
Calculating the Number of Tunnels

Fajie Li∗ and Reinhard Klette+

∗ Groningen University, The Netherlands
+ The University of Auckland, New Zealand

Abstract. This report1 considers 2-regions of grid cubes and proposes
an algorithm for calculating the number of tunnels of such a region.
The graph-theoretical algorithm proceeds layer by layer; a proof of its
correctness is provided, and its time complexity is also given.

1 Introduction

Calculations of numbers of tunnels (i.e., of the first Betti number β1) have been
a subject of interest in 3D digital topology [8], in particular in the context
of image analysis (see, e.g., [14, 16, 23]), in graph theory (see, e.g.,[28]), or in
computational modeling of 3D forms (see, e.g., [9]),

The Euler characteristic χ(K) = α0−α1+α2 of a bounded 3D set K is defined
by numbers of cells in a (not uniquely defined) Euclidean surface complex; α0

is the number of 0-cells (vertices), α1 the number of 1-cells (edges), and α2 the
number of 2-cells (faces). The Poincaré formula [22]

χ(K) = β0 − β1 + β2

allows a calculation based on Betti numbers β0 (number of connected compo-
nents), β1 (see above), and β2 (number of closed surfaces). (For details, see, for
example, Chapter 6 in [12].) The Euler characteristic is used for various pur-
poses, such as for characterizing the topology of cold dense matter at subnuclear
density [27] (using integral geometry), in material sciences [26] (using estimates
per volume unit), or for studying 3D biomedical structures such as cancellous
bone architecture [24]. The number of tunnels is of interest in digital topology;
see, e.g., [11, 17, 19, 25]. For a review on different algorithms for calculating the
Euler number, and variations in selecting the adjacency model, see [20]. See also
Section 5.3.3 in [12].

Obviously, a known Euler number does not yet specify numbers β1 or β2,
even if β0 = 1 can be assumed.

[8] proposed an incremental, theoretically efficient algorithm for calculating
Betti numbers. However, now for more than 12 years, no implementation of this
algorithm has been documented somewhere on the net. The authors believe that
the algorithm, as proposed in this report for calculating β1, is conceptually easier
to follow, and report about their implementation.
1 A revised version of [15].



Fig. 1. Left: office tower (note: both open windows contribute to β1, but could also
be closed, and still we could expect to have β1 > 0) has β0 = 1, β1 > 0, and β2 > 0.
Middle: the Menger sponge has β0 = 1 and β2 = 0 for any iteration, β1 = 9 tunnels at
the start (top), and β1 = 209 tunnels at the first iteration. Right: Sierpinski tetrahedron
(start and first iteration), and its sculptural representation.

Figure 1 illustrates the complexity of calculating tunnels. A set K of the
complexity of an office tower (left) would be considered ‘floor by floor’ by our
algorithm (assuming an approximating cuboidal model). There can be ‘hierar-
chies of cavities’ in such a set K; ‘columns’ or ‘openings between adjacent floors’
contribute to the number of tunnels. In contrast, the Menger sponge (already in
appropriate cuboidal structure) does only have one closed surface (i.e., β2 = 1).
Here, local counts of surface cells (e.g., as in Section 5.3.3 of [12]) are sufficient
for identifying the Euler number, and, thus, also the number of tunnels. At the
start of the Menger sponge iterations, we (can) have α0 = 40, α1 = 78, and
α2 = 30 (note that a Euclidean surface complex is not uniquely defined), and at
the first iteration α0 = 680, α1 = 1398, and α2 = 510. Consequently, we have
β1 = 9 (start) or β1 = 209 (first iteration) tunnels.2 The Sierpinski tetrahedron
also has β2 = 0, for any iteration, and its cuboidal representation (e.g., by Gauss
digitization) would allow similar calculations.

This report presents a hierarchical method for computing the number of
tunnels of a 3D binary picture (to be precise, of 2-regions of grid cubes). Images
are first processed column by column (runs), then layer by layer, and finally
those ‘2D graphs’, deduced from individual layers, are merged into a single ‘3D

2 In the notation of [12], [1] defined a gap by a separator. A 2-region of grid cubes has
a tunnel iff it has a 2-gap. Besides this, numbers of tunnels or of 2-gaps (see [5]) are
not related to one-another.



graph’ in order to compute the number of tunnels. The method is based on the
idea of utilizing linear skeletons.

The report starts with a theoretical part which describes how to infer a ’3-D’
graph from the ’2-D’ graphs of the layers. This is followed by implementation
details, an analysis of time complexity of the presented algorithm, and experi-
ments, illustrating its use. Conclusions are given at the end of the report.

2 Definitions

We apply the grid cell model [12], using 0-, 1-, 2-, or 3-cells in 3D space, which are
vertices, grid edges, grid squares, or grid cubes, respectively. For example, two
3-cells (cubes, for short) c1 and c2 are 2-adjacent iff c1 6= c2 and the intersection
c1 ∩ c2 contains a 2-cell.

