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Abstract. Evaluation of stereo-analysis algorithms is usually done by
analysing the performance of stereo matchers on data sets with available
ground truth. The trade-off between precise results, obtained with this
sort of evaluation, and the limited amount (in both, quantity and diver-
sity) of data sets, needs to be considered if the algorithms are intended
to be used for the analysis of real-world environments. The quality of the
computed disparity maps is affected by common and unavoidable noise
present in real-world images. In this chapter we discus an approach to
objectively evaluate the performance of stereo-analysis algorithms using
real-world image sequences. The lack of ground truth is tackled by incor-
porating an extra camera into a multi-view stereo camera system. The
proposed, relatively simple hardware set-up can easily be reproduced
such that test-data sets can be generated for specific applications.

1 Introduction

Vision-based driver-assistance systems are designed to detect dangerous driv-
ing scenarios by understanding the 3-dimensional environment around the ego-
vehicle (i.e. the mobile platform carrying the recording cameras). All the objects
present in a given scene (e.g., other vehicles, pedestrians, road signs, the road
itself, or the available free driving space) need to be detected and segmented;
so it can later be decided wether they would represent a possible danger to the
ego-vehicle.

In this chapter, we are particularly interested in low-level image processing
(i.e., the first steps in a rather long process). Specifically, we are concerned
about the evaluation of depth values detected by using binocular stereo-matching
algorithms.

Stereo-vision algorithms generate 3-dimensional information from a given
scene by matching corresponding pixels in (at least) one pair of images. Depth
calculated via stereo-analysis algorithms is commonly incorporated into algo-
rithmic pipelines for a wide variety of applications. This goes from navigation
tasks for diversity of ego-vehicles, such as cars [36, 57], robots [47], forklifts [53],
or wheelchairs [49], to industrial safety equipment [54] or real-time video confer-
encing [46].

In particular, in driver-assistance systems, stereo-analysis algorithms are in-
cluded into different processes, such as object segmentation (e.g., objects are
pedestrians or other vehicles) [30], road modelling [52], or free space detection [2].



Despite widespread acceptance of stereo-analysis algorithms as a ‘fairly reli-
able’ source of 3-dimensional data, there is still a need to develop an objective
evaluation scheme that can evaluate their performance when using real-world
images as input data. The lack of “true” measurements (i.e. for comparing with
ground truth), represents a hard obstacle in this area, as exact camera pose
detection, together with the generation of precise 3-dimensional models of un-
controlled environments, is extremely difficult.!

Evaluation of stereo-analysis algorithms can currently be divided into two
mayor groups. Accuracy is measured using data with available ground truth.
Confidence is estimated for data recorded in uncontrolled environments (without
having ground truth available), for example by comparing stereo results of left-
right and right-left matching.

Evaluation using data with available ground truth allows a precise compar-
ison between true values and those obtained with the algorithms. This sort of
evaluation is limited by the quantity and diversity of available data sets. Test im-
ages, along with ground truth, are generated either in laboratories under highly
controlled conditions (engineered images) [50], or by rendering 3-dimensional
modelled scenes (synthetic images) [60].

Engineered images challenge algorithms with real-world objects that might
be known as being problematic for stereo-analysis algorithms (e.g., textureless
areas, slanted planes, and so forth). But, they are limited to a few images, show-
ing close range scenarios that are almost free of real-world effects such as multiple
light sources, non-Lambertian surfaces, unexpected shadows (lighting artefacts),
camera misalignment or blurring, and so forth. Scenes corresponding to com-
mon driving conditions (e.g. rainy days, busy pedestrian crossings, or different
objects moving ‘randomly’ and at multiple distances) cannot be recorded in a
laboratory.

[50] presented an evaluation and classification scheme for stereo-analysis algo-
rithms that has been widely followed by the computer-vision community. A main
contribution of this work was a data set of several stereo pairs with available
ground truth.

Synthetic data sets with available ground truth have also been made avail-
able online for some years; for more recent examples, see [8,9,59,60]). These
computer-generated data sets allow us to test algorithms in simulated environ-
ments in which the algorithms are expected to work (e.g. see Set 2 from [13]
and [59] for sequences related to driver-assistance systems). These data are usu-
ally ‘multi-second driving sequences’ (e.g. of more than 50 stereo frames) with
simulating movement of both the virtual camera and some objects present in the
scene. However, they are limited by the models followed to generate the images,
the surrounding environment and the motion of the objects. They also lack of
‘issues’ found in images recorded in uncontrolled real-world environments with

! The words true or truth are used in this chapter for a particular measuring approach
(e.g. manual measurements, or high-end laser-range data) considered to be “highly
reliable”, but with being aware that measuring always involves errors.



real cameras. Synthetic scenes are typically not yet aiming at a comprehensive
physics-based modelling of cameras, lighting, or surfaces [32].

Ground truth-based evaluation is a good option for debugging, tuning of
algorithms’ parameters, or for exploring new matching approaches. For some
applications, highly selective evaluations might be sufficient (i.e., for stereo vi-
sion in controlled environments such as automated factories or warehouses). But
this cannot be expected for applications such as driver-assistance systems where
stereo-vision programs have to provide reliable data on every road, under all
kinds of weather conditions, and in any traffic context. According to [22], avail-
able data sets of engineered or synthetic images do only represent a very selective
challenge for algorithms, with different characteristics (formally defined in [22])
compared to real-world data.
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Fig. 1. Disparity maps computed with the same stereo matcher (namely BPM-CEN,
to be defined further below). Left: Reference image of a synthetic scene from [13], and
computed disparity map. Right: Reference image of a real-world sequence and com-
puted disparity map. Both disparity maps are encoded from red (maximum disparity)
to blue (minimum disparity). BPM-CEN shows good performance on the synthetic
sequence, but fails ‘totally’ on the shown real-world sequence.

Figure 1 shows reference images and disparity maps for a synthetic (left) and
a real-world (right) sequence. Both disparity maps were generated with the same
stereo algorithm (graph-cut stereo with census as cost function; see Section 3)
using exactly the same parameters. For the ’synthetic’ disparity map it is easy
to recognize all the objects present in the scene. For the real-world case, a lot of
details is missing (e.g. the two trees on the left are merged into a single object)
and a lot of noisy measurements is introduced.

The question is, how to ensure that evaluation, done for real-world sequences
without available ground truth about scene geometries and ego-motion (i.e tra-
jectory of the ego-vehicle), still can use some kind of objective testing? Ego-
motion may be understood to some degree using visual odometry [28]. What
other information can be provided to ensure objective testing?

