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Abstract

One version of the Euclidean shortest path problem
(ESP) is to find the shortest path such that it starts
at p and ends at q and it avoids passing through an
unordered set of pairwise disjoint obstacles. This pa-
per describes an approximate algorithm for solving this
ESP problem for two points p and q and a finite set
of pairwise disjoint spheres in R3 not containing those
two points. We apply the Agarwal et al. [1] algorithm
for the computation of an approximate shortest path in
the free space between pairwise disjoint regular poly-
hedra in a preprocessing step that defines an order of
the given obstacles. The resulting path is used as input
for a new rubberband algorithm (RBA) that gives an
approximate answer to the open question “What is the
complexity of the Euclidean shortest path problem for
obstacles that are disjoint balls?”.

This RBA also provides a solution to the basic version
of a touring-a-sequence-of-spheres problem (TSP) that
finds a shortest path starting at p, visits all spheres in
a given order and ends at q.

The paper discusses at first a solution for the 2-
dimensional case (i.e., disks and polygons instead of
spheres and polyhedra), followed by showing that this
solution extends to the 3-dimensional case.

1 Introduction

Many algorithms for solving various Euclidean shortest
path (ESP) problems consider geometric objects with
piecewise linear (2D or 3D) frontier segments. For ex-
ample, obstacles of ESPs are modelled by polygons in
2D in [10], by polyhedra in 3D in [1, 2, 5, 6, 7, 10, 13],
and by the surface of polyhedra in 2.5D in [4, 10]. Ob-
stacles with smooth surfaces are of interest in compu-
tational geometry [11]. In this paper, we propose an
algorithm for the shortest path problem avoiding sets
of unordered pairwise-disjoint disks in 2D or spheres in
3D and we analyse its complexity. Our approach does
not deliver an exact solution of the problem but it is a
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contribution for finding an answer to the open problem:
“What is the complexity of the Euclidean shortest path
problem for obstacles that are disjoint balls?”; see [11].
An algorithm for finding an exact solution to the gen-
eral 3D ESP problem does not always exist according
to Theorem 9 in [3].

2 Preliminaries

Let D be a disk, and p1 and p2 be two points in ∂D, de-
noting the frontier of D. Let A1(p1, p2) and A2(p1, p2)
be the two arcs from p1 to p2 in ∂D. We denote by
dD(p1, p2) the length of the shorter arc AD(p1, p2) be-
tween p1 and p2.

In R2, a regular m-gon P is called a sketching m-gon
of a disk D if D is P ’s smallest circumscribing circle.

Analogously, let S be a sphere, and p1 and p2 be two
points in ∂S, denoting the frontier of S. Let AS(p1, p2)
be an arc from p1 to p2 in ∂S of minimum length.
We denote by dS(p1, p2) the length of this shortest arc
AS(p1, p2).

In R3, a polyhedron H is called a sketching polyhe-
dron of a sphere S iff each vertex of H is in ∂S (i.e., the
surface of S).

For a path ρ, let L(ρ) be its length when applying the
Euclidean distance function de.

We recall some notations from [1]. Let P =
{P1, P2, . . . , Pk} be a set of pairwise-disjoint convex
polyhedral obstacles in Rd, for d = 2 or d = 3. Let
n be the total number of facets of obstacles in P. The
topological closure of Rd\(∪P) is called the free space
of P, denoted by F(P). An ε-shortest path between
two points p and q in F(P) is a path whose length is
at most (1 + ε) times the length of the shortest path.
The value 1 + ε is called the approximation factor of
this approximation algorithm. We also call the path an
(1 + ε)-approximation path.

We make use of the following results of [1]:
1. In R2, for any two points p, q ∈ F(P) and a param-

eter ε with 0 < ε ≤ 1, an ε-shortest path between p and
q in F(P) can be computed in O(n + (k/

√
ε)log(k/ε))

time.
2. In R3, for any two points p, q ∈ F(P) and a

parameter 0 < ε ≤ 1, an ε-shortest path between p and
q in F(P) can be computed in O(n+ (k4/ε7)log3(k/ε))
time.
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3 Results

We describe at first an algorithm for computing an ap-
proximate Euclidean shortest path between points p and
q visiting each disk of an ordered set of pairwise-disjoint
disks in R2.

Later we apply this algorithm and the Agarwal et al.
[1] algorithm to present an algorithm for computing an
approximate Euclidean shortest path between points p
and q visiting some disks of an unordered set of pairwise-
disjoint disks in R2.