In general, let S be a countable set and A an adjacency relation on S, defining
an adjacency structure. If p and q are adjacent (in formal notation: pAq) then p, q
are an adjacency pair. For any p ∈ S, the set A(p) = {q : pAq} is the adjacency
set of p. Maximal connected subsets of S are components of S. An adjacency
structure [S, A] is called an adjacency graph iff it has the following properties:
A(p) is finite for any p ∈ S; S is connected with respect to A; and any finite
subset M ⊆ S has at most one infinite complementary component. Any finite
component of an adjacency graph is called a region. The set A(M) of all nodes
adjacent to M ⊆ S is called the adjacency set of M . If [S, A] is an adjacency
graph, two disjoint subsets M1 and M2 of S are called adjacent iff A(M1) ∩ M2

6= φ, denoted by M1 A M2 or (M1, M2) ∈ A. Let R be a partition of S into
regions without including the infinite background component. The undirected
graph [R,A] is the region adjacency graph of [S, A]. For example, 2-adjacency
of cubes defines 2-regions and related adjacency graphs of regions of cubes.

Following Section 4.2.2 of [12], the merging of two adjacent nodes p and q
in a graph G = [S, A] is defined by replacing p and q with a new node r that
is adjacent to every node in S \ {p, q} to which p or q was originally adjacent.
A finite sequence of merging operations is called a contraction; see Figure 2. If
graph G1 is contracted into G2, then G1 and G2 are homeomorphic.

The linear skeleton (see Section 6.3.3 of [12]) of a set M ⊆ R3 is defined by
continuos contractions. We transform a linear skeleton into a graph by having a

Fig. 2. G1 is contracted into G4; G4 can be further contracted into a loop, but not
into a single node (without any edge).



Fig. 3. Two 2-regions of cubes with homotopic graphs. S1 does not contain cube c1,
and S2 does not contain cubes c2 and c3.

node at each of its singular points (see Section 7.1.3), and arcs between singular
points define the edges.

Definition 1. Let S be a 2-region of cubes and G a graph. G is a homotopic
graph of S iff G is homeomorphic to the linear skeleton of S.

In Figure 3, G1 and G2 are both homotopic graphs of S1, and G3 and G4 are
both homotopic graphs of S2.

Two relational structures [S1, R1] and [S2, R2] are called isomorphic iff there
exists a one-to-one mapping f from S1 onto S2 such that pR1q iff f(p)R2f(q),
for all p, q ∈ S1. f is called an isomorphism.

Definition 2. Let S be a 2-region and G a homotopic graph of S. S is called a
minimal cubical set iff G is not isomorphic to any homotopic graph of a 2-region
S′, where S′ is obtained by removing a cube from S.

A subregion is a (non-empty) connected subset of a region. Assume a re-
gion adjacency graph and a partition of involved regions into subregions; these
subregions define a subregion adjacency graph.

Definition 3. Let L be a set of cubes and H a homotopic graph of L. Let R
be a partition of L into subregions without including the infinite background
component. Let [R, A] be the subregion adjacency graph of R. If [R, A] is
isomorphic to H, then [R, A] is called a homotopic subregion adjacency graph
of L with respect to H, denoted by H̄.

Let f be the isomorphism; for the whole set V (H) (The set of all vertices in
H.), f(V (H)) is denoted by V̄ (H). Figure 4 shows a layer L of cubes. H is a
homotopic graph of L. Let H̄ be a subregion adjacency graph of L, and V̄ the
vertices of H̄. Each vertex v̄ ∈ V̄ is a set of cubes.

In the rest of this report, we denote a graph by G = [V,E], where V = V (G) is
the set of nodes and E is the set of edges. If the relation A (or set E) is obviously
defined for a homotopic subregion adjacency graph H̄ = [R,A] = [V,E] then we
denote H̄ just by V (H̄) or V̄ .

Let G = [V,E] be a graph and V1 ⊆ V . Subgraph [V1, E1] is called the
restriction of G on V1, where E1 = {v1v2 : v1 ∈ V1 ∧ v2 ∈ V1}. – The following
definition is a special case of Definition 2.64 in [13].



Definition 4. Let S be a family of cubical sets in kD space, where k = 0, 1, 2, 3.
Let X be the set of i-cells contained in S, with i ≤ k. Let p, q ∈ X such that
p is a j-cell, q is a (j − 1)-cell and p is the unique j-cell in X incident with q,
j ≤ k. Let X ′ = X\{p, q} and S′ = ∪{c∈X′}c. Then S′ is called obtained from
S via an elementary collapse of p by q.

3 Basics

Let S be a family of cubical sets in kD space, where k = 0, 1, 2, 3. Let p be a
j-cell, q a (j − 1)-cell, for j ≤ k. Let S′ be obtained from S via an elementary
collapse of p by q. Let H∗(S) or H∗(S′) be the homology group (see Section 6.4.6
in [12]) of S or S′, respectively. Then, by Theorem 2.68 in [13], it follows that

H∗(S′) ∼ H∗(S) (1)

where ∼ is the homology (equivalence) relation.