One of the first evaluation schemes, by setting-up a testbed (data set and
evaluation criteria) with real-world stereo pairs, is reported in [21]. The author
provided twelve pairs of images to selected 60+ research groups worldwide. Those
images were aerial views of real-world locations. For evaluating the calculated
stereo measurements, manual checking ("truth on the ground”, also known as



ground truth) was performed using an analytical plotter (for around 50% of
provided measurements).

A similar test bed was proposed in [6], the JISCT data set of 49 images
(still available on [29]). Most of them are real-world images, but there are also
engineered and synthetic stereo pairs. However, none of them came with ground
truth. The initial study involved only five research groups. The evaluation was
based on a ”reported value and unreported value” approach, i.e. whether the
algorithm reported a value in (a manually) selected region where a measurement
was feasible to be calculated.

Some other methods have been proposed to evaluate stereo-analysis algo-
rithms in the absence of ground truth. In [14], the authors calculated (manually)
true depth values at 200 randomly selected points.

In [4], the evaluation was done by measuring the number of “successfully”
matched pixels using a left-right consistency check [27]. Confidence measures
are another example of evaluation in the absence of ground truth [20,45]. The
idea is to measure the reliability of the calculated values for each pixel using
heuristic or probabilistic approaches. Some techniques, specifically designed for
driver-assistance systems, were proposed in [40,55]. Both evaluation schemes
can only be applied if certain conditions are satisfied during the recording of
the scenes. Recently, a conference [10] provided its own evaluation test-data set.
However, there was no provided ground truth or an objective evaluation scheme
for comparing results.

Generating ground truth for outdoor environments has also been investigated
in [5, 44] by providing “true” distance measurements using a high-end laser-range
finder. Despite the accuracy of the measurements, the reduced resolution of the
laser-range finder (compared to the camera) and the elevated prices of the laser-
range finder is still limiting the applicability of this option.

Intermediate extra images have been used in [56] for defining a prediction
error for optic flow algorithms: based on optic flow calculated for images ¢ and
t+2, a virtual view is interpolated for image t+1 and compared with the actually
provided image ¢ + 1.

Similarly, [42] proposed to used a third camera (which records a control image
) for analysing stereo-analysis accuracy for recorded image sequences: depth data
calculated at time ¢ for the “left” and “right” camera are used to warp the image
(say) of the left camera into the pose of the third camera. This virtual view is
compared with the actually recorded view in the third camera at time ¢. (Of
course, such a 3-camera set-up can also be generalised; important is to have one
additional view for comparison. It can be extended to trinocular stereo-analysis,
with a fourth control camera for comparison, and so forth.)

Following [56], this kind of performance analysis, characterized by the use
of additional input data, is called prediction error evaluation. See also [3] for a
discussion of using at least three images of the same scene.

In this chapter we discuss this approach as defined in [42], provide more
detailed ways to compare virtual and recorded view, discuss particular experi-
ments, and summarise altogether our experience with this approach since 2009.



In short, it offers an objective way to evaluate stereo-analysis algorithms on
real-world image sequences. We limit our discussion for the use of three cameras
only, called reference, match, and control camera. The third image of the control
camera can be see as being the ground truth in this case. Due to the sequence
character of the proposed approach, statistical analysis is performed to analyse
the matching algorithms.

The warping of the reference image of a given stereo pair into a wvirtual
image is defined by the calibrated camera geometry, and important is to note
that we are not aiming at producing a “nice” warped image; we are just mapping
intensity data of the reference image onto the nearest pixel in the image plane of
the third camera (possibly overwriting previously mapped values). The control
camera should also not be in a pose which supports similarities between virtual
and control image (e.g. as it would be the case if the control camera would be
positioned between reference and match camera).

A key issue of the method is the selection of the measure for the prediction
error for comparing the sequence of virtual images with the sequence of control
images (i.e. not only for a few triples of images but for long trinocular image
sequences). The use of long sequences allows us to investigate the influence of
changes in conditions when recording the stereo image data on the performance
of the algorithms (e.g., local brightness variations between reference and match
image, changes in scene geometry, camera issues, or lighting variations).

The main advantage of the proposed stereo-sequence analysis approach is
that the required hardware setup can be easily reproduced. Based on today’s
time efficiency of stereo matchers, it can be used for real-time evaluations, and
thus also as a basic module for designing an adaptive computer vision system
for vision-based driver assistance (as discussed in [32]).

For experiments, to be reported in this chapter, we selected eight sequences of
400 trinocular frames each, recorded in different scenarios (for a characterization
of the selected sequences, see [32]). We aim at illustrating to use of the proposed
method for understanding behaviours of stereo-analysis algorithms depending
on given input image sequences.

This chapter is structured as follows: In Section 2 we describe the generation
of the virtual image and discuss the position of the control camera. This section
also discusses the selected prediction-error measure. In Section 3 we briefly iden-
tify the stereo-analysis algorithms that are used for the presented experiments.
For selected trinocular sequences and a discussion about obtained evaluation
results, see Section 4. Section 5 concludes.

2 Approach

Consider time-synchronised recording of a scene by three video cameras. Video
data captured by reference and match camera are rectified in such a way that
each stereo pair I,. and I,,, satisfies the standard stereo geometry (SSG) (e.g., as
defined in [33]). The third camera acts as control camera and is potentially in
arbitrary pose “towards the scene recorded by reference and match camera”.
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Fig. 2. Sketch of the followed approach. The NCC index is calculated between the
generated virtual image and the recorded control image.

The objective is to generate a virtual image I, from a disparity map calcu-
lated by a stereo-analysis algorithm (using the stereo frames from the reference
and match camera), and to compare I, with the control image I. recorded with
the control camera.

We generate I, by mapping (warping) the pixels of the reference image I,.
into the locations where they would have been recorded in I.. Then, I. and
I,, are compared using normalized cross-correlation (NCC) as a measure; see
Section 2.3 for its specification. Figure 2 summarizes the followed approach.

2.1 Common Forward Equations

Assume that the coordinate system of the reference camera is identified with
the world coordinate system. Image coordinates are defined by each camera
individually. Locations of reference, match and control camera are sketched in
Figure 3. In world coordinates, the optical centre of the reference camera lies at
the origin O, = (0,0,0)7, that of the match camera at O,, = (b,0,0)7 and that
of the control camera at O, = (b1, b2, b3)”.

