
Animated Panorama from a Panning Video Sequence

Fay Huang1, Kun-Ming Yang1, Zhang-Jun Wei1, Augustine Tsai2, and Jui-Yang Tsai2

1Institute of Computer Science and Information Engineering
National Ilan University, Yi-Lan, 26047 Taiwan, R.O.C.

2Emerging Smart Technology Institute
Institute for Information Industry, Taipei, 105 Taiwan, R.O.C.

Email: fay@niu.edu.tw∗

Abstract

In the recent applications of virtual reality and augmented reality, panoramic-image-based representation
of real world environments has received much attention for its advantages over the traditional 3D modeling
approaches, such as shorter generation times, faster rendering speeds, higher photorealism, and less
storage needed. The drawback is however that it stores only static information of the scene. Panoramic
video has been proposed to preserve wide field-of-view dynamic characteristics of the natural environment,
which is especially suitable for outdoor sceneries. Its limitation is lack of control of such video. In
this paper, a newly developed software program is presented, which takes a single video sequence from
a panning camera, and generates a cylindrical panorama embedded with video textures, called animated
panorama. The program has the following functions: seamless video textures generation, undesired object
removal by video inpainting, and animated panorama player. We claim that the quality of the animated
panorama produced by our program is satisfactory to virtual reality applications and the computation time
is acceptable for practical use.

Keywords: Panoramic image, video textures, video inpainting, virtual reality

1 Introduction

Panoramic images have been widely used in vari-
ous virtual reality applications to achieve realistic
rendering in real-time. In an abstract geometric
sense, captured data are mapped onto a surface,
which may be a sphere, cube, or cylinder, and thus
called spherical, cubic, or cylindrical panorama,
respectively. A 360◦ cylindrical panoramic image
can be generated by various techniques, such as
mosaicing or stitching [2], or can also be acquired
using specialized sensors such as catadioptric [9].
In particular, stitching is an efficient method if
taking only camera panning motion into account.
Therefore, panoramic image stitcher has becoming
a standard built-in feature for many models of dig-
ital cameras. A common scenario would be that
a user holds the digital camera on his/her hand
as steady as possible or place the camera on a
rotatable tripod, and captures a sequence of images
during a rotating motion. The camera is supposed
to rotate with respect to a vertical rotation axis
possing through the camera’s nodal point. Any
pair of successive images should have at least 30
percents overlapping field of view. Many cam-
eras’ built-in image stitchers or commercially avail-

∗978-1-4244-9631-0/10/$26.00 ©2010 IEEE

Figure 1: Our program accepts a video sequence

captured by a panning camera as input and provides

a player which allows users to freely navigate through

the resulting animated panoramic image. The dynamic

portions of the scene are represented by the embedding

video textures.

able panorama makers would automatically esti-
mate all the parameters required for generating
the panoramic image based on the provided set
of sequential images. The underlying calculations
include feature detection, matching, warping, and
color blending.

Figure 2: An example of image stitching result. The input video consists of 1,676 frames, and the resulting

panorama has resolution of 5925 times 720 pixels.

Generating a cylindrical panoramic image from a
rotating camera is a relatively new method [5].
Ideally the camera should be supported by a spe-
cial designed rotating platform and captures one
single image column (i.e., 1D image) instead of a
2D image at each time instant. By this approach, it
is possible to bypass images warping. Image warp-
ing is a process highly depends on the accuracy
of the estimated camera parameters. The result-
ing panoramic images would suffer from “double-
image” effects if incorrect warping has been per-
formed. Our developed program adopts the advan-
tages from both methods. First, it accepts a video
sequence captured by a rotating handheld or tripod
camera as input, thus no special rotating equip-
ment is needed. Second, the final panoramic im-
age is generated by combining side-by-side image
columns from different video frames without image
warping. Our program allows users to freely nav-
igate through the virtual environment represented
by the resulting panoramic image. The concept
of cylindrical representation of the environment is
illustrated in Fig. 1.

During the video capturing process, it is often un-
avoidable to have walking pedestrians or moving
vehicles in the scene, which will then appear in the
resulting panoramic image. The program provides
a simple user interface, which allows users to spec-
ify the undesired object to be removed and then
fills the hole with the available background scene
by video inpainting technique. The concept of in-
painting algorithm used in our program is similar
to [3, 12].

