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Abstract. Consider a simple polygon P and a point s on the frontier
∂P of P . For any real δ > 0 there exists a shortest path ρ inside of P such
that s is on the path ρ, and for each point p in ∂P , there exists a point
q in ρ at Euclidean distance less than or equal δ to p such that the line
segment pq is in P . Such an optimum path ρ is called a shortest route for
∂P visibility under δ-visibility that starts at point s on ∂P . We provide
an approximation algorithm (which belongs to the class of rubberband
algorithms) for finding such a path ρ in O(n2) run time, where n is the
number of vertices of a given simple polygon P . The run time does not
depend on δ or on the start point s.

1 Introduction

In 1973, Victor Klee proposed the following Art Gallery Problem: How many
(non-moving) guards are needed in a polygon such that each point in the polygon
can be seen by at least one of those guards [5]? In 1988, Wei-Pang Chin and
Simeon Ntafos proposed the Watchman Route Problem (WRP): Find a shortest
route inside of a simple polygon such that each point in the polygon can be seen
from at least one point on the route [2]. Since then, the WRP and its variants
have attracted much interest in computational geometry; for example, see [1, 3,
9, 10, 12, 16].

The proposed algorithms are typically under the assumption that the guard
or watchman has infinite visibility. In the real world, it is more reasonable to as-
sume finite visibility for a person or a robot. That is, viewing of a guard/watchman
is limited by Euclidean distance δ > 0. Such a constrained visibility is called δ-
visibility, and it was first proposed by Shin [15]. Later, Ntafos proposed the
WRP under limited visibility [11]. References [6, 7] presented linear-time algo-
rithms for computing a δ-kernel or an edge visibility polygon. References [1, 3,
14] considered static point distribution under δ-visibility.

In this paper, we present an approximate rubberband algorithm for comput-
ing a shortest route ρ for frontier δ-visibility for a given simple polygon P and
a start point s such that for each point p in ∂P , there exists at least a point q
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in ρ such that the line segment pq is in P , with de(p, q) ≤ δ (where de is the
Euclidean metric), and ρ passes through s.

The rest of the paper is organized as follows: In Section 2, we present defi-
nitions and lemmas used in this paper. We describe our algorithm in Section 3
and analyse the time complexity and approximation factor in Section 4. Some
experimental results will be presented in Section 5. Section 6 concludes the pa-
per.

2 Preliminaries

In this paper, P denotes a simple polygon (i.e. a 2-dimensional region bounded
by a simple polyline). Let S1 and S2 be two subsets of P . Let v be a vertex of
P , and e an edge of P . By de(v, e) we denote the Euclidean distance between v
and e, that is, de(v, e) = min{de(v, u) : u ∈ e}.

Definition 1. S2 is S1-visible if, for each point p ∈ S2, there exists at least a
point q ∈ S1 such that the line segment pq is in P . If S2 is S1-visible and S1

is S2-visible, then we say that S1 and S2 are visible from each other. If there
do not exist non-empty subsets S′1 ⊆ S1 and S′2 ⊆ S2 such that S′1 and S′2 are
visible from each other, then we say that S1 and S2 are not visible from each
other. Otherwise, we say that S1 and S2 are partially visible from each other.

If S1 and S2 are visible from each other then they are also partially visible
from each other.

Definition 2. Let δ > 0. If for each point p ∈ S2, there exists at least a point
q ∈ S1 such that de(p, q) ≤ δ and pq is in P , then we say that S2 is δ-visible
from S1.

The main algorithm in this paper is for computing an approximate shortest route
ρ such that the frontier ∂P of P is δ-visible from ρ

In Definition 2, if S1 is a singleton that contains a vertex vi of polygon P ,
then the set of points which are δ-visible from vi is also called the δ-visible region
of vi, denoted by V δi :

V δi = {p : pvi ⊆ P ∧ de(p, vi) ≤ δ}

Let 〈v0, v1, v2, . . . , vn−1〉 be the sequence of all vertices of the simple polygon
P describing ∂P in counterclockwise order.

Lemma 1. If pi ∈ V δi then the edge vivi+1 is δ-visible from pipi+1.