Let P = (X,Y, Z)T be a scene point in the shared field of view of all the three
cameras; and p, = (z,9)T € I, pm = (@m,Ym)? € I, and p. = (zc,y.)T € I,
be the projections of P onto the rectified image planes of the three cameras. The
corresponding image point in the virtual image is denoted by p, = (24, y,)".

For the assumed case of standard stereo geometry between reference and
match image, we provide a formula below to obtain the coordinates of p,, in terms
of the coordinates of p,., and the internal parameters of the stereo camera defined
by the reference and match cameras (i.e., base-line distance b and unified focal
length f) and the corresponding disparity value d (computed by some stereo-
analysis algorithm) between p, and p,,. Since P is visible from reference and
match camera, by triangulation, it is possible to write the coordinates of P with
respect to the coordinate system of I, as follows:

(X,Y,2)7 = 2 (z,9, )" (1)

Ul >

Now, let (X, Y, Z.)T be the coordinates of P with respect to O... Using homo-
geneous coordinates and (for abbreviation) letting C and S be short for cosine
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Fig. 3. A general trinocular camera configuration. The two cameras (represented by
their coordinate systems) on the right are assumed to satisfy the standard stereo ge-
ometry, the third camera is rectified with respect to internal camera parameters only

(i.e. thus representing ideal central projection).

and sine functions, respectively, the matrix

CyCB —-CHSBSa—SyCa  SvSa — CySpCa —uy

SyCg CHyCa — SySBSa —SySpACa — CySa —usy
Sg CpASa CpCa —us
0 0 0 1

M =

specifies the mapping
(XT7YT7 ZT7 1)T =M- (X7K Za 1)T

where angles «, 3, and ~ are as in Figure 3, and

u; = bjCyCP + by (—CySBSa — SyCa) + b3(SySa — CySSCa)

ug = b1SYCH + ba(CyCa — SySHSa) + b3(—SySFCa — C~Sa)
us = b1SP + b2CHBSa + b3CHCw

Let m;; be the element at position (¢, j) in matrix M, for 1 <4,j < 3. Let
fc be the focal length of the control camera. Thus, using the equations defined



by central projection, we have that

. mn(bx — dbl) + mlg(by — dbz) + mlg(bf — dbg)

Ty = fe- (7)
mgl(bl’ — dbl) + mgg(by — dbz) + m33(bf — dbg)
_ mgl(bx — dbl) + ng(by — dbz) + m23(bf - dbg)

Yv = fc : (8)
mgl(bx - dbl) + mgg(by - dbg) + m33(bf - dbg)

where d and b were defined above as being the disparity between pixels p,- and p,,
and the length of the baseline between reference and match camera, respectively.
With these two forward equations (e.g., see [35]) it is possible to map any
pixel location (z,%)7 in the reference image into a pixel (x,,y,)? in the image
plane of the third camera. We select the nearest pixel position in this virtual
image (i.e. in the pose of the third camera) because we do not aim at any visual
improvement of this mapping (e.g. by interpolation of pixel values).

2.2 Poses of the Third Camera

In this section we discuss possible poses of the control camera. Note that the
pose of the control camera defines the final appearance of the generated virtual
image. The three cameras can be in an arbitrary position, but constrained by
the fact that reference and match images need to satisfy SSG after rectification.
In the following we denote the reference camera also as being the left camera of
this pair of two rectified cameras.

In order to reduce the number of occluded points between reference and
control camera, we aim at having the focal point of the control camera collinear
with the focal points of the two other cameras. We discuss possible poses of the
control camera in such a horizontal configuration.

Occluded points may cause areas with no texture in I,, or pixels from I,
being mapped onto the wrong position due to having erroneous disparity results
for occluded pixels in the stereo pair. We illustrate this by examples generated
using available ground truth for the synthetic sequence No. 1 from Set 2 of [13],
see [60].

By increasing the translational distance between the poses of the control and
the stereo-camera system, more occluded areas occur on I,,. Occlusions could be
reduced (in general) by having the control camera positioned between reference
and match camera. Figure 4 shows three different occlusion cases. For this figure
we vary the poses of an imaginary third camera with respect to the used poses
of reference and match camera when rendering this sequence No. 1 from Set 2.
The disparity map I; is the available ground truth.

On the left, the figure shows the virtual view corresponding to the pose of
the reference image (i.e. the third camera was assumed to coincide with the
reference camera). White pixels represent occluded pixels between reference and
match image. Obviously, no disparity information is available for those. They are
already occluded with respect to both stereo cameras. For the centre image of the
figure, the third camera moved into the pose of the match camera. Occlusions
are now shown in black, and correspond to occluded pixels between reference



Fig. 4. Different types of occlusions for a horizontal configuration. Left: white pixels
indicate occlusion between reference and match camera. Centre: black pixels indicate
occlusion between third and reference camera (here: third camera is at position of
match camera). Right: combined visualization where third camera is now left of the
reference camera.

and control camera. The virtual view generated for a pose to the right of the
reference image (in a horizontal configuration) would tend to “cover” also such
occluded pixels that are visible for the reference camera but not for the match
camera. On the right, the figure shows a virtual view based on the pose of the
third camera located to the left of the reference camera. It is an example of a
virtual view in which both kinds of occlusions occur (white and black).

For the first configuration there are no occlusions between reference and con-
trol camera. This configuration is actually known in self-consistency studies [39].
However, we are interested into using an additional image for the evaluation, not
yet involved in the given stereo analysis, thus allowing us to obtain additional
insights into the performance.

A symmetric pose of the control camera (focal point half-way on baseline
between reference and match camera, and perpendicular bisector incident with
optical axis of control axis) is also expected to minimize the impacts of both
types of occlusions (i.e., the total number of either black or white pixels). In
performance evaluation, it would be ideal to separate the impact of occlusions
from those of incorrect stereo matching. Thus, the symmetric case seems to offer
the possibility to focus on disparity errors. However, errors due to mismatches
are actually often not as “obvious” for the symmetric case compared to a third-
camera pose which differs (much) from the symmetric case.

Thus, altogether, an in-depth statistics about error distributions for different
third-camera poses in a horizontal configuration (e.g. depending on scene geome-
try) might be of interest. However, in our practical tests we realized quickly that
having the third camera in a “different pose” compared to the stereo-camera
pair, but still “reasonably close” to this pair for not having to many occlusion
issues, provides a better “challenge” than having a symmetric camera set-up.