Finally we (straightforwardly) generalize these from
2D to algorithms that deal with a sequence of pairwise-
disjoint spheres and an unordered set of pairwise-
disjoint spheres in R3.

3.1 Algorithm in R2

The new algorithm for the ordered sequence of disks
follows the general design principle of a rubberband al-
gorithm (RBA): a set of steps is identified (set of arc
segments that constitute an initial path between p and
q) in an initial computation. The positions of all ver-
tices of the calculated path in the previous iteration are
locally optimized one by one (by length minimization)
in the current iteration. An iteration is the final one if
a termination criterion is satisfied [8, 9, 12].

We start with an RBA for a sequence of pairwise
disjoint disks; see Fig. 1. This is a subprocedure
of the main algorithm given below. The input is a
set P = {D1, D2, . . . , Dk} of k pairwise disjoint disks
given in an order, two points p, q in free space F(P),
and an accuracy constant ε > 0. Points p, q and
all k disks are co-planar. The output is a sequence
〈p, p11 , p12 , p21 , p22 , . . . , pk1 , pk2 , q〉 which starts at p =
p0 = p01 = p02 , then visits disks Di at points pi1 and
pi2 in the given order (i.e., both points are on the fron-
tier ∂Di and are not identical in general), and ends at
q = pk+1 = pk+11 = pk+12 .

Note that the path in Fig. 1 visits each disk (TSP
problem) in the given order. We only consider a pre-
calculated subset of disks for the problem of finding
the shortest path between p and q in the free space
Rd\(∪D).

The basic idea of the main algorithm for the 2-
dimensional case is quite straightforward. We employ
a regular m-gon for approximating a disk such that the
disk’s frontier is the circumscribing circle of the m-gon.
Then we apply the Agarwal et al. algorithm in R2 to
find an ε0-shortest path ρ between p and q avoiding
those k regular m-gon obstacles. This ε0-shortest path
ρ delivers the initial steps (i.e., the frontiers of a set of
ordered disks) for the RBA shown in Fig. 1. The RBA
computes a new approximate shortest path ρ′ avoid-
ing the interiors of all disks. The value L(ρ′) is lower
bounded by the length L(ρ)−ε0 that is a lower bound of

1: For each i ∈ {1, 2, . . . , k}, let ci be the centre of Di.
Let vertices pi−12 , pi1 and pi2 , pi+11 be the inter-
section points between the line segments ci−1ci and
cici+1 and the disk frontiers ∂Di−1, ∂Di and ∂Di+1

and let p = c0 = p02 and q = ck+1 = pk+11 . Initial-
ize the path 〈p, p11 , p12 , p21 , p22 , . . . , pk1 , pk2 , q〉.

2: Let L0 = +∞. Calculate L1 =
de(p, p11) +

∑k
i=1(dDi

(pi1 , pi2) + de(pi2 , pi+11)).
3: while L0 − L1 ≥ ε do
4: for i = 1, 2, . . . , k do
5: if pi−12pi+11 ∩Di 6= ∅ then
6: Compute tangential points qi1 ∈

AD(pi1 , pi2), and qi2 ∈ AD(pi1 , pi2) such
that pi−12qi1 is a tangent to AD(pi1 , pi2) and
pi+11qi2 is a tangent to AD(pi1 , pi2)

7: Update 〈p, p11 , p12 , p21 , p22 , . . . , pk1 , pk2 , q〉
by replacing pij by tij in this path (where
j = 1, 2).

8: else
9: Compute a point qi ∈ AD(pi1 , pi2)

such that de(pi−12 , qi) + de(qi, pi+11) =
min{de(pi−12 , p) + de(p, pi+11) : p ∈ ∂Di}

10: Update 〈p, p11 , p12 , p21 , p22 , . . . , pk1 , pk2 , q〉
by replacing pij

by qi in this path (where
j = 1, 2).

11: end if
12: end for
13: Let L0 = L1. Calculate L1 as in Line 2.
14: end while
15: Return 〈p, p11 , p12 , p21 , p22 , . . . , pk1 , pk2 , q〉.

Figure 1: An RBA for ordered pairwise disjoint disks.

the length of a true ESP between p and q. The approx-
imation factor of this algorithm is L(ρ′)/(L(ρ)− ε0).