Lemma 1. Let G = [V,E] be a connected finite graph. There exists a minimal
cubical set S such that G is a homotopic graph of S.

Proof. 1. Let |V | = n and V = ∪n
i=1{vi}. Let di be the degree of vi ∈ V .Without

loss of generality, assume that di ≤ di+1, for i = 1, 2, . . . , n− 1.
2. For each vi, construct a simple arc of length 2d1 − 1, denoted by g1i

=
∪2d1−1

j=1 {(2i − 1, j, 1)}, where (2i − 1, j, 1) are the coordinates of the center of a
grid cube, for i = 1, 2, . . . , n.

Fig. 4. A layer of cubes and a homotopic subregion adjacency graph with respect to a
homotopic graph of it.



3. To connect v1 to its neighbors, let A(v1) = {v11 , v12 , . . . , v1d1
} be the

adjacency set of node v1, with 11 < 12 < . . . < 1d1 . Assume that j = 1r, where
r ∈ {1, 2, . . . , d1}.

If j = 2, then add a cube (2, 1, 1) between g11 and g12 . Otherwise, let g(j, z)
= ∪2j−1

x=1 {(x, j, z)} ∪ {(1, j, z − 1), (2j − 1, j, z − 1)}, where z is an integer; then
add g(j, 2) between g11 and g1j

.
4. If v2v1 s an edge of G, then let d′2 = d2 − 1. Otherwise, let d′2 = d2. Add

a simple arc of length 2d′2 to g1i , denoted by
g2i

= g1i
∪ (∪2d1+2d2−1

j=2d1
{(2i−1, j, 1)}), for i = 2, 3, . . . , n. Analogous to Step

3, we can connect v2 to its neighbors except its possible neighbor v1 which has
already been connected to v2 in Step 3 if v1v2 is an edge of G.

5. Analogous to Step 4, we can connect vi to its neighbors, where i =
3, 4, . . . , n.

6. Suppose there are l(i, j) edges between vi and vj (i < j). Construct l(i, j)
simple arcs of length 2(j − i) + 3 as follows: Let g(i, j) = ∪l(i,j)+2

z=3 g(j, z).
7. Let S be the union of all cubes constructed so far. If there is a cube c in S

such that there is only one cube c′ in S such that c ∩ c′ is a 2-cell then remove
c from S. Repeat this operation until S does not contain such a cube c, and S
is as required. ut

In Figure 5, S2 is obtained from S1 after removing 6 cubes. S2 is a minimal
cubical set and G1 is a homotopic graph of S2. S3 is a minimal cubical set and
G2 is a homotopic graph of S3. – From homology (1) and Lemma 1, we obtain
the following:

Theorem 1. If a cubical 2-region S is minimal such that a given graph G is a
homotopic graph of S, then we have β1(S) = β1(G).

We also recall the following theorem by J. W. Alexander (see Theorem 6.8
in [12]).

Fig. 5. Illustration for Lemma 1.



Fig. 6. Illustration to the proof of Lemma 2.

Theorem 2. Let S1 and S2 be two Euclidean complexes defined by partitions of
polyhedra ∪K1 and ∪K2. If ∪K1 and ∪K2 are homeomorphic then K1 and K2

have the same Betti numbers.

Corollary 1. If S is a 2-connected cubical set and G a homotopic graph of S.
Then the first Betti number of S is equal to the Betti number of G.

Proof. Let S′ is a minimal cubical 2-region such that G is a homotopic graph of
S. Then S′ is homeomorphic to S. Theorems 1 and 2 prove the corollary. ut

We recall that a sequence (p0, p1, · · · , pn) of 2-cells is a 1-path of 2-cells iff
pi+1 is 1-adjacent to pi, for 0 ≤ i ≤ n− 1. p0, pn are the endnodes of this path.

Let S be a 2-region of cubes with nonempty intersections with grid layers L.
Let Si be a component of the intersection of S with layer L, Hi a homotopic
graph of Si, H̄i be a homotopic subregion adjacency graph of Si with respect to
Hi, and let ūi, v̄i, w̄i ∈ H̄i, for i = 1, . . . , imax.

Lemma 2. If there exists a 1-path of 2-cells (p0, p1, · · · , pn) such that p0 is con-
tained in ū1 ∩ ū2 and pn is contained in w̄1 ∩ w̄2, and pi belongs to S, where i
= 0, 1, . . ., n, then the set of cubes (ū1 ∪ ū2) ∪ (w̄1 ∪ w̄2) is simply connected.

Proof. Let g be a closed curve contained in ū1 ∪ ū2 ∪ w̄1 ∪ w̄2. Let P2 be an arc
of g such that P2 is contained in ū2 ∪ w̄2 and P2 ∩ (p0, p1, · · · , pn) = {A,B}.
Since ū2 ∪ w̄2 is connected then (see Figure 6) arc AP2B can be continuously
contracted into line segment AP1B ⊂ p0, p1, · · · , pn. Therefore, within ū1 ∪ ū2

∪ w̄1 ∪ w̄2, g can be continuously contracted into a line segment and then into
a single point in (p0, p1, · · · , pn). ut

Now consider a pair (v1, v2), where vi ∈ V (Hi) and v̄i ∈ V (H̄i), for i = 1, 2.
Let c be the number of components of v̄1 ∩ v̄2 (It is a set of 2-cells.).