The experiments reported in this chapter had the control camera approxi-
mately 50 cm to the left of the reference camera; reference and match camera
are about 30 cm apart. This translational distance between control and reference
camera appeared to be large enough for detecting miscalculated disparity values
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(even if disparities are small), but is still not yet exaggerating the influence of
occluded pixels.

2.3 Evaluation Index

As evaluation index we calculate the normalized cross correlation index between
the virtual image I,, and the control image I.., for each trinocular stereo frame
at time ¢ in a given image sequence. The NCC index is given by

NCC(I, I,) = ﬁ 3 [Le(,y) - N;} Lfv(%y) — 0] o
(z,y)€R c¥v

where p. and p, denote the means, and o. and o, the standard deviations of
the control and virtual images, respectively.

The set §2 is a subset of all pixel locations. It needs to be selected for defining
a “meaningful measure”. The default approach is that {2 is simply defined by
pixels having a valid disparity.? |£2| denotes the cardinality of this set.

The NCC index appears to be convenient for the presented evaluation ap-
proach (rather than, e.g., just a sum of absolute intensity differences), as it
handles photometric differences between reference and control image to some
degree, and brightness variations (e.g. non-uniform in a recorded image) are
actually very typical for recorded outdoor videos.

2.4 Alternative Approach for Defining Set (2

Images recorded in the context of driver-assistance systems typically contain two
large nearly textureless areas (i.e., featureless regions), namely the sky and the
road. State-of-the-art stereo-analysis algorithms often have difficulties for calcu-
lating correct disparities in such uniform regions — and the results are actually
not so important. Values for the sky are not important at all, and invalid values
on the road (if properly detected) can be interpolated for identifying the road
manifold.

We notice that the defined evaluation approach might report a good perfor-
mance in such homogeneous regions even if this is not the case. In such regions
it is very likely to occur that a pixel in the reference image with a corresponding
miscalculated disparity value is mapped into a pixel in the virtual image that is
in the same textureless region (i.e., a region with insignificant intensity differ-
ences between its pixels). Thus, values in this region may incorrectly influence
the final evaluation index.

Figure 5 shows two virtual images and corresponding disparity maps when
using the BPM-CEN stereo matcher (defined later in Section 3) for two consec-
utive stereo frames (Frames 326 and 327 in the barrier sequence). A rectangular
region is selected in the middle of the road; it shows differences in miscalculated

2 Our stereo-analysis algorithms assign a non-positive value to any pixel having no
valid disparity.



Fig. 5. Samples of disparity maps and corresponding virtual images from consecutive
frames from the barrier sequence. Both disparity maps show difference in disparity
values in the indicated rectangular region, but the corresponding regions in the virtual
images look almost the same. Thus, the NCC measure is expected to lead to about the
same value in those regions. See Table 1 for the NCC values of the whole images, and
of the rectangular regions only.

Frame #326 Frame #327
NCC value for rectangular window 94.5 90.0
NCC for the whole image 85.7 85.6

Table 1. Evaluation results for a selected rectangular road region compared to the
NCC index for the whole image, for two frames illustrated in Figure 5.

disparities in both frames. However, the corresponding regions in the virtual
images appear to be almost identical. For frame #326, disparity values in the
rectangle are between 28 to 56, and between 21 to 41 for frame #327. For road
surface points, this implies an average distance difference of about 5 meters. The
evaluation index, restricted to the rectangle, does not show this defect, and it
is considerable high compared to the NCC index calculated for the whole image
(see Table 5).

The following modified definition of set {2 aims at restricting the performance
evaluation to areas being “rich in texture”. The basic idea is as follows. Miscal-
culated disparities at, or within a small distance to pixels with a significant
intensity gradient (used as a simple texture criterion) should affect the NCC in-
dex more than miscalculated disparities in textureless regions. One option is to
simply discard the homogeneous regions completely when calculating the NCC
index.

Given an image I, we generate a mask Iy that will shrink the domain (2 by
eliminating textureless regions. The image [ is produced in three steps. First,
a binarized gradient image VI is defined as

1 otherwise (10)

where 0, (or 0,) denote the partial derivative in the lateral (or vertical) direc-
tion.® The sign |-|2 denotes the Lo-norm and T3 is an adjustable threshold. With
VI we aim to identify regions with some changes in intensity values.

3 We use central differences [35] to approximate the partial derivatives.
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Fig. 6. Illustration of mask generation. From left to right: original image I, gradient
image VI, distance mask I., and identified textured zones in I.

The second step uses Euclidean distance transformation for generating an
image I, that labels pixels by their Lo-distance to edge pixels identified by V1.
Finally, we define I as

0, if I(z,y) >T>

. (11)
1 otherwise

where T, is again a predefined threshold. For the experiments reported in this
chapter, we use the control image to define the mask [, with 77 = 5 and T» = 10.

Figure 6 illustrates the process of generating the distance image I.. The
leftmost image is a control image I. The next image shows VI with T} = 5,
followed by the distance image I using T5 = 10. The resultant “masked” control
image is shown in the rightmost position.

Alternatively, the distance values in I, could be used as weights when defining
the NCC index. However, experiments showed that using the defined mask I
helps to calculate NCC indices which correspond, in general, with subjective
visual evaluations of calculated depth accuracies.

3 Tested Stereo-Analysis Algorithms

We are interested in stereo-analysis algorithms for outdoor scenes in the context
of driver-assistance systems and related applications; see, for example, [32,49].
The diversity of recording situations (e.g. in the night, in rain, with lighting arte-
facts) basically implies that one particular algorithm or parametrization cannot
be the all-time winner; and some kind of adaptation needs to be supported.

3.1 Three Matchers

For the experiments to be reported in this chapter, we selected three dense stereo-
analysis algorithms based on techniques that have shown a good performance in
previous studies [42,44]. We test them for three different cost functions.

Belief-Propagation Matching (BPM)

We use a max-product iterative belief propagation algorithm as presented
on [15]. This algorithm uses a truncation parameter for both, the cost func-
tion and the smoothness term. The smoothness term is a truncated quadratic
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BPM GCM SGM
dMax sMax A4 iteration level A1 A2 threshold K c1 Co
SAD 100 500 0.3 4.2 1.4 1 7
CEN 75 600 0.6 7 6 3 1 1 5 30 150
EPE 33 200 0.225 2.6 0.86 16 4.33

Table 2. Parametrization of the used stereo-analysis algorithms. BPM (SGM) uses
identical values for number of iterations (c¢1) and level of tree (cz) for the three different
cost functions SAD (sum of absolute differences), CEN (census function), or EPE (end-
point error).

function, which allows to obtain a smooth disparity map but without penal-
izing depth discontinuities to much. Message passing is based on 4-adjacency.
The original source code on [15] was modified to allow the use of different cost
functions and of 10 bit input images as stereo frames.