The main algorithm is shown in Fig. 2. The input is a
set P of k pairwise disjoint disks D1, D2, . . . , Dk in the
same plane π, two points p, q in F(P), two accuracy
constants ε > 0 and ε0 > 0, and an integer m > 0. The
output is a sequence 〈p, p11 , p12 , p21 , p22 , . . . , pk′

1
, pk′

2
, q〉

which starts at p = p0 = p01 = p02 , then visits disks D′i
at points pi1 and pi2 in the given order, and finally ends
at q = pk′+1 = pk′+11 = pk′+12 .

3.2 Algorithm in R3

The basic idea of our algorithm for R3 is the same as
for the one proposed for the 2-dimensional case.

The proposed RBA for the 3D case is analogous
to that one in 2D case shown in Fig. 1. The in-
put is a sequence of k pairwise disjoint spheres in
P = {S1, S2, . . . , Sk}, two points p, q in F(P), and
an accuracy constant ε > 0. The output is a se-
quence 〈p, p11 , p12 , p21 , p22 , . . . , pk1 , pk2 , q〉 which starts
at point p = p0 = p01 = p02 , then visits spheres Si at

2



4 ANALYSIS

1: Let m = 3 and L(ρ′)/(L(ρ) be +∞.
2: while the value of L(ρ′)/(L(ρ) − ε0) − 1 is not yet

small enough do
3: For each i ∈ {1, 2, . . . , k}, compute a sketching

m-gon Pi of Di.
4: Let P = {P1, P2, . . . , Pk} and ε0 be inputs, apply

the Agarwal et al. algorithm in R2 [1] (see also
Section 2) to compute an ε0-short path ρ between
p and q.

5: Let P ′ = {P ′1, P ′2, . . . , P ′k′} be a sequence of reg-
ular m-gons such that ρ starts at p, then crosses
regular m-gons P ′i at points pi1 , pi2 , . . ., pimi

(1 ≤ mi ≤ m) in the given order, and finally
ends at q.

6: Let D′ = {D′1, D′2, . . . , D′k′} be the sequence of
disks such that D′is frontier is P ′i s circumscribing
circle.

7: Let D′ and ε be inputs for the RBA shown in
Fig. 1 to compute a path ρ′ between p and q.

8: LetD′′ = {D′′1 , D′′2 , . . . , D′′k′′} be the new sequence
of disks such that ρ′ starts at p, then intersects
disks D′′i in the given order, and finally ends at q.

9: while D′′ 6= D′ do
10: Let D′ = D′′.
11: Let D′ and ε be the input for the proposed RBA

shown in Fig. 1 to compute the path ρ′′ between
p and q and D′′ is the new sequence of disks
intersected by ρ′′.

12: Let ρ′ = ρ′′.
13: end while
14: Let m = m + 1.
15: end while
16: Return ρ′.

Figure 2: Main algorithm for a set of pairwise disjoint
disks.

points pi1 and pi2 in the given order, and finally ends
at q = pk+1 = pk+11 = pk+12 .

The main algorithm is shown in Fig. 3. The inputs are
spheres, two points p, q in F(P), two accuracy constants
ε > 0 and ε0 > 0, and an integer m > 0. The output is
a sequence of points 〈p, p11 , p12 , p21 , p22 , . . . , pk′

1
, pk′

2
, q〉

that specifies a path with a length only an approxi-
mation factor apart from the Euclidean shortest path
avoiding all spheres between p and q.

4 Analysis

Regarding the time complexity of the 2-dimensional
RBA shown in Fig. 1, note that the main computation
is in the two stacked loops. The while-loop takes κ(ε)
iterations, where κ(ε) = L0−L

ε ; L0 and L are the lengths
of initial path and output path, respectively. Lines 5–
12 can be computed in O(1). Thus, the for-loop can

1: For each i ∈ {1, 2, . . . , k}, compute a sketching poly-
hedra Pi of Si.

2: L(ρ′)/(L(ρ) be +∞.
3: while the value of L(ρ′)/(L(ρ) − ε0) − 1 is not yet

small enough do
4: Let P = {P1, P2, . . . , Pk} and ε0 as input, apply

the Agarwal et al. algorithm in R3 [1] (see also
Section 2) to compute an ε0-short path ρ between
p and q.

5: Let P ′ = {P ′1, P ′2, . . . , P ′k′} be the sequence of
polyhedra connected by the computed path ρ be-
tween p and q.