In order to increase the realistic impression while
navigating in a panoramic-image-based virtual re-
ality platform, various hybrid image or video ap-
proaches have been proposed [4, 6, 7, 10]. The
goal is to preserve and illustrate the moving ob-
jects in the scene caused by nature or man-made
forces, such as waving trees, fountains or streams,
to enhance the realism of the virtual environment.
Video data often contains spatial and temporal re-
dundancy, especially for the above-mentioned ob-
ject motions, information is highly repetitive or
quasi-repetitive. The concept of video textures
[11] is to create an impression that a video can be
played continuously and infinitely based on a given
sample video. Panoramic video textures [1] inherit

the same concept and allow to generate a wide
field-of-view video texture. It employs graph-cut
algorithms to generate the video textures, which is
very time consuming.

We aim to achieve a comparable quality of anima-
tion effects within a practically acceptable time.
We call it an animated panorama, that is a cylin-
drical panoramic image embedded with multiple
video textures, to distinguish it from static pano-
ramic images. A pure graph cut method usually
suffers from the drawback of high computational
cost especially when applying on the spatio-temporal
textures. In this paper, a simplified version of
graph cut has been proposed and implemented to
greatly reduce the computation time.

The contributions of the developed program in-
clude: First, an automatic approach that can gen-
erate video textures within acceptable time for prac-
tical use. Second, the image regions containing
undesired moving objects can be eliminated and
replaced by background scene. Third, a virtual re-
ality player has been developed in conjunction with
the animated panorama maker, which is capable of
playing such format of animated panorama. The
paper is structured as followings. The video regis-
tration and image stitching methods used will be
described in Section 2. The approach of video tex-
ture generation will then be explained in Section 3.
A brief introduction of program user interface is
given in Section 4 and followed by experimental
results and conclusions.

2 Image Stitching and Undesired
Object Removal

The goal is to generate a cylindrical animated pano-
rama, which is embedded with user-specified video
textures, from a finite sequence of video frames
captured by a single panning camera. This image
acquisition approach is considered as an approxi-
mation to the method of generating a cylindrical
panoramic image from a rotating camera. When
a special designed rotating camera is used to cap-
ture a panoramic image as described in [5], the
rotational angular difference between any pair of
two adjacent shots remains constant, which can
be determined from the camera’s intrinsic param-

eters. Hence, every captured image contributes
same amount of image data (i.e., equal numbers of
image columns) to the resulting panorama. How-
ever, if using a sequence of video frames to gener-
ate the panoramic image, the rotation speed varies
during recording, and as a result, each frame should
contribute different numbers of image columns to
compose the final panorama. Let ci denote the
number of image columns contributed from the
ith frame to generate the panorama. Further, let
c̄ denote the expected average number of image
columns contributed from all frames. Ideally, c̄ =
1
N

∑N
i=1 ci, where N is the total number of frames

the camera captures in a 360 degree rotation.

In order to achieve a non-blurring and undistorted
panoramic image, it is highly recommended to ro-
tate the camera as steady as possible in slow mo-
tion during recording. A tripod will be useful to
minimize camera shake. From our experiences,
the scan time for a 360 degree rotation between
70 to 100 seconds is the optimal speed to balance
the image quality and the processing time. If the
camera’s intrinsic parameters are known, then it is
possible to estimate c̄ by the following equation:

c̄ =
2f

τ
tan

(π

N

)
,

where f and τ denote the focal length of the cam-
era and the pixel size (assuming squared pixels),
respectively. The value of c̄ is to be rounded to
the neatest integer for later calculations. For each
frame, only partial image region is used to perform
video registration. Let W denote the width of an
image frame in pixels. Image region bounded by
columns

(
W
2 − c̄

)
through

(
W
2 + c̄

)
in each frame

are gathered by our program to perform calcula-
tions for video registration. If users have no in-
formation of camera intrinsic parameters, then by
default, program would select image region from
column b 3W

8 c to column b 5W
8 c.

The value of ci for each i ∈ {1, 2, . . . , N} is deter-
mined by the result of video registration. There
have been many algorithms developed for video
registration for different purposes. Our problem
is relatively simple due to the constrained cam-
era motion. We define the similarity measure of
two frames as the average pixel intensity differ-
ence within the overlapping region. Frames are
registered based on the obtained minimum simi-
larity value. For instance, if the ith frame and
the (i + 1)th frame have been determined having
vi columns overlapping, then ci = 2c̄ − vi. The
resulting panoramic image is composed by stitch-
ing together ci image columns from the ith frame,
for all i ∈ {1, 2, . . . , N}. A straightforward color
blending scheme for each pixel of the ith frame has
been implemented. The current pixel’s color value
is replaced by the average color value of three pixels

t = i

t = i + 1

t = i + 2

t = i + 3

t = i + 4

t = i + 5

Panoramic image

t = i + 6

Figure 3: The concept of undesired foreground moving

objects removal.

at the same position in frames (i−1), i, and (i+1).
An example of image stitching result is illustrated
in Fig. 2.