Operation 1. If c ≥ 1 then add c edges between v1 and v2 to graph H1 ∪ H2.
Let E be the set of all edges added. Let Vi be the set of such vi ∈ V (Hi). In other
words, V1 = {v1 : v1 ∈ V (H1)∧v1v2 ∈ E} and V2 = {v2 : v2 ∈ V (H2)∧v1v2 ∈ E}.
Then Vi ⊆ V (Hi), for i = 1, 2.

Operation 2. Let Ūi be the restriction of H̄i on V̄i, for i = 1, 2. For each
pair (ūi, w̄i), where ūi, w̄i ∈ Ūi, let g be the number of 1-paths of 2-cells
(p0, p1, · · · , pn) such that p0 is contained in Ū1 ∩ Ū2 and pn is contained in
w̄1 ∩ w̄2. See Figure 7 for an example.



Fig. 7. Example with g = 3.

(Note that ū1 ∩ ū2 and w̄1 ∩ w̄2 are also sets of 2-cells.) Delete g edges
between u1 and w1 in H1.

Let (H1 ∪ H2) be the resulting graph after applying Operations 1 and 2 on
H1 ∪ H2. Then we have

Lemma 3. (H1 ∪ H2) is a homotopic graph of the set S1 ∪ S2 of cubes.

Proof. Since Hi is a homotopic graph of Si, it follows that Si can be continuously
contracted into Hi, where i = 1, 2. The edges, added between H1 and H2, are
not redundant because when Si is contracted continuously, the subset of cubes
v̄1 ∪ v̄2 must also be contracted or extracted continuously. Therefore, the only
possible redundant edges (because of duplicating) may be edges such as uiwi in
Hi, for i = 1, 2. Together with Lemma 2, this proves the lemma. ut

Let H = ∪l
i=1Hi. Repeat Operations 1 and 2 on Hi ∪ Hi+1 until Stop (this

is guaranteed to happen, after a finite number of steps), where i = 1, 2, . . . , l -
1. Let the resulting graph be (H). Then, by Lemma 3, we have the following:

Theorem 3. (H) is a homotopic graph of S.

The following algorithm is justified by this theorem.

4 Subprocess and Algorithm

At first we present an algorithm for producing a homotopic subregion adjacency
graph and a homotopic graph, for any given layer of cubes within the given
2-region. This is then used to describe our main algorithm.

4.1 Preparation: Runs

A layer of cubes can be decomposed into a number of columns (of cubes); cubes
in the same column have the same x-coordinate. A column of cubes can then be



decomposed into a number of runs (i.e., runs) of cubes. Cubes in the same run
have consecutive y-coordinates (i.e., each run is a simple cube-arc). Each run
can be represented by its two endcubes.

A run I1 is left-(right-)adjacent to a run I2 if the x-coordinate of I1 is less
(greater) than that of I2, and there exists a cube ci ∈ Ii such that c1 ∩ c2 is a
1-cell.

Each left- or right-adjacent run of run I is called a neighbor of I. A run-path
is a sequence of runs (i0, i1, · · · , in) such that ij+1 is the unique right neighbor of
ij (0 ≤ j ≤ n− 1 and n ≥ 1); i0 and in are called the endruns of the path. The
endrun with smaller (larger) x-coordinate is called the first (second) endrun. A
maximal run-path is a run-path such that the number of left neighbors of its
first endrun is not one, and the number of right neighbors of its second endrun
is also not one. If the number the neighbors of the second endrun of a run-path
pI is greater than one, then it is called the head-run of pI , denoted by hpI

.
Otherwise the first endrun of pI is called the head-run of pI . In both cases, we
say pI belongs to hpI

. The second endrun of pI , different to hpI
, is called the

tail-run of pI . We remove the tail-run from the run-path if the number of its
the neighbors is greater than one. The resulting run-path is called the reduced
maximal run-path. Thus, if the number of neighbors of the tail-run is one, then
the reduced maximal run-path of a run-path coincides with itself.

In Figure 4, the run in column 18 (the cubes in this run have x-coordinate 18
and y-coordinates between 1 and 20) has 3 left neighbors and 4 right neighbors.
There are two maximal run-paths from column 3 to column 18. The run in
column 3 is the first end- and tail-run of both, and the run in column 18 is the
second end- and the head-run of both. With the tail-run removed, they induce
two reduced maximal run-paths from column 4 to column 18. There is also a
maximal run-path from column 5 to 11 (i.e., a disconnected “island” in the
largest of the three holes). The run in column 5 is the first end- and head-run
of it, and the run in column 11 is the second end- and tail-run of it. It coincides
with its reduced maximal run-path (The tail-run in column 11 is not removed
because it has only one neighbor).