6: Let S ′ = {S′1, S′2, . . . , S′k′} be the sequence of
spheres such that S′is frontier is P ′i s circumscrib-
ing sphere.

7: Let S ′ and ε be inputs for the RBA to compute
an initial path ρ′ between p and q.

8: Let S ′′ = {S′′1 , S′′2 , . . . , S′′k′′} be the new sequence
of spheres crossed by straight segments of path ρ′

between p and q.
9: while S ′′ 6= S ′ do

10: Let S ′ = S ′′.
11: Let S ′ and ε be inputs for the RBA to com-

pute the path ρ′′ between p and q and the new
sequence S ′′.

12: Let ρ′ = ρ′′.
13: end while
14: For each i ∈ {1, 2, . . . , k}, compute a refined

sketching polyhedra of Si.
15: end while
16: Return ρ′.

Figure 3: Main algorithm for a set of pairwise disjoint
spheres.

be computed in time O(k). Thus, the algorithm can be
performed in time κ(ε) · O(k).

For testing the actual numerical values of κ(ε), we
have implemented a “simplified version” of the algo-
rithm shown in Fig. 1 where all disks were degenerated
to be line segments. For ε = 10−15 and (at first “just”)
k = 2, we were running the algorithm more than 108

times. During those experiments, we had fixed points
p = (15, 0) and q = (120, 480) but randomly created k
pairwise disjoint line segments for each experiment. The
maximum and mean values of κ(ε) observed in those
experiments are 77,170 and 4.75, respectively. We also
recorded the length L200 of the path obtained in the
200-th iteration if κ(ε) > 200 for those experiments. We
assume that the final output path is a “very good” (for
common application areas) approximation path because
ε = 10−15 is already “very small”. Then we obtained
the approximation factor L200/L of our algorithm if we
terminate the algorithm after 200 iterations, where L is
the length of the output “true” path. We observed that
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L200/L < 1.19 for all our inputs. Then we also changed
the value of k to be a “small” integer between 3 and 20,
and performed again a large number of experiments for
studying the approximation factor L200/L.

The time complexity of the main algorithm in R2

(shown in Fig. 2) can be analysed as follows: Line 3
can be computed in O(mk) time. Line 4 can be com-
puted in O(n + (k/

√
ε0)log(k/ε0)) time. Lines 5, 6, 8,

and 16 can be computed in O(k) time. Lines 7 and 11
can be computed in κ(ε) · O(k) time. Line 9 requires
O(k2) time. Lines 10, 12 and 14 can be computed in
O(1) time. Thus, we obtain the following

Theorem 1 The main algorithm in R2 can be com-
puted in O(mk+(k/

√
ε0)log(k/ε0)+k3+κ(ε)·k) time to

obtain an L(ρ′)/(L(ρ)−ε0)-approximation path between
p and q among pairwise disjoint disks.

We may adjust parameters m, ε0, ε to let the approxi-
mation factor L(ρ′)/(L(ρ)−ε0) be sufficiently small and,
at the same time, to terminate the while loop quickly.

The time complexity of the main algorithm in R3

(shown in Fig. 3) can be analysed as follows: Line 4 re-
quires O(n+ (k4/ε0

7)log3(k/ε0)) time. The other lines
in this algorithm can be analysed exactly the same way
as those of the main algorithm in R2 (shown in Fig-
ure 2).

Thus, we have the following

Theorem 2 The main algorithm in R3 can be com-
puted in O(mk + (k4/ε0

7)log3(k/ε0) + κ(ε) · k) time to
obtain an L(ρ′)/(L(ρ)−ε0)-approximation path between
p and q among pairwise disjoint spheres.

Again, we may adjust parameters m, ε0, ε for hav-
ing the approximation factor L(ρ′)/(L(ρ) − ε0) be suf-
ficiently small and, at the same time, to terminate the
while loop quickly.

5 Conclusion

We proposed an L(ρ′)/(L(ρ)− ε0)-approximation algo-
rithm for computing an approximate Euclidean short-
est path between two points among pairwise disjoint
spheres, where L(ρ) and L(ρ′) are the lengths of output
path and the initial path, respectively, ε0 is an accu-
racy parameter for the used Agarwal et al. algorithm.
This algorithm provides an approximate answer to an
open problem in computational geometry. The algo-
rithm for spheres was presented by discussing at first
the 2-dimensional case of disks, and then showing the
analogy of a solution in 3D space.
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