An image refinement feature, that is the ability
to remove the undesired foreground moving ob-
jects, has been implemented. This makes our de-
veloped program more advance than other exist-
ing panoramic image makers or stitchers, such as
Panorama Maker, PixMaker, Panorama Factory,
AutoPano, and PTGui. In case that there were
some moving objects in the scene during video record-
ing, and users would like to remove them from the
resulting panoramic image. The program provides
an interface which allows users to specify regions
to be refined which contain foreground objects,
and the specified regions are replaced with back-
ground scene by exemplar-based image inpainting
technique.

Figure 3 shows the concept of foreground moving
objects removal, where the undesired object in the
panoramic image (at the bottom) has been en-
closed by a rectangle. The available source image
frames from t = i to t = i + 6 are displayed above
the panoramic image. Our program automatically
looks for a region among the source image frames
that does not contain the foreground objects, such
as the ith, (i + 1)th, (i + 2)th, or (i + 5)th frame
and so on. The specified region in the panoramic
image will then be replaced by the obtained region
from one of the source image frames. It is naturally
that the brightness of the original panoramic image
and the replacement batch are different due to that
they were acquired at different time instant. The
program processes the brightness correction and
linear blending to reduce the rectangular artifact.
Figure 4 illustrates an example where the moving

pedestrians have been removed. The process can
be done repeatedly until the refinement result is
satisfactory.

3 Video Texture Generation

Texture synthesis is a process of algorithmically
constructing a larger image based on a (small) sam-
ple image in a way that the resulting image pre-
serves structural appearance of the sample image.
Graph cut technique has demonstrated quite a few
satisfactory texture synthesis results [8]. Video
texture synthesis is a similar process but instead
of increasing image size of each frame, the task is
to extend the length of a sample video clip [1, 11].
Graph cut technique can easily be extended to 3D
case. However a pure graph cut method is very
time consuming especially when applying on 3D
data. Our approach is somewhat a simplified ver-
sion of graph cut method, but we claim that the
quality of the video textures generated by our pro-
gram is comparable to results of a pure graph cut
method and the computation time can be greatly
reduced.

Our goal is, given an image sequence of some mov-
ing objects, produce a video texture (often a shorter
sequence) such that if playback this video texture
repeatedly then the objects would appear to move
continuously and infinitely. The width and height
of the input sequence is determined by mouse drag
and the length of the sequence depends on the cam-
era panning speed. Our approach is to first overlap
the starting and ending portions of the input image

(a) (b)

(c) (d)

Figure 4: An example of inpainting result. (a)

is the original resulting panoramic image, (b) is an

intermediate result after the region has been replaced,

(c) is the result after brightness correction, and (d) is

the result after blending.

Start
End

Input image sequence
Overlapping frames

2D graph cut

3D graph cut

Resulting
video texture

(a)

(b)

(c)

Figure 5: The procedures of video texture generation.

The whole pipeline consists of three major tasks: (a)

overlapping region determination, (b) minimum cut

calculation, and (c) minimum cut approximation of 3D

graph.

sequence, and then obtain a cutting surface within
the overlap region. After performing this cut, the
color difference between the neighborhood-pixels
(i.e., pixels in the starting and ending portions
of video frames respectively) along the cut-surface
should be a minimum. Thus, the starting and end-
ing portions of the image sequence can be stitched
together seamlessly. We convert this problem into
a finding minimum cut problem in a 3D graph,
but instead of finding an absolute minimum cut,
we intend to look for an approximated solution.

In graph theory, a cut is a partition of the vertices
of a graph into two sets. Any edge crossing the cut
is a cut edge. In the case of a weighted graph,
a minimum cut following some specified cutting
criteria is the cut that minimizes the sum of the
cut-edge weights. The procedures and concepts
of our video texture generation approach is illus-
trated in Fig. 5. The whole pipeline consists of
three major tasks: (a) determination of overlap-
ping region, (b) finding minimum cuts for each
horizontal slice, and (c) finding an approximated
minimum cut of the 3D graph (i.e., video data)
based on the results from (b). In this section, we
explain how the overlapping region is determined
and how a simplified graph cut algorithm is applied
to seamlessly stitch firstly two still 2D images and
then secondly two videos sequences. Our goal is to
generate seamlessly-looping video textures.