Proof. Let line segment vix (or vi+1x
′) be perpendicular to pipi+1 at x (or x′)

(see Figure 1). It is clear that de(vi, x) ≤ de(vi, pi) ≤ δ and de(vi+1, x
′) ≤

de(vi+1, pi+1) ≤ δ. If both x and x′ are in between pi and pi+1, then for each
q on the edge vivi+1, the Euclidean distance between q and pipi+1 must be less
than δ. If x or x′ is not in between pi and pi+1, then it is still true that for each
q on the edge vivi+1, the Euclidean distance between q and pipi+1 must be less
than δ.
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Fig. 1. Illustration for Lemma 1

For each vertex vi of the simple polygon P , we compute its δ-visible region
V δi . We also call each visible region a cage. By Lemma 1, a shortest route ρ for
δ-visibility from ∂P is a a shortest route that passes through (that is, visits) the
start point s and each δ-cage V δi in order 〈V δ0 , V δ1 , V δ2 , . . . , V δn−1〉.

If vi is a reflex vertex (i.e., its internal angle is greater than 180◦), let vj
and vk be two non-reflex vertices such that vj , vi and vk are located around ∂P
counterclockwise, and there are no other non-reflex vertices between vj (or vi)
and vi (or vk). Let pj ∈ V δj and pk ∈ V δk , ρ(pj , pk) the Euclidean shortest path
between pj and pk inside of P , and ∂P (vj , vk) the section of ∂P from vj to vk
counterclockwise.

Lemma 2. ∂P (vj , vk) is δ-visible from ρ(pj , pk).

Proof. If j = i−1 mod n and j = i+1 mod n, then there may be the following
two cases:

Case 1. V δj and V δk are non-visible. In this case, ρ(pj , pk) is a polyline con-
sisting of three points pi−1, vi and pi+1 (see Figure 2). It is clear that vi−1vi (or
vivi+1) is pi−1vi (or vipi+1) δ-visible.

Case 2. V δj and V δk are partially visible (see Figure 3). By Lemma 1, vi−1vi+1

is δ-visible from pi−1pi+1. Note that ∂P (vj , vk) is inside the polygon vi−1vi+1pi+1pi−1,
thus, ∂P (vj , vk) is δ-visible from ρ(pj , pk).

vi

pj

pk

p
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vj

Fig. 2. Illustration for Case 1 of Lemma 2.
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Fig. 3. Illustration for Case 2 of Lemma 2.

Analogously, if j 6= i− 1 mod n or j 6= i+ 1 mod n, then the lemma is still
correct.

By Lemmas 1 and 2, a shortest route ρ for δ-visibility from ∂P is a a shortest
route that passes through the start point s and each δ-cage V δi in order, and
ρ must pass through each reflex vertex. Thus, we do not need to compute the
δ-cage V δi for each reflex vertex vi.

Let vi be a non-reflex vertex of the simple polygon P . If P\V δi is a simply
connected region, then V δi is called a Type 1 δ-visible region. vi is called Type 1
non-reflex vertex. Otherwise, V δi s called a Type 2 δ-visible region. vi is called
Type 2 non-reflex vertex.

For example, in Figure 4, V δj is a Type 1 δ-visible; both V δi and V δk are Type
2 δ-visible regions. It is clear that for each Type 2 δ-visible region V δi , there
exists a maximal 0 < δi ≤ δ such that the δi-visible region of vi is a Type 1
δi-visible region, denoted by V ′δi . In Figure 4, V ′δi and V ′

δ
k are Type 1 δ-visible

regions. It is clear that V ′δi ⊂ V δi and V ′
δ
k ⊂ V δk in Figure 4 while in Figure 5,

V ′
δ
i = V δi .

vi

vk

vj

Fig. 4. Examples of δ-visible regions of Type 1 or 2.
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Fig. 5. Illustration for Lemma 3.

Lemma 3. For each vertex vi, if its δ-visible region V δi is a Type 2 δ-visible re-
gion, then each shortest route ρ for ∂P visibility under δ-visibility passes through
V ′

δ
i .

Proof. By the definition of Type 2 δ-visible region, P\V δi is not a simply con-
nected region. Thus, ρ must pass through V ′

δ
i . Otherwise, ρ must not enter a

simply connected subregion P ′ of P (See Figure 5). Thus, each edge of P ′ is not
δ-visible from ρ. This is a contradiction to ρ being a shortest route for δ-visibility
from ∂P .

For each reflex vertex v, if there does not exist a δ-visible region V δi of vertex
vi 6= v such that v ∈ V δi , then v is called a Type 1 reflex vertex. Otherwise, v is
called a Type 2 reflex vertex.