4.2 Single-Layer Subprocess

For a single layer of cubes, do the following:

1. Get the set of all runs, denoted by SI .
2. For each run in SI , get and set its left and right neighbors.
3. Get the set of all maximal run-paths, denoted by SP .
4. For each run-path in SP , get and set its head- and tail-runs.
5. Get the set of all reduced maximal run-paths from SP , denoted by SRP .
6. Get the set of all runs, denoted by SH such that for each run h in SH , the

number of neighbors of h is greater than two, or the number of left neighbors of
h equals two and the number of right neighbors of h equals zero, or the number
of left neighbors of h equals zero and the number of right neighbors of h equals
two.



7. Get the set of head-runs of all run-paths in SRP , denoted by SPH .
8. For each h in SH ∪ SPH , reset its neighbors as follows:
8.1. For each pair h1, h2 in SH ∪ SPH , if they have a common neighbor I,

remove I in the set of neighbors of hi where the index i satisfies xi < xi+1 (mod
2), where xi is the x-coordinate of hi, for i = 1, 2.

8.2. For each h in SH , remove its neighbor if this neighbor is contained in a
run-path in SRP (Note that 8.2 and 8.1 are independent of each other because,
by definition, a run-path has at least two runs).

9. For each head-run h in SH ∪ SPH , let Ch = C ∪ CN ∪ Cp, where C is the
set of all cubes contained in h, CN is the set of all cubes contained in neighbors
of h, and Cp is the set of all cubes contained in reduced maximal run-paths
belonging to h (i.e., CP = {c : c ∈ p ∈ SRP ∧ p belongs to h}).

10. Get a homotopic subregion adjacency graph H̄ by SH ∪ SPH , where each
subregion is a set Ch as obtained in Step 9;

11. Get a homotopic graph H from H̄.

Section 5.1 illustrates this algorithm by means of an example. We use now
this single-layer subprocess for describing the main procedure, which computes
the number of tunnels of a 2-region of cubes.

4.3 Algorithm

Assume a 2-region S of cubes. We proceed as follows:

1. Decompose S into layers, defined by all those z-coordinates with cells in
S. (Each layer is thus the subset of S defined by an identical z-coordinate.) Let
Li be the i-th layer of S, where i = 1, 2, . . ., m, and m is the number of layers
of S.

2. By the single-layer subprocess, construct a homotopic graph Hi for each
layer Li, and a homotopic subregion adjacency graph, H̄i, with respect to Hi.

3. Without loss generality, let L1 and L2 be any two consecutive layers. Let
H1 or H2 be homotopic graphs of L1 or L2, respectively. Let H̄1 or H̄2 be
homotopic subregion adjacency graphs with respect to H1 or H2, respectively.
For each pair (v1, v2), where v1 ∈ V (H1), v2 ∈ V (H2), v̄1 ∈ V (H̄1), and v̄2 ∈
V (H̄2), do the following:

3.1. Apply the FILL algorithm (see, e.g., [12]) to find the number of compo-
nents of v̄1 ∩ v̄2 (which is a set of 2-cells), denoted by c.

3.2. If c ≥ 1, then add c edges between v1 and v2 in graph H1 ∪ H2. Let E be
the set of all edges added. Let Vi be the set of these vi ∈ V (Hi). In other words,
V1 = {v1 : v1 ∈ V (H1) ∧ v1v2 ∈ E} and V2 = {v2 : v2 ∈ V (H2) ∧ v1v2 ∈ E}.
Then Vi ⊆ V (Hi), for i = 1, 2.

3.3. Let Ūi be the restriction of H̄i on V̄i, where i = 1, 2. For each pair
(ūi, w̄i), where ūi, w̄i ∈ Ūi, apply the FILL algorithm to find the number of
1-paths of 2-cells (p0, p1, · · · , pn) such that p0 is contained in ū1 ∩ ū2, and pn is
contained in w̄1 ∩ w̄2 (where both ū1 ∩ ū2 and w̄1 ∩ w̄2 are again sets of 2-cells),
denoted by p. Delete p edges between u1 and w1 in H1 (see Lemma 2).



4. Apply Step 3 to every pair Li and Li+1 of two consecutive layers, for
i = 1, 2, . . . , imax− 1. Let G be the resulting graph. Then the number of tunnels
of S equals E(G) - V (G) +1, see Equation (2).

For this final step we make use of a basic result in combinatorial graph
theory (see, for example, [4, 28]). Let G be a graph with n nodes, m edges and
k connected components. Then we have

β1(G) = m− n + k (2)

A proof of this equation is straightforwardly by mathematical induction on the
number of edges: a new edge either increments the number of 1-cycles or decre-
ments the number of connected components.

5 Examples

5.1 An Example for the Single-Layer Subprocess

For an implementation in C++ or Java, SI , SP , SRP , SH , SPH , and neighbors
of a run can be represented by Vector Objects. Each run is represented by a
Class. We discuss the layer of cubes as shown in Figure 4.

Step 1. Column 18 has only one run (with 20 cubes). Column 0 has three
runs. There are 62 runs altogether.