3.1 Overlapping Region Determination

The input image sequence is generally as short as
less than 150 frames due to the panning camera
motion. The length of the available input sequence
is roughly inversely proportional to both the area
of the specified animated region and the speed of
the camera rotation. Sufficient image overlapping

2

3

8

9

10

2

1

7

8

6

2

2

3

6

7

3

5

4

2

8

5

6

4

3

2

4

3

3

5

8

5

6

4

6

5

6

8

7

4

2

A B

2

2
0

3

3

3

3

2

6

2

0

5

4

1

2

2

4

3

1

5

2

0

0

2

1

0

1

6

3

4

5

1

2

1

1

4

5

4

5

1

4

4

2

5

A B

Figure 6: Left: a simplified example of two overlapping

images A and B with three-pixel width overlapping

region, where numbers denote the color intensities.

Right: the constructed weighted graph of the overlap-

ping region. The bold grey poly-lines indicate one of

the possible cutting path for this example.

of the starting and ending portions of the video
sequence is critical to the quality of stitching result,
but too much overlapping region would greatly slow
down the optimum cut-surface search. Our goal to
minimize the overlapping region much as possible,
and yet the region potentially contains the mini-
mum cut.

The average intensity difference of all the image
pixels in the overlapping region is calculated for
various overlapping widths. Let d̄k denote the av-
erage intensity difference, where k indicates the
width (i.e., the number of image frames) of the
overlapping region. If the input image sequence
has T frames, then by default, the program tests
various overlapping widths starting from bT

4 c to
b 3T

4 c. The optimal overlapping width is defined by
the minimum average intensity difference between
the starting and ending portions of the video. How-
ever, user may also specify the minimum number
of frames M of the resulting video texture. This is
to ensure the long periodic motion characterizing
the object’s movement will be kept in the resultant
video texture. In summary, our task is to find an
optimal overlapping width v, i.e.,

v = arg min
k
{d̄k : k = (1..bT −M

2
c)}

3.2 Seamlessly 2D Stitching

In the next step, the program looks for a set of
best seamless stitching paths for each horizontal
slice of the determined overlapping region. The
concept is illustrated in Fig. 5(b). The task is
equivalent to finding minimum cuts in a converted
2D weighted graph. Figure 6 illustrates a small and
grey scale example, where black and grey numbers
stand for the image intensity values of image A
and B, respectively. In this example two images A
and B are to be stitched side by side, the goal is
to find a cut-path from the top of the images to
the bottom. After performing this cut, the color

2

2
0

3

3

3

3

2

6

2

0

5

4

1

2

2

4

3

1

5

2

0

0

2

1

0

1

6

3

4

5

1

2

1

1

4

5

4

5

1

4

4

2

5

0 0 0 0

s

0 0 0 0

e

Figure 7: A directed weighted graph for the same

example of Fig.6.

difference between the neighborhood-pixels (i.e.,
pixels in image A and pixels in image B) along the
cut-path should be a minimum. In other words,
it is to look for a least noticeable seam within the
overlapping areas. We construct a weighted graph
for the overlapping area where the nodes are the
image pixels and the weight of each edge represents
the color differences between two nodes. The cost
of a cut is defined as the sum of all the edge weights
in the cut. However, one thing to note is that
only one of the two dashed edges at each pair of
vertices would be taken into account depending on
the direction of the cut path. The bold grey poly-
lines indicate one possible cutting path, where the
cost can be calculated as (3 + 3 + 6 + 2 + 3 + 2 +
0 + 2) = 21.

In order to visualize the ‘implement’ concept of
finding the minimum cut of a graph for our case,
we may transform the graph to a directed weighted
graph as shown in Fig. 7. The task is then equiva-
lent to finding a minimum-weight path from vertex
s to vertex e. Viterbi algorithm was implemented
to efficiently find the path of minimum weight in
such a weighted graph. In order to extend the
graph cut concept to video (i.e., a 3D data set),
the program not only stores the minimum-weight
path but also other paths having relatively smaller
weights. Based on our experimental experiences, it
is practical and sufficient to stores one minimum-
weight path for each possible starting option. If
two images have v-pixel width overlapping, then
there are v+1 possible starting options, and hence
v + 1 paths will be stored for later calculations. In
our simple example, since the overlapping width
equals to three pixels, four best seamless stitching
paths will be stored.