X

Y
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p

q

p’

F1
F2

Fig. 6. Illustration for Lemma 4.
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Lemma 4. Let F1 and F2 be the foci of an ellipse E. If E intersects a cycle
C with a single point p, then for each point p′ in C, de(F1, p

′) + de(F2, p
′) ≥

de(F1, p) + de(F2, p) (See Figure 6).

Proof. In Figure 6, let line segment F1p
′ intersects the ellipse E at point q, then

we have that de(F1, p
′)+de(F2, p

′) ≥ de(F1, q)+de(F2, q) = de(F1, p)+de(F2, p).

3 Algorithm

At first we describe a preprocessing step; see Fig. 7. Let G = [V,E,w] be an
undirected weighted graph, where V is the set of vertices of the simple polygon
P ; for every two vertices u, v ∈ V , u and v is connected by an edge uv ∈ E iff
u and v are visible; the weight of uv is defined as w(uv) = de(u, v).

The main algorithm in Fig. 8 is now for computing a shortest route ρ such
that ρ starts at s, then passes through a sequence of δ-cages in order.

Our algorithm follows general rubberband algorithm (RBA) design princi-
ples; see [8, 9, 13] for RBAs.

First we create an initial route ρ0 = 〈p0, p1, p2, . . . , pm−1〉. Then we enter a
loop as follows: for every three consecutive vertices pi−1, pi, pi+1 of the route, we
update pi by replacing it by an optimal point qi such that

de(pi−1, qi) + de(pi+1, qi) = min{de(pi−1, q) + de(pi+1, q)}

where q is in a line segment or a section of a circle, for i = 1, 2, . . . ,m, and
indices mod m. We terminate the loop when the difference in length between
the current route and the previous route is sufficiently small (that is, it is less
than or equals an accuracy parameter ε > 0).

The algorithm consists of two major steps. In the initial step, we create an
initial route. We start at s, scan the sequence 〈v0, v1, . . . , vn−1〉 of vertices of P

Procedure 1 (Compute type of a non-reflex vertex)
Input: δ > 0, G and a non-reflex vertex vi of P .
Output: the type of vi.

1: Let N(vi) be the set of neighbours of vi in G.
2: for each vj ∈ N(vi)\{vi−1, vi+1} = N ′(vi) do
3: if de(vj , vi) < δ then
4: Report “vi is Type 2”.
5: else
6: if vj , vj+1 ∈ N ′(vi) and de(vi, vjvj+1) < δ then
7: Report “vi is Type 2”.
8: end if
9: end if

10: end for
11: Report “vi is Type 1”.

Fig. 7. Computation of the type of a non-reflex vertex.
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Algorithm 1 (Label vertices and compute δ-cages)
Input: δ > 0, the start point s, the simple polygon P .
Output: For each vertex vi of P , label it as Rv1 (i.e., reflex, Type 1), Rv2 (i.e., reflex,
Type 2), NRv1 (i.e., non-reflex, Type 1), or NRv2 (i.e., non-reflex, Type 2). Compute
δ-cage V δi if vi is labelled as NRv1.

1: Label the start point s as Rv0.
2: Start from s, let the sequence of vertices of P counterclockwise as V =
{v0, v1, v2, . . . , vn−1}.

3: for each i ∈ {0, 1, . . . , n− 1} do
4: if vi is a reflex vertex then
5: Label vi as Rv1 (This label will be updated if it is Type 2, see Line 13).
6: else
7: if vi is a Type 2 non-reflex vertex then
8: Label vi as NRv2.
9: else

10: Label vi as NRv1.
11: Compute δ-cage V δi .
12: if V δi contains a reflex vertex vj then
13: Label (or update the label of) vj as Rv2.
14: end if
15: end if
16: end if
17: end for

Fig. 8. Labelling of vertices and computation of δ-cages.