To speed up the matching process, a hierarchical approach (i.e. a coarse-to-
fine approach) is considered such that the passing of messages is more efficient
when staying with a reduced number of iterations. The truncation parameters
for the data (dMax) and the smoothness (sMax) terms, the weighting factor for
the data term (Ag), the number of iterations (iteration), and number of levels
(level) of the followed hierarchical approach are shown in Table 2.

Graph-Cut Matching (GCM)

We use a modification of the graph cut-based algorithm presented in [7].
For minimizing the energy function, a randomly initialized disparity map is
considered as a weighted graph. The optimum disparity map is then calculated
using the a-ezpansion method [37]. The implementation of this algorithm uses
as smoothness term the binary Potts model to assure that a global minimum
can be reached [37]. The three parameters required for defining the Potts model
(A1, A2, and the threshold) and the weighting factor for the cost function (K)
are summarized on Table 2.

As for BPM, this algorithm was also modified such that a wider range of cost
functions could be used.

Semi-Global Matching (SGM)

We also use a semi-global matching algorithm as introduced in [27]. The
matching strategy followed by BPM or GCM can be characterized as being po-
tentially global (but practically limited by the number of iterations). In contrast,
SGM limits its search space to a predefined set of paths to obtain an optimum
disparity value only with respect to this selected search space. The used SGM
implementation has been reported in [25]. We are interested in evaluate two
configurations that have been recently proposed; all of them using the census
transform as cost function (see Section 3.2). We compare a 4- and (the “usual”)
8-path configurations as suggested in [25]. We also examine the performance of
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the hierarchical approach presented in [26]. Using four instead of eight paths
reduces the computational time, and the quality of the disparity maps should
not be drastically affected. The hierarchical approach increase the quality in the
matching in areas that are known to be complicated (non-textured areas like the
road in DAS) for SGM. The selected values for the two fixed penalties for the
smoothness term (¢; and c¢g) are summarized in Table 2.

3.2 Three Cost Functions

Three cost functions are considered for our experiments. Each of them analyses
different “characteristics” of the stereo input images when calculating costs for
assigning a disparity value to a given pixel. Two of them, the census and a
gradient-based (such as EPE), have been previously identified as being robust in
outdoor environments; see [25, 23]. The impact of the third function, the common
sum of absolute differences, depends on photometric consistency between both
images in a given stereo pair.

Census Transform (CEN)

The census transform [62] is defined by the Hamming distance between two
signature vectors. Its use supports robustness of a stereo matcher against com-
mon types of noise found in real-world images. Given an arbitrary image I and
a neighbourhood N of a pixel at location (z,y)? [denoted as N(z,y)], the ith
coordinate of the signature vector (of dimension |A| — 1) of I(z,y) is defined as
follows:

sig(I(m, y))i = 5(I(x’,y’)) (12)
where (z/,y")T € N(z,y) \ {(z,y)"}, and
i) = {3 ) 1) w

The order in which the coordinates of the signature vectors are arranged is irrel-
evant, but needs to be consistent. Following [25], we use a 9 x 3 neighbourhood
as it favours a stronger data contribution along the epipolar line.

The comparison of the signature vectors is made coordinate-wise using the
Hamming distance. For reference image I, and match image I,,, the cost of
associating a disparity d to pixel I,.(x,y) is given by

V-1 e .
B 0, if sig(I-(z,y)), = sig(Ln(z — d,y)),
CEN(m,y,d) - Z { 1 otherszvise )l ( )Z (14)

i=1
where sig(+); denotes the ith coordinate of the signature vector sig.
A Gradient-Based Cost Function (EPE)

The selected gradient-based cost function [31] analyses the L;-distance be-
tween the end-points of the gradient vectors. This distance is expected to have
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a good performance when using real-world data [23]. To calculate the discrete
partial derivatives that define the gradient vector, again we use central differ-
ences.

The cost of assigning disparity d to the pixel I,.(x,y), using the end-point
error (EPE) cost function, is given by

EPE(m,y,d) = ‘(8xlr(x,y)78ylr(a:,y))—(&clm(x—d, Y), Oyl (x—d, y))‘1 (15)

The symbol |-|; denotes the L1 norm; we use this norm to compare the estimated
end-points of the gradients.

Sum of Absolute Differences (SAD)

The sum-of-absolute-differences (SAD) cost function is an intensity-based
similarity measure. It is known for its poor performance when it comes to real-
world stereo sequences, as the photometric consistency assumption is commonly
violated in those data. We are interested in reconsidering this commonly used
statement. The SAD cost of assigning the disparity d to I,.(z,y) on the reference
image is given by

SAD(z,y,d) = > L)~ In@ —dy)]  (16)

1
W]
W (a"y")TeN (z.y)
where || denotes the cardinality of the used neighbourhood. In the experiments,
we use the 8—neighbourhood for V.

4 Experiments

We evaluate the performance of the three selected stereo-matchers using the
three specified cost functions for BPM and GCM; the three presented config-
urations for SGM use just CEN as a cost function. We use the abbreviations
BPM-x or GCM-x%, where * denotes CEN, EPE, or SAD, and SGM-4, SGM-8,
and SGM-HIER for the configurations of the semi-global matcher.

4.1 Evaluation Domains

The full approach refers to the method introduced at the beginning of Section 2;
the masked approach denotes the method discussed in Section 2.4.

BPM and GCM algorithms generate usually a valid disparity (no matter
whether correct or incorrect) for almost every pixel in the reference image. Thus,
we compare the whole virtual and control image (except for the obviously oc-
cluded regions at the left margin of both images). As we are using the same
evaluation domain, it is fair to compare the evaluation indices of those two
algorithms (i.e. the boosting effect from the non-textured regions described in
Section 2.4 should affect equally to indices of both algorithms).
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Fig. 7. Sample frames from the used 400-frame long trinocular sequences. Top row,
from left to right: midday sequence, wipers sequence, dusk sequence, and night sequence.
Bottom row, from left to right: queen-street sequence, people sequence, harbour-bridge
sequence, and barrier sequence.

For SGM, the evaluation domain is defined by the pixels in the disparity
map detected as being valid (usually around 60% of the whole image domain).
Thus, we only compare results between the three SGM configurations as their
disparity maps have a similar amount of valid pixels.