3.3 Seamlessly 3D Stitching

The determined overlapping region is shaded in
grey in Fig. 5. We may consider it a gridded vol-
ume data. Each grid point contains two intensity

values, referring to image pixels in the starting
and ending portions of the video accordingly. We
use (x, y, t) to indicate a pixel location in a video,
where t stands for the tth frame. The coordinate
system is depicted in Fig. 8(left). For each hori-
zontal slice (i.e., for each y) of this volume data,
the program perform the 2D stitching algorithm
described in Subsection 3.2. Multiple cut paths
having relatively small costs were identified and
stored for consideration.

The final cut-surface is the union of the subset of
cut paths obtained at each horizontal slice. The
task at this stage is to choose a best cut path at
each slice such that all together they form a good
approximation of the min-cut surface. Again, we
may transform this problem into finding a minimum-
weight path in a weighted simple graph. Let each
vertex denote a cut path in one of the slice. Each
pair of successive slices form a bipartite graph,
which is a subgraph of the entire weighted simple
graph to be processed. The weight of an edge is
defined as the sum of intensity differences of all the
pixels enclosed by these two cut paths between two
successive horizontal slices. Figure 8(right) the re-
gion enclosed by two cut paths is shown as dashed
area, where the black path belongs to the upper
slice and the grey path belongs to slice beneath
it. Viterbi algorithm is performed here to find the
minimum-weight path and hence the optimal cut-
surface to stitch the starting and ending portions
of the video sequence.

Figure 9(left) illustrates one image frame from the
resulting video texture of water fountain example.
Since that the major movement direction of water
in this case is vertical, the tidy horizontal strip
artifact caused by processing horizontal slices be-
fore finding optimal 3D graph cut becomes more
obviously visible. An alternatively approach to
reduce such artifact is to process vertical slices in
step Fig. 5(b) instead. That means, instead of pro-
cessing xt-plane for each y, as shown in Fig. 8(left),

t

x
y

Figure 8: (Left) The coordinate system used to identify

a pixel in the overlapping region. (Right) A cut path

in each slice is represented by a vertex in a weighted

simple graph. The weight of an edge connecting two

vertices is defined as the sum of intensity differences

of all the pixels enclosed by the associated cut paths

between two successive slices.

Horizontal slice 2D graph cut Vertical slice 2D graph cut

Figure 9: Image frame from the resulting video texture

of water fountain example. Left: result of horizontal

slice 2D graph cut approach, where the tidy horizontal

strip artifact is enclosed by circles. Right: result of

vertical slice 2D graph cut approach, where the strip

artifact is less visible.

program first processes yt-plane for each x and
then obtains an optimal 3D graph cut within such
overlapping region. The result obtained by this
alternative approach is illustrated in Fig. 9(right),
where the strip artifact is less visible.

4 Program User Interface

The developed program accepts MPG files as in-
put. The graphical user interface of our program
is shown in Fig. 10. After video registration and
panoramic image stitching, users are able to view
different portions of the resulting panoramic image
by mouse drag. While navigating the panorama,
users are able to specify regions(s) on the panoramic
image for purposes such as video texture genera-
tion and moving object removal. A new window
will pop out displaying each of the enclosed regions.
The generated video textures will be played contin-
uously also in those pop-out windows. Users may
decide whether to embed those video textures into
the final animated panorama based on the visual
result of each resulting video texture.

Figure 10: The graphical user interface of our program.

Original
sequence

Video
texture

Image
size

Computation
time

Fountain1 115 frames 23 frames 247 x 362 45 seconds

Straws 80 frames 22 frames 180 x 210 9 seconds

105 frames 27 frames 382 x 209 36 seconds

Wave 283 frames 243 frames 612 x 292 112 seconds

Fountain2

Table 1: Information of the input and output videos.

5 Results

The program was written in Borland C++ Builder
6.0. The experiments were performed on Windows
XP (Service Pack 3) operating system running on
a Intel(R) Core(TM) i7 CPU 920 2.67 GHz with
3G of RAM. Sony DCR-SR62 digital video camera
was used to capture the input video. The im-
age resolution has been set to 480(width) × 720
(height) pixels with frame rate equal to 30 frames
per second. The computation time for video regis-
tration and image stitching together is between 3
and 7 minutes depending on the number of image
columns assigned to perform registration. This is
considered acceptable if comparing to panoramic
video texture, which would take hours to process.