Step 2. A Vector Object in C++ or Java solves this tasks straightforwardly.
Step 3. Simply go through each run I in SI to get the maximal run-path which

contains I, then take the union of these maximal run-paths to get SP . There
are seven elements in SP . Apart from the three already described in Section 4,
there are two more maximal run-paths from column 0 to 3 and another two from
column 14 to 17.

Step 4. For each run-path, its head- and tail-runs can be found and set by
checking the number of neighbors of its endruns. The two maximal run-paths
from column 0 to 3 have their head-run in column 3 and tail-run in column
0 while the two from column 14 to 17 have their head-run in column 17 and
tail-run in column 14.

Step 5. SRP (a Vector Object) can remove an element easily if necessary.
Corresponding to the four elements in SP from Step 4, we remove two reduced
maximal run-paths, from column 1 to 3, with tail-run in column 0. Another two
reduced maximal run-paths from column 15 to 17 have their head-run in column
17, with tail-run in column 14 removed (because it has 3 neighbors; so it must
be removed).

Step 6. Each run in SH will later correspond to, or induce a subregion. A
run is put into SH iff it has more than 3 neighbors, or it is “the end of a cycle”
of runs.

Step 7. Each run in SPH will also later correspond to, or induce a subregion.
Step 8. This step ensures that each run must be a neighbor of only one other

run, or contained in only one run-path of only one element in SH ∪ SPH . The



Fig. 8. Three input examples, used for illustrating the main algorithm.

run in column 2 with y-coordinate 3 is now a left neighbor of the run in column
3. It is no longer a right neighbor of the run in column 1. Moreover, the run in
column 4 with y-coordinate 3 is now contained in a reduced maximal run-path
with the head-run in column 18. It is no longer a right neighbor of the run in
column 3.

Step 9. In this step we get all those cubes “represented” (or “dominated”)
by an element in SH ∪ SPH . If we think of these cubes as being “supporters”
of an element in SH ∪ SPH , then the head-run in column 0 (with y-coordinates
from 7 to 19) has 13 supporters, the head-run in column 1 (with y-coordinates
from 0 to 5) has 9 supporters, and the head-run in column 3 (with y-coordinates
from 2 to 19) has 31 supporters. Each cube must be a supporter, and can only
support one head-run.

Step 10. Each of the polygons shown in Figure 4 contains cubes of one Ch

obtained in Step 9. For any pair Ch1 and Ch2 , obtained in Step 9, let k be the
number of 2-cells in Ch1 ∩ Ch2 . Then there will be k edges between Ch1 and
Ch2 in the homotopic subregion adjacency graph H̄ shown in Figure 4, where v̄i

represents Chi
, for i = 1, 2, . . ., 7.

Step 11. See H in Figure 4.

5.2 Examples for the Main Algorithm

Each cube is represented (in the grid-point model) by the coordinates (x, y, z) of
its center, where x, y, and z are integers. Consequently, each 2-cell is represented
by the coordinates (x, y, z) of its center, where two of them are integers, and the
other one is a half-integer i.5. Figure 8 shows the following five sets of cubes:

Let g1 = { (1, 0, 0), (2, 0, 0), (3, 0, 0), (4, 0, 0), (5, 0, 0), (6, 0, 0), (6, 1, 0),
(6, 2, 0), (6, 3, 0), (6, 4, 0), (1, 1, 0), (1, 2, 0), (1, 3, 0), (1, 4, 0), (1, 5, 0), (2, 5,



0), (3, 5, 0), (4, 5, 0), (5, 5, 0), (6, 5, 0) }. g1 is a simple 2-curve of 20 cubes in
layer 2.

Let g2 = { (9, 0, 0), (10, 0, 0), (11, 0, 0), (12, 0, 0), (13, 0, 0), (14, 0, 0), (14,
1, 0), (14, 2, 0), (14, 3, 0), (14, 4, 0), (9, 1, 0), (9, 2, 0), (9, 3, 0), (9, 4, 0), (9,
5, 0), (10, 5, 0), (11, 5, 0), (12, 5, 0), (13, 5, 0), (14, 5, 0) }. g2 is also a simple
2-curve of 20 cubes in layer 2.

Let g3 = { (3, 2, 1), (4, 2, 1), (5, 2, 1), (6, 2, 1), (7, 2, 1), (8, 2, 1), (9, 2, 1),
(10, 2, 1), (11, 2, 1), (12, 2, 1), (12, 3, 1), (12, 4, 1), (12, 5, 1), (12, 6, 1), (12,
7, 1), (12, 8, 1), (3, 3, 1), (3, 4, 1), (3, 5, 1), (3, 6, 1), (3, 7, 1), (3, 8, 1), (4, 8,
1), (5, 8, 1), (6, 8, 1), (7, 8, 1), (8, 8, 1), (9, 8, 1), (10, 8, 1), (11, 8, 1) }. g3 is a
simple 2-curve of 30 cubes in layer 1.

Let g4 = { (7, 2, 0), (8, 2, 0) } = { c1, c2 }. g4 is a simple 2-arc of two cubes
in layer 2. and

Let g5 = { (7, 5, 0), (8, 5, 0) }= { c3, c4 }. g5 is also a simple 2-arc of two
cubes in layer 2.

