculated distances; depth values are
only shown at pixels where the mode filter ac-
cepts the given value. The lower image shows
detected (coloured) object boxes.

Fig. 2. Larvae detection results shown by (cyan)
object boxes.

Choosing a proper model is important. In
this subsection we offer three models for pos-
sible selection, namely 3D position (world co-
ordinates) with velocity observed, denoted by
3DVT, 3D position without velocity observed,
denoted by 3DT, and 2D position (image coor-
dinates) without velocity observed, denoted by
2DT. These models are compared in Section 5.

4.2.1 Both 3D models
In the 3DVT model, the object is tracked in
3D world coordinates. Its 3D position (x, y, z)
is the first part of the state. We also include
the velocity (vx, vy, vz). Thus, a state x =
(x, y, z, vx, vy, vz)T is 6-dimensional.

Process Model. We assume constant velocity
between adjacent frames, with Gaussian dis-
tributed noise acceleration na ∈ N(0,Σna). The
diagonal elements in Σna are set to be equal
and denoted by σ2

na
. Thus,

ẋ = x+ (vx + nax∆t)∆t, v̇x = vx + nax∆t

ẏ = y + (vy + nay∆t)∆t, v̇y = vy + nay∆t

ż = z + (vz + naz∆t)∆t, v̇z = vz + naz∆t

where ∆t is the time interval between subse-
quent frames.

Observation Model. An observation consists
of the position (io, jo) (say, the centroid of
the detected object box in the left camera),
disparity d of the detected object, and veloc-
ity (vox, voy, voz) in 3D coordinates. The usual
pinhole-camera projection model is used to
map 3D points into the image plane,

io = fx/z, jo = fy/z

d = fb/z, vox = vx

voy = vy, voz = vz

where f denotes focal length, and b de-
notes the length of the baseline between two
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rectified stereo cameras. In this case, R =
diag(σ2

nmp
, σ2

nmp
, σ2

nmp
, σ2

nmv
, σ2

nmv
, σ2

nmv
).

For the disparity d we select the mode in the
disparity map in a fixed (e.g. 20 × 20) neigh-
bourhood around the centroid (io, jo) of the
detected object box. 3D scene flow (vox, voy, voz)
can be obtained by combining optic flow and
stereo information [20].

As it is difficult to obtain high-quality scene
flow as required for 3DVT, 3DT simplifies
3DVT model by excluding the scene flow in
observation, and has the same process model as
3DVT. In this case, R = diag(σ2

nmp
, σ2

nmp
, σ2

nmp
).

4.2.2 The 2D model
If only monocular recording is available, the
object is tracked in the 2D image plane only.
The state x = (i, j, vi, vj)

T consists of position
(i, j) and velocity (vi, vj).

Process Model. The same as for the 3D
models. We assume constant velocity between
subsequent frames with a Gaussian noise dis-
tribution for acceleration na:

i̇ = i+×(vi + nai
∆t)∆t, v̇i = vi + nai

∆t

j̇ = j +×(vj + naj
∆t)∆t, v̇j = vj + naj

∆t

Observation Model. An observation consists
of the central position (io, jo) of an object box
only, io = i and jo = j, resulting in R =
diag(σ2

nmp
, σ2

nmp
) for this case.

4.3 Data Association
As each object is tracked independently, data
association by matching candidates to existing
trajectories becomes important. If no match
then we decide to initialize a new tracker.

Since object movements are continuous, the
estimated velocity in the UKF can be used as
a cue to localize the search area for finding the
match object. For each trajectory, the possible
location (i.e. (xp, yp, zp) for 3D, and (ip, jp) for
2D) of the object in the current frame is pre-
dicted by process model used in the EKF. This
location is used as a reference for searching
potentially matching candidates in the current
frame. Currently we simply match candidates
based on shortest Euclidean distance and a
given threshold τ .

One candidate might be matched with sev-
eral trajectories if the Euclidean distance is be-
low τ . Trajectories compete for the candidates,
the closest wins finally. If a candidate is not
matched to any trajectory, a new tracker is
initialized. If a trajectory does not win any of
the candidates, the tracker is propagated with
the given prediction, and the new state is the
predicted state, without being updated by an
observation (because not available).

No object appearance description is used
here for assigning an object to a trajectory.
In general, the inclusion of appearance rep-
resentation (e.g., a colour histogram, or an
instance-specific shape model) improves the
performance. However, this is out of the scope
of this paper where we discuss the combination
of different data-association methods.

5 EXPERIMENTS

In this section, first, our three models (3DVT,
3DT, and 2DT) are tested in a simulated envi-
ronment with different parameter sets. Second,
our multiple-object tracking method is tested
on real video sequences where (3D example)
pedestrians are walking in inner-city scenes,
or (2D example) larvae are moving on a flat
culture dish.

5.1 Simulated Tracking
The three models defined in Section 4.2 are
tested in a simulation environment in OpenGL.
A cub is moving on a circular path around a 3D
point with constant speed, as show in Figs. 3
and 4. Acceleration noise na with different
covariance (e.g. σ2

na
= 0.0001, 0.01, 1), and mea-

surement noise nm with different covariance
(e.g. σ2

nmp
= 10, 50, 100, σ2

nmv
= 50, 100, 150), are

used to test and compare the three models’
performance. The simulation environment is
different for 2D and 3D models, where for 2D,
positions are integral pixel coordinates in the
image plane, but for 3D, position coordinates
are reals. The radius of the circle in the 3D
models is 10, while in the 2D model it is
50. In both environments, measurements are
degraded by noise before sent to the UKF.