Figure 11 shows four results of the generated video
textures. The original fountain sequence extracted
from the input video consists of 115 images of size
247 × 362 pixels. The resulting video texture has
23 frames. The video texture computation time
for this example is 45 seconds. Every 4th frame of
the resulting fountain texture sequence is shown in
Fig. 11(left). Another three examples are another
fountain, waving straws, and ocean wave shown
in the second, third, and forth columns, respec-
tively. Among them, fountain and straws were
extracted from the same panorama video. The
video information of all these examples and the
computation times are summarized in Table 1. We
aim to produce video textures consisting of small
number of image frames unless user has specified a
preferred minimum video texture length. For the
wave example, since a complete periodic motion
of the ocean wave takes about six seconds in this
case, it is reasonable to constraint the length of
the resulting video texture to be greater than 180
frames.

6 Conclusion

This paper presented a newly developed software
program, which takes a single video sequence cap-
tured by panning the camera, and generates an ani-
mated panorama. The concept is to create a cylin-
drical panoramic image embedded with multiple
video textures. The animated visual effects of our
approach are comparable to results of panoramic

video texture, which has been known a time-con-
suming task. The contributions of this work are
as follows: (1) an approach of finding an approxi-
mated optimal cut-surface in a video sequence (i.e.,
a 3D space-time volume) has been proposed and
implemented, thus the animated panorama can be
generated within a practically acceptable time; (2)
an image inpainting method has been developed
which allows users to eliminate the undesired mov-
ing objects in the scene; and (3) a virtual reality
player has been established which is capable of
playing the resulting animated panorama.

7 Acknowledgment

This project is mainly supported by National Sci-
ence Council (grand no. NSC 99-2221-E-197 -024)
and partial experiments were sponsored by MOEA
(ministry of economics affairs) project 98-ec-17-A-
02-01-00809.

References

[1] A. Agarwala, C. Zheng, C. Pal, M. Agrawala,
M. Cohen, B. Curless, D. Salesin and
R. Szeliski. Panoramic Video Textures. In
Proc. SIGGRAPH 2005, Los Angeles, USA,
August, 2005, pages 821-827.

[2] S. E. Chen. QuickTimeVR - an image-based
approach to virtual environment navigation. In
Proc. SIGGRAPH’95, Los Angeles, California,
USA, August, 1995, pages 29-38.

[3] A. Criminisi, P. Perez and K. Toyama. Region
filling and object removal by exemplar-based
image inpainting. In IEEE Trans. Image Pro-
cess., vol. 13, pages 1200-1212, 2004.

[4] A. Finkelstein, C.E. Jacobs and D.H. Salesin.
Multiresolution video. In Proc. SIGGRAPH 96,
New Orleans, Louisiana, USA, August, 1996,
pages 281-290.

[5] F. Huang, R. Klette and K. Scheibe. Panoramic
Imaging: Sensor-Line Cameras and Laser
Range-Finders. Wiley, West Sussex, England,
2008.

[6] M. Irani and P. Anandan. Video indexing based
on mosaic representation. In Proc. IEEE 86, 5,
pages 905-921, 1998.

[7] D. Kimber, J. Foote and S. Lertsithichai. Fly-
about: spatially indexed panoramic video. In
Proc. ACM MULTIMEDIA’01, pages 339-347,
2001.

[8] V. Kwatra, A. Schodl, I. Essa, G. Turk and
A. Bobick. Graphcut textures: image and

Figure 11: Four video texture examples. Every 4th, 4th, 3rd, and 35th frame of fountain1, fountain2, straws, and

wave video textures are shown from left to right, respectively.

video synthesis using graph cuts. In Proc.
SIGGRAPH 03, San Diego, California, USA,
July, 2003, pages 277-286.

[9] S. Nayar. Catadioptic omnidirectional cameras.
In Proc. CVPR’97, San Jaun, Puerto Rico,
USA, June, 1997, pages 482-488.

[10] U. Neumann, T. Pintaric and A. Rizzo. Im-
mersive panoramic video. In Proc. ACM MUL-
TIMEDIA’00, pages 493-494, 2000.

[11] A. Schödl, R. Szeliski, D. H.Salesin and
I. Essa. Video textures. In Proc. SIGGRAPH

2000, New Orleans, Louisiana, USA, July,
2000, pages 489-498.

[12] Y. Wexler, E. Shechtman and M. Irani. Space-
time completion of video. In IEEE Trans.
Pattern Anal. Mach. Intell., vol. 29, pages 463-
476, 2007.