4.2 Data Sets

Regarding the experimental data set, we use eight long (400 trinocular frames
each) sequences recorded on real-world environments with test vehicle HAKA 1
(see [32]), thus 9,600 test images in total, each of 640 x 480 resolution at 10 bit
per pixel.

All the three cameras were firmly mounted on a metal bar (behind the wind-
shield) about at the same height as the rear-view mirror. The reference and
match cameras were placed on the driver’s side of the vehicle. The length of
the baseline is about 30 cm, thus, we are able to calculate distances to objects
located from just less than 5 meters to the cameras, up to around 310 meters
away (i.e., for a disparity value of 1). The control camera was fixed to the left of
the rear-view mirror, at around 50 centimetres away from the reference camera.
With this set-up we tried to keep the common field of view as large as possi-
ble. By keeping a considerable distance between reference and control cameras
we support that appearing errors become more evident in the calculated NCC
evaluation indices along a test sequence.

The cameras used for recording the sequences were all of the same brand and
model (Point Gray Firefly MV*); with identical (micro) lenses with a fixed focal
length of 6 mm.

Four of our sequences were recorded on the same street (the reference street)
under different environmental conditions. The street is surrounded by trees such

4 http://www.ptgrey.com/products/fireflymv/index.asp
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that illumination artefacts [61] are present in the images, especially if the sun is
low on the horizon. There are some road signs and power poles. The surface of
the road has actually sufficient texture so it is expected that the road will not
be a source of noise during the matching process. The road has several up- and
down-hill segments, which makes the sequences also a challenging scenario for
other analysis algorithms (e.g., road modelling, see [52]).

The other four sequences were recorded in more dynamic environments. They
were recorded on busy roads, where pedestrians and vehicles are part of the
scenery. Two of the sequences were recording while driving at about 80 km/h,
to test algorithms also for highly dynamic environments. The sequences are
available for download in Set 9 from [13].

A brief description of the sequences is as follows:

Midday: This sequence was recorded in the reference street under ‘ideal’ con-
ditions. The sun was close to its zenith, so there are not many of the undesired
illumination artefacts. There is no incoming or oncoming traffic. The idea of
recording such a simple sequence is to have a reference sequence, where the al-
gorithms should perform best. Thin structures around the road (e.g., poles, trees
with branches, road signs) still make it a challenging test sequence.

Wiper: In order to gain experience on the influence varying occlusions of some
regions in one (or both) camera(s) of the stereo system, we recorded a sequence
while the wipers have been switched on (but no rain). This sequence was recorded
within just a few minutes past the midday sequence on the same default road,
expecting that the only “differing” factor for the matching process is the moving
wipers.

Dusk: This sequence was recorded wile having the sun in a position close to the
horizon. The idea was to try to simulate the very common situation of having
large saturated areas in one or in both cameras. As the road is surrounded by
trees, there are intervals in the sequence with or without the sun striking directly
into the cameras. The shadows of the trees are projected onto the road, and this
offers another kind of illumination artefacts.

Night: This sequence was recorded at night. Almost only light provided by the
headlamps of HAKA1. The trees around the road covered almost all the light
from the lamp posts, which are very sparse in this particular road. The intention
of having such a dark night scene was to simulate driving conditions as faced on
second-order highways or rural roads.

Queen: This sequence was not recorded on our reference road, but on a main
road of Auckland city. It has both, moving and static cars and pedestrians. It
was recorded while driving towards a set of traffic lights, with a stop there. There
are moving pedestrians at different distances. A bus stopped on the right hand
side and has interesting reflections in its windows.

People: This sequence was recorded while HAKA1 was standing still in front of
a pedestrian crossing. The sequence has varying numbers of pedestrians in the
scene, between 1 up to around 20 at a time. The pedestrians walk only in two
directions.
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Harbour: This sequence was recorded while driving across Auckland’s harbour
bridge. The road on the bridge its surrounded by a structure of thin metal poles.

Barriers: This sequence was also recorded while driving across this harbour
bridge. In this case the recording vehicle was driving in a lane that it is enclosed
by medium-height concrete bars, and also the metal structure of the bridge is
further up.

4.3 Results and Discussion

The discussion in this chapter is focused on the most remarkable details of ob-
tained results (e.g., when severe changes in the NCC index were detected, or
when results between algorithms are particularly different). The average NNC
indices for full or masked approaches, for all sequences and algorithms, are pre-
sented in Tables 3 or 4, respectively.

Column ‘Win’ in the tables shows the total number of frames on which a cer-
tain configuration outperformed the others configurations of the same matcher.
In the discussion below we may compare the results of all the BPM and GCM
configurations directly; but consider separately the results of SGM because the
image domain X used for BPM and GCM is different to that used for SGM.

Midday: All the algorithms performed ‘fairly well’ (as expected); the indices
reported for this sequence are the highest among all the sequences used in this
chapter. See the left image in Figure 4.3 for the SGM results. Interestingly, all
the algorithms had local minima at about the same frames within that sequence.
Sudden drops in indices are caused by thin structures that surround the road in

NCC Average Win
Barriers Dusk Harbour Midday Night People Queen Wiper

CEN 62 74 63 73 41 61 66 69 17

BPM EPE 66 50 70 91 64 68 80 87 1449
SAD 56 87 59 91 63 66 79 86 82

CEN 59 87 62 93 41 66 82 89 1479

aCM EPE 37 82 38 88 21 42 67 83 1
SAD 40 82 40 60 62 62 78 85 172
CEN4 76 92 80 95 86 79 88 92 154

SGM CEN8 76 92 80 95 87 79 89 92 433
HIER 76 95 81 96 90 79 89 94 2613

Table 3. Mean values of NCC indices, rounded to nearest integer, for full analysis.
For each sequence, that cost is in bold where the algorithm performed best. The last
column (Win) shows for how many frames the specific configuration performed best.
We may compare BPM and GCM results directly, but separately from SGM, as image
domains used for evaluation are different.
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NCC Average Mask Win
Barriers Dusk Harbour Midday Night People Queen Wiper
CEN 57 66 56 69 42 59 65 63 24
BPM EPE 61 75 64 79 64 66 75 73 1184
SAD 51 69 53 7 64 64 73 70 83

CEN 54 76 54 82 43 66 78 7T 1743

GOM EPE 33 64 32 67 28 39 57 60 0
SAD 35 66 33 50 63 61 71 67 166
CEN4 31 26 19 33 34 51 47 27 353

SGM CEN8 34 33 25 38 31 53 53 33 1434
HIER 31 41 24 45 26 48 47 49 1413

Table 4. Mean values of NCC indices, rounded to nearest integer, for masked analysis.
For the meaning of bold numbers, and of the last column (Win), see caption of Table 3.

those frames; miscalculated disparity values for power poles or road signs had a
particularly bad effect on NCC indices at those frames. This became even more
obvious by using the masked analysis.