Figure 3 demonstrates the effect of σ2
na

, hav-
ing fixed σ2

nmp
and σ2

nmv
. Experiments show
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that lager σ2
na

values result in more unstable
trajectories. Large σ2

na
means that the process

model produces a predicted state that is fluc-
tuating with large magnitudes. Results show
that σ2

na
= 0.0001 is a reasonable choice for

3D models. For the 2D model, a smaller σ2
na

yields smooth estimation, but shifts are signif-
icant. A larger σ2

na
value produces estimations

that are more close to the true positions, but
fluctuations are significant, for an experiment
with σ2

na
= 1 for the 2D case. In general, 3DT

and 3dDVT converge better than 2DT, while
3DT and 3dDVT show a similar performance.
3D models use stereo information rather than
just a single image as for the 2D model, which
also proves that stereo information can help
to improve the tracking performance. As the
measured 3D position is noisy, the measure of
velocity is even more noisy; this appears to
be the main reason for the observation that
the inclusion of velocity cannot improve the
performance.

Figure 4 shows results for the three models
for different covariance values σ2

nmp
and σ2

nmv

of measurement noise. Significantly increasing

Fig. 3. Simulation results for variations in the
variance of acceleration noise. From left to right,
σ2

na
= 0.0001, 0.01, or 1, with fixed values

σ2
nm

= σ2
nmp

= 50, and σ2
nmv

= 100. From top
to down, the tracking model is 3DVT, 3DT and
2DT respectively.

measurement noise (i.e. higher uncertainty of
observations) reduces the performance only
slightly. This demonstrates that the UKF is a
robust tracker to some degree, which is not
vulnerable to detection uncertainties. As be-
fore, 3DT and 3dDVT converge better than
2DT, while 3DT and 3dDVT show a similar
performance.

Fig. 4. Simulation results for variable variance
of measurement noise. From left to right, σ2

nmp
=

10, 50, or 100, σ2
nmv

= 50, 100, 150, respectively,
with fixed σ2

na
= 0.0001 for 3D models, σ2

na
= 1

for 2D models,. From top to down, the tracking
model is 3DVT, 3DT and 2DT respectively.

5.2 Multiple Object Tracking in Real Data
In this section we report about the performance
of UKF-supported tracking for multiple larvae
using the 2DT model, and for multiple pedes-
trians in traffic scenes using the 3DT model.
larvae sequence and pedestrian sequences are
30 and 15 frames per second.

Results for larvae tracking are shown in
Fig. 5. As the velocity in the model is initial-
ize by (0, 0), the UKF-estimation is “slower”
than the real speed of the larvae in the first
30 frames. The speed of convergence can be
improved by increasing σna , but note that the
larger the σna value is, the larger is the mag-
nitude of fluctuation. The estimated trajecto-
ries follow “well” the larvae moving, mainly
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because all larvae are properly detected in all
frames. However, such a complete detection
cannot be expected for pedestrian sequences.
Next, we test the UKF for such “noisy detection
results” for pedestrian sequences.

Fig. 5. 2D Tracking results of larvae sequences.
From top to bottom: tracking results in Frames
26, 46, and 166 of one sequence. Red lines
show the detected track, and white lines show
the UKF-predicted track. Blue lines represent
estimated trajectories. The left column is the
original intensity image overlaid with estimated
trajectories.

Results for pedestrian tracking are shown in
Fig. 6. Objects are missing or shifting from time
to time due to the clustered background (car
in the traffic scene detected as a pedestrian),
illumination variations (some pedestrians are
not detected), or internal variations between
objects (unstable detections). Our experiments
verified that UKF-predictions can follow irreg-
ular moving pedestrians when detection fails
for a few frames, and can even correct unstable
detections.

The second frame in Fig. 6 shows that the un-
detected pedestrian is predicted correctly in the
white object box, and successfully matched to
a detected position in the third frame. The last
frame in Fig. ?? demonstrates that displaced
detections are corrected by the UKF. Using only
the defined distance rule for data assignment,
this appears to be insufficient, especially for

the given detection results. A small threshold
may lead to a mismatch (i.e. the detection fails
to satisfy the rule), and a large threshold may
lead to an identity switch (i.e. a pedestrian is
matched to another pedestrian).

6 CONCLUSIONS

Assigning one unscented Kalman filter to each
detected (moving) object simplifies the design
and implementation of UKF-prediction of 2D
or 3D motion. Experiments demonstrate the
robustness of the chosen approach. This tracker
only generates short-term tracks when detec-
tion is not reliable; long-term tracking should
be possible by also introducing dynamic pro-
gramming. For evaluating the performance on
real-world (either 2D or 3D) applications, more
extensive tests need to be undertaken, espe-
cially for the design and evaluation of quantita-
tive performance measures. For example, mea-
sures discussed in [10] for evaluating visual
odometry techniques might also be of relevance
for the tracking case.
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