Example 1. We consider S1 = L1 ∪ L2, where L1 = g3 and L2 = g1 ∪ g2. H̄1

= [V̄1, Ē1], where V̄1 = {v̄3, v̄4}; H̄2 = [V̄2, Ē2], where V̄2 = {v̄1, v̄2, v̄5, v̄6}, with

v̄1 = { (10, 0, 0), (11, 0, 0), (12, 0, 0), (13, 0, 0), (14, 0, 0), (14, 1, 0), (14, 2, 0),
(14, 3, 0), (14, 4, 0), (14, 5, 0) }

v̄2 = { (9, 0,0), (9, 1, 0), (9, 2, 0), (9, 3, 0), (9, 4, 0), (9, 5, 0), (10, 5, 0), (11, 5,
0), (12, 5, 0), (13, 5, 0) }

v̄5 = { (6, 0, 0), (6, 1, 0), (6, 2, 0), (6, 3, 0), (6, 4, 0), (6, 5, 0), (2, 5, 0), (3, 5,
0), (4, 5, 0), (5, 5, 0) }

v̄6 = { (1, 0, 0), (2, 0, 0), (3, 0, 0), (4, 0, 0), (5, 0, 0), (1, 1, 0), (1, 2, 0), (1, 3,
0), (1, 4, 0), (1, 5, 0) }

Sets v̄1, v̄2, v̄5 and v̄6 are simple 2-arcs, each of ten cubes in layer 2. Furthermore

v̄3 = { (4, 8, 1), (5, 8, 1), (6, 8, 1), (7, 8, 1), (8, 8, 1), (9, 8, 1), (10, 8, 1), (11,
8, 1), (12, 8, 1), (12, 2, 1), (12, 3, 1), (12, 4, 1), (12, 5, 1), (12, 6, 1), (12, 7, 1) }

v̄4 = { (3, 2, 1), (3, 3, 1), (3, 4, 1), (3, 5, 1), (3, 6, 1), (3, 7, 1), (3, 8, 1), (4, 2,
1), (5, 2, 1), (6, 2, 1), (7, 2, 1), (8, 2, 1), (9, 2, 1), (10, 2, 1), (11, 2, 1) }

Sets v̄3 and v̄4 are simple 2-arcs, each containing 15 cubes in layer 1.

For Step 3.2 of the algorithm, see Figure 8 or the simple calculation v̄4 ∩ v̄2

= { (9, 2, 0.5) }. This implies that the number of components of v̄4 ∩ v̄2 equals
one. So we add one edge between v4 and v2 in H1 ∪ H2.

Analogously, v̄4 ∩ v̄5 = { (3, 5, 0.5), (6, 2, 0.5) }, which implies that the
number of components of v̄4 ∩ v̄5 equals 2. So we add two edges between v4 and
v5 in H1 ∪ H2.

Let E = { e1, e2, e3, e4 } be the set of added edges, and V1 = { v3, v4 } and
V2 = { v2, v5 } the sets of vertices.



Step 3.3. The restriction of H̄1 on V̄1 is Ū1 = H̄1, and that of H̄2 on V̄2 is Ū2

= { v̄2, v̄5 }.
By Figure 8 or a simple calculation, we have v̄3 ∩ v̄1 = { (12, 5, 0.5) }. It

follows that the number of components of v̄3 ∩ v̄1 equals one, and we add one
edge between v3 and v1 in H1 ∪ H2.

Analogously, (v̄2 ∪ v̄5) ∩ (v̄3 ∪ v̄4) does not contain a 1-path of 2-cells
(p0, p1, · · · , pn) such that p0 is contained in v̄2 ∩ v̄3 and pn is contained in v̄5 ∩
v̄4. Thus, we do not have to delete edge v3v4 in H1 ∪ H2.

Step 3.4. H1 ∪ H2 is shown on the top of Figure 8 [case (1)].
Step 4. By Figure 8, the number of edges of the homotopic graph H1 ∪

H2 equals ten and that of the vertices equals six; consequently, the number of
tunnels of S1 equals 10 - 6 + 1 = 5.

Example 2. Let S2 = L1 ∪ L2 ∪ g4 = S1 ∪ g4. Step 3.2 is exactly the same as
in Example 1.

Step 3.3, by examining Figure 8 or simple calculation, we have (v̄2 ∪ v̄5) ∩
(v̄3 ∪ v̄4) contains a 1-path of 2-cells ((9, 2, 0.5), (8, 2, 0.5), (7, 2, 0.5), (6, 2,
0.5)) such that (9, 2, 0.5) is contained in v̄3 ∩ v̄2 ((9, 2, 0.5) = (9, 2, 1) ∩ (9,
2, 0)) and (6, 2, 0.5) is contained in v̄4 ∩ v̄5 ((6, 2, 0.5) = (6, 2, 1) ∩ (6, 2, 0)).
Thus, we have to delete edge v3v4 in H1 ∪ H2.