For GCM, the leading configuration was GCM-CEN. For the other two config-
urations, there are several regions with obvious (i.e. visual inspection) disparity
miscalculations, and they were correctly penalized with both the full and the
masked analysis.

BPM-SAD and BPM-CEN reported the best (and very close to each other)
NCCC indices for BPM. For this matcher, the CEN cost function introduced a
kind of a “salt and pepper” noise into the disparity maps that was also clearly
identified by our evaluation.

SGM-HIER showed a slightly better performance than the other two configu-
ration for full analysis. This could be due to a better performance of SGM-HIER

SGM Midday BPM Wiper
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Fig. 8. Left: Midday sequence results for SGM. Right: Wiper sequence results for BPM.



20

on road regions (see the identified boosting effect of trinocular analysis). How-
ever, the same rank was observed when using the masked analysis.

Wiper: This sequence represents a particular challenge for trinocular analysis.
The wipers might not be visible in the stereo results, but they might be still
visible in the control image. Thus, in this sequence, low NCC indices might not
only be caused by miscalculated disparity values, but also due to having different
objects (wipers) present in the virtual and the match image.

All the algorithms (with all the configurations) show a repetitive pattern
of local minima, as expected. When the wipers are not present in any of the
images, the algorithms performed just as in the midday sequence. Lowest local
minima correspond to frames where the wipers were just visible in the control
image. For cases where there is a wiper in the stereo-image pair, but not in the
control image, the algorithms handled the wipers as invalid pixels (SGM) or by
propagating estimated disparity values of surrounding areas (BPM and GCM);
this was more evident with the CEN and EPE functions.

Masked and full analysis led to similar results. When considering the masked
approach, the local minima are not as low as in the full analysis. Miscalculations
introduced by the wipers affected more the sky and road areas (we recall: both
regions are ignored when using the masked approach).

For BPM and GCM, the most negatively affected cost function is SAD; drops
in magnitudes of indices were the largest compared to other cost functions. BPM-
CEN was noticeably robust against the presence of wipers. Figure 4.3, right,
shows the performance of the three BPM-configurations. There are large drops
of indices for BPM-SAD. For SGM, 8- and 4-path configuration show an almost
identical performance. SGM-HIER, outperforms both of them. Local minima are
not as low for SGM-HIER as for the other two configurations.

Dusk: The results obtained with this sequences are as expected: the performance
of all algorithms decreases when the sun strikes directly into the cameras. It can
be noticed that there are two intervals with particular low indices, namely at
the beginning and at the end of the sequence (see Figure 4.3, left). In those
time-intervals the sun is striking straight into the three cameras.

For all the algorithms and cost functions, there are several scattered frames
(e.g. around frames 250 and 300) with an extreme low NCC index. They are
due to the fact that in those frames the sun struck only the control camera.
Thus, there is an analogous effect as with the wiper sequence when there was a
wiper only on the control camera. Ignoring those outliers, the shape of the plot
increases and decreases depending on whether the sun strikes directly into the
three cameras, or not.

With the masked analysis it is more evident that there is a major decay of
the performance for BPM-SAD and BPM-SAD at the beginning and end of the
sequence where the disparity maps are extremely noisy. In the full analysis, the
boosting effect covers the miscalculated disparities, and might lead to a wrong
evaluation for a few problematic frames.

We stress the robustness of SGM (in particular for SGM-HIER) when com-
paring the three algorithms for this sequence. The indices of SGM-HIER, SGM-8
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Fig. 9. Left: Dusk sequence results comparing best performing configurations of all
three matchers. Right: Queen sequence results for GCM-configurations.

and SGM-4 are quite similar for most of the frames in the sequence, but SGM-
HIER keeps a more “stable” performance in ‘complicated intervals’ of the se-
quence. Figure 4.3, left, shows the results for BPM-EPE, GCM-CEN, and SGM-
HIER (the best performing configuration of each matcher on this sequence).
Note that the low peaks are less intense for SGM. The rank suggested by this
plot should be taken carefully, as image domains used for algorithm evaluation
are different.

Queen: The results obtained with the full and masked analysis, for all the
algorithms, showed a common tendency, with no sudden ’jumps’ in the NCC
index. There are only a few peaks that represent a miscalculation in a specific
frame for a specific configuration.

For example, see Figure 4.3, right, in frame 16, BPM-SAD presented a local
minimum for this frame. In this particular case, the algorithm miscalculate the
edges of one of the background buildings.

For this sequence, miscalculated disparities are properly identified with full
analysis for GCM and BPM. The influence of non-textured regions can be ne-
glected. The sky is covered by surrounding buildings, and the road area is mainly
occupied by other vehicles. SGM-HIER and SGM-8 have different rankings when
using the full or the masked approaches. It looks like SGM-HIER is taking ad-
vantage of the boosting effect from the full analysis for this sequence.

People: Results for all the algorithms show a common pattern for masked and
full analysis. Between frames 50 and 100, full and masked analysis report low
indices for all the algorithms. This part of the sequence is the most busy one, with
many pedestrians present in the scene. The following ups and downs correspond
to a single (or two) pedestrian(s) entering or crossing the common field of view.
See Figure 10, left, for BPM-results.

As the evaluation approach uses images from three different cameras, and
all the pedestrians are fairly close to the recording vehicle, we might conclude
that low indices (between frames 50 and 100) are due to occlusions between
the cameras. But, because pedestrians are ‘fairly slim’ structures, even a minor
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Fig. 10. Left: People sequence results for BPM. Right: Harbour sequence results for
SGM.

miscalculation implies a wrong reconstruction of the whole pedestrian in the
virtual image (usually a misplaced body part).

For this sequence, the three SGM configurations show almost indistinguish-
able performances; it is difficult to detect any difference in NCC mean values.
BPM also shows a different behaviour compared to the previous sequences; for
this one, BPM-EPE was the configuration with the best performance, and dif-
ferences between indices of BPM-CEN and the other two configurations were
smaller.

The masked analysis shows an almost identical behaviour for BPM and GCM.
For SGM, the ranks were totally different for the two types of analysis. It appears
that SGM-HIER has more difficulties matching pixels near disparity discontinu-
ities, but performs better on non-textured regions.

Harbour: This sequence presented an interesting difference between the full
and the masked approaches for SGM. In all the sequences analysed so far in this
chapter, no matter which algorithm, the masked analysis follows the same trend
as the full analysis For this sequence, for the three SGM-configurations, full or
masked analysis reported a different behaviour in each case. In the full analysis,
there is an increasing trend of the index along the sequence; this tendency of
the index is particularly strong for the last 100 frames. The masked analysis
reported an opposite tendency; the indices decrease along the sequence. As for
the full analysis, indices decrease more significantly for the last 100 frames. See
Figure 10, right, for the results of the full analysis for SGM.

A possible explanation for this behaviour is that, at the end of the sequence,
the metal structure of the bridge disappears from the scene. What is depicted in
the images is now mostly sky and road surface, with a large number of skinny
poles and small buildings in the background. Increasing indices for the full anal-
ysis might be due to the boosting effect on the large non-textured areas in the
image. The decreasing tendency of the masked approach could be explained
as even the smallest disparity miscalculation would imply a wrong warping of
the skinny structures (i.e. the poles and buildings) in the scene. This irregular
behaviour needs to be further analysed.
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The masked and full approaches for BPM and GCM both show the same
trend for all the three cost functions.

Barriers: For this sequence, the algorithms showed common patters, with dif-
ferences in the magnitude of the index but still a common behaviour. The ups
and downs in the indices were dictated by the appearance and disappearance
of patches of the sky. The sky region decreases indices and the metal structure
of the bridge increases indices; shadows created by the covering structure also
contribute to increases. GCM showed an interesting behaviour for this sequence.
The road and the barriers are large textured areas whose disparities were better
reconstructed in the virtual image generated with BPM-SAD than with the one
generated with BPM-CEN. But, the bridge structure was better estimated with
BPM-CEN which had the highest NCC values in the evaluation; see Figure 11,
left. For this sequence, this behaviour is (already) correctly evaluated with the
full analysis. With the masked analysis, it was even more evident.

Night: The matching of corresponding pixels and the evaluation of the matching
process (using the trinocular approach) are both challenging due to the limited
dynamic range (of about 50 different intensity values only for some of the frames)
of the input images from this sequence.

All the algorithms reported very low NCC indices. It is hard to identify vi-
sually the 3D structure of the scene in the disparity maps. The only exception
was SGM-HIER. In its disparity maps, it is possible to visually identify the road
area (illuminated by HAKA1 headlamps) and even some of the objects that sur-
round the road. This SGM-configuration reported the highest evaluation indices
for the full analysis. However, it could not be identified as a better performer
when using the masked analysis. The boosting effect of the correctly estimated
road area seemed to help SGN-HIER in the full analysis.

The results for BPM and GCM show an increasing trend of indices as the
sequence progresses. There is more light available in the shown scene in the sec-
ond half of the sequence (an incoming vehicle with headlamps on is approaching,
and the trees around the road are less dense), and more disparity values are cor-
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Fig. 11. Left: Barriers sequence results for GCM. Right: Night sequence result for
GCM.
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rectly calculated. Figure 11, right, depicts the results for GCM. EPE and SAD
cost functions show an increasing trend. High indices reported for some frames
by BPM-SAD are due the assignation of a unique (i.e. but incorrect) very low
disparity value to most of the pixels in the upper half of the frame. Due to the
lack of texture in the image, the trinocular approach fails to assign a low NCC
index for the full approach.

4.4 Overall Resume

The BPM algorithm showed an unexpected result when BPM-SAD outperformed
BPM-CEN in several sequences (and in some frames even BPM-EPE, the best
overall BPM-performer). The census cost function seems to have introduced a
kind of some “salt and pepper” noise into the disparity calculations (i.e. non-
homogeneous results were homogeneity is expected), which is correctly detected
with the trinocular analysis. However, BPM-CEN had a more robust perfor-
mance, its evaluation index is lower than the one of BPM-SAD, but it showed a
more steady behaviour. For some problematic frames (e.g. in the dusk sequence),
BPM-SAD generated “useless” data which was not the case for BPM-CEN.

Regarding GCM, the outperforming configuration was GCM-CEN. Even that
it generates noisy disparity measurements in non-textured regions (i.e. on the
road), it managed to reconstruct better the other structures present in the scenes.
The “salt-and-pepper” kind of noise was not introduced when using CEN with
GCM. GCM-SAD had an opposite behaviour; the road was uniformly estimated
but it introduced “a lot” of incorrect measurements everywhere else; this was
better detected when using the masked analysis. GCM-EPE had the poorest
performance; the disparity maps have considerable amounts of random values,
which degraded significantly the generation of the virtual image.

Among the SGM configurations, SGM-HIER shows the best overall perfor-
mance with the full analysis. SGM-8 and SGM-4 show very similar evaluation
indices; in a direct comparison, even if differences are minor, SGM-8 performed
better in a larger number of frames. The most noticeable difference between the
three configurations is for the estimation of the road surface. SGM-HIER gen-
erates more uniform surfaces; it performed in almost all the sequences better in
the full analysis. However, the masked analysis suggests that SGM-HIER (it was
just the best in less than half of the sequences) has more difficulties matching
regions close to disparity discontinuities, and that its NCC-indices were “helped”
by the boosting effect of the full analysis. See Tables 3 and 4 again for direct
quantitative comparisons.

5 Conclusions

In this chapter we reported about a testing approach, illustrated by evaluating
the performance of three different stereo matching algorithms using long real-
world trinocular sequences. The proposed trinocular approach (or, say n + 1-
ocular analysis for an n-camera stereo-vision system) appears to be a fairly
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indicative tool to highlight issues or good performance of running stereo-analysis
techniques.

We examined the masked and the full approach. We illustrated by example
that both approaches may lead to their own evaluation results. Using these two
approaches it was possible to point out particular weakness or strength of a
matching algorithms in dependency of used configuration. Miscalculations in
homogeneous areas may not become ‘visible’ due to ongoing high NCC-indices
in the full analysis; however, using the masked approach, a more appropriate
evaluation result is possible in general (the reported index corresponded typically
‘well’ with a visual analysis of the calculated depth map or the calculated virtual
view).

For designing an adaptive computer vision approach for vision-based driver
assistance, it appears as particularly important to identify frames (or time inter-
vals) where the behaviour of stereo-analysis algorithms “suddenly changes”, such
that a new optimization can take place for selecting and configuring a suitable
matcher.
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