Step 3.4. H1 ∪ H2 is shown in the middle of Figure 8 [case (2)].
Step 4. The number of tunnels of S2 equals 10 - 6 + 1 = 5.

Example 3. Now consider S3 = L1 ∪ L2 ∪ g5 = S1 ∪ g5. Step 3.2 is exactly
the same as in Example 1.

Step 3.3. By examining Figure 8, we can see that (v̄2 ∪ v̄5) ∩ (v̄3 ∪ v̄4) does
not contain any 1-path of 2-cells (p0, p1, · · · , pn) such that p0 is contained in v̄3

∩ v̄2 and pn is contained in v̄4 ∩ v̄5. Thus, we do not have to delete edge v3v4

in H1 ∪ H2.
Step 3.4. H1 ∪ H2 is shown at the bottom of Figure 8 [case (3)].
Step 4. The number of tunnels of S3 equals 11 - 6 + 1 = 6.

6 Computational Complexity

6.1 Single- Layer Subprocess

Let l be the number of cubes in the considered layer L, and r or c the number
of rows or columns in L, respectively.

Step 1 can be computed in time O(l), because |SI | ≤ l. Each run can have
at most br/2c left (right) neighbors, so Step 2 can be computed in O(lr). Since
each run-path has at most c runs and |SP | ≤ |SI | ≤ l, it follows that Step 3 can
be done in O(lc). Analogous to Step 1, Steps 4, 5, 6 and 7 can be completed in
O(l). In Step 8.1, the combination number of pairs (h1, h2) equals(

l
2

)



because |SH ∪ SPH | ≤ |SI | ≤ l. Furthermore, since each hi has at most r
neighbors, it follows that Step 8.1 can be computed in O(l2r). In Step 8.2, there
are at most lr ways to take a neighbor of a run in SH , and there are also at most
lr ways to take a run-path in SRP . Thus, this step can be finished in O((lr)2).
For Step 9, note that |SH ∪ SPH | ≤ |SI | ≤ l, |C| ≤ r, |CN | ≤ r, and |CP | ≤
rc. That means that Step 9 has time complexity O(lrc). Finally, it is clear that
Step 10 has complexity O(l2), and this immediately also follows for Step 11. In
summary, a run of the single-layer subprocess has time complexity O((lr)2).

6.2 Main Algorithm

Let S be our input, a 2-region of cubes, and imax the number of layers in S. Let
li be the number of cubes in the ith layer of S, denoted by Li. Let ri or ci be
the numbers of rows or columns in layer Li, respectively.

Obviously, Step 1 can be done in O(imax). Step 2 is discussed in Section 6.1.
For Step 3.1, the labeling algorithm (as, for example, in [12]) has complexity
O(rici). Note that |V (H̄i)| ≤ li, for i = 1, 2. It follows that the combination
number of pairs (v̄1, v̄2) equals l1l2; thus Step 3.1 has time complexity O(l2i rici).
For Step 3.2, note that |Vi| ≤ li, consequently |E| ≤ l1l2. Therefore, Step 3.2
can be computed in O(l2i ). In Step 3.3, the combination number of pairs (ūi, w̄i)
equals (

li
2

)
and the number of 1-paths (p0, p1, · · · , pn) of 2-cells, such that p0 is contained in
ū1 ∩ ū2 and pn is contained in w̄1 ∩ w̄2, is at most bri/2c, where i = 1, 2. [The
labeling algorithm has complexity O(rici).] Thus, this step can be completed in
O(l2i r

2
i ci). Step 4, finally, recalls the subprocess for all imax layers, and delivers

the final result. Let

l = max
1≤i≤imax

li , r = max
1≤i≤imax

ri , and c = max
1≤i≤imax

ci

The main algorithm has time complexity O(imaxl2r2c).

7 Concluding Remarks

[23] computes the number of tunnels in a 3 × 3 × 3 neighborhood of any cube
of a given 2-region. It does not deal with the problem of computing the number
of tunnels for the whole 2-region.

[2, 3] discuss the computational complexity of homology (as being ‘large’).
Both [6] and [10] have developed software to compute homology. However, they
are (so far) unable to inform about the computational complexity of their al-
gorithms, and so are [13, 21]. The latter two compute homology for any finite
k-dimensional cubical set (no restrictions on dimensions or shapes). [6] suggests
a search for improved algorithms and for new approaches to the task of homol-
ogy computation while [13] leaves the problem of improving the efficiency of



their algorithms to the future. [10] states that time complexity of the proposed
algorithm may grow ‘horrifically’.

We have presented our algorithm and analyzed its computational complexity,
which is relatively low compared to other options. We also believe that the graph-
theoretical nature of our algorithm is of general interest. (Obviously, alternative
techniques could also be considerd such as run graphs [18] or Morse theory and
Reeb graphs [7].)

Finally, note that connectedness is also defined for cubical sets of any dimen-
sion, and digitization schemes for arbitrary sets in nD space (see [12]). It is our
conjecture that the presented graph-theoretical approach may be generalized to
compute homology for digitized sets in arbitrary dimensions.
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