counterclockwise. If the current vertex vi is labelled as Rv1 (i.e., Type 1 reflex
vertex) or NRv2 (i.e., Type 2 non-reflex vertex), then add vi into a queue Qρ0

of current vertices of ρ0 (the first element of Qρ0 is s); else if it is labelled as
Rv2 (i.e., Type 2 reflex vertex), then ignore it; else it must be labelled as NRv1
(i.e., Type 1 non-reflex vertex), then compute a point v′i in the arc portion of
the frontier of δ-visible region V δ (see the explanation after Lemma 4). Then
let v′i be a vertex of ρ0 (i.e., add v′i into a queue Qρ0). By Lemma 4, v′i can
be computed by the latest vertex added in the queue Qρ0 of current vertices of
ρ0, the arc portion and another point u that can be defined as follows: if next
scanned vertex vi+1 is labelled as Rv1 or NRv2, then let u be vi+1; else if next
scanned vertex vi+1 is labelled as Rv2, then ignore it and scan next vertex of P ;
else next scanned vertex vi+1 must be labelled as Rv1, then let u be a point in
the perpendicular bisector of the edge vivi+1 (see Figure 9).

For each point v in the queue Qρ0 of vertices of ρ0, put the second label of
it as follows: If v = vi is labelled as Rv1 or NRv2, then put its second label as
r1i; else if v is taken in a perpendicular bisector, then put its second label as
r2; else if v = vi is taken in an arc portion of the frontier of δ-visible region V δi ,
then put its second label as r3i (or r3i1 and r3i2 if there are two such vertices).

According to Section 2, the route ρ0 must pass through each δ-cage in order.
Thus, each vertex with second label r3 maps to a cage. It is possible that an edge
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vi’

Fig. 9. Illustration for taking a point u in a perpendicular bisector of the edge vivi+1.

of the route may intersect two vertices with a cage. The vertices with second
labels r1 or r2 must be inside of P and the total number and coordinates (i.e.,
the location) of them may be changed in the iteration step that is described
below.

In the iteration step, we update the current route by decreasing its length
in each iteration. For every three continuous vertices of the route, we fix the
first and third vertices, update the second one so as to obtain a shorter portion
of the route. We start at the initial route ρ0 = 〈p0, p1, p2, . . . , pm−1〉. For every
three continuous vertices pi, pi+1 and pi+2, Case 1, pi+1’s second label is r3k (or
r3k1, or r3k2). If line segment pipi+2 intersects δ-cage V δk with one point or two
points, then update pi+1 by replacing it by the single intersection point or any
one of the two intersection points and keep its second label as r3k (or r3k1, or
r3k2). Otherwise, line segment pipi+2 does not intersect δ-cage V δk at all. Then
we compute an optimal point in the arc portion of the frontier of δ-cage V δk . We
update pi+1 by replacing it by this optimal point and keep its second label as
r3k. Case 2, pi+1’s second label is r1 or r2. If pi, and pi+2 are visible, then delete
pi+1 from the set of vertices of current route ρ. Otherwise, compute an optimal
point p in the ∂P such that de(pi−1, p) + de(pi+1, p) is minimal and update pi+1

by replacing it by p and keep its second label the same as pi+1’s second label.
Repeat the iteration step until the difference of the length of current route and
the length of the previous route is sufficiently small (i.e., less than or equals an
accuracy parameter ε0 > 0).

The initial route may not be completely contained in P , but the output route
is completely in P .

4 Analysis

This section analyses the time complexity of our algorithm. The visibility graph
G = [V,E,w] can be computed in O(|V |log|V | + |E|) time [4]. It is clear that
Procedure 1 can be computed in O(n) time. Thus, the types of all vertices of
the simple polygon P can be computed in O(n2) time, where n is the number
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of P . Algorithm 1 can be computed in O(n) time. Thus, the total preprocessing
time is O(n2).

The main algorithm is an example of a rubberband algorithm that runs
in κ(ε)O(n) (see, for example, [9, 13]), where κ(ε) = L0−L

ε , and L0 or L are
the length of the initial or the output route, respectively. Our approximation
algorithm obtains an upper bound Lu of the length of the true route. We may
employ a convex polygon with m−1 vertices to approximate each cage and apply
the algorithm for solving the Safari Route Problem to obtain a lower bound Ll of
the length of the true route (the time complexity is O((n+m)2log(n+m)); see
[3]). Thus, our algorithm has an approximation factor of Lu/Ll. Experimental
results in the next section show that the route obtained by our algorithm is very
close to the true route after 200 iterations for the given example.

5 Experimental Results

Table 1 shows the results obtained by the main algorithm when the input simple
polygon P is a regular n-gon. Results indicate that the route is very close to the
true route after only 200 iterations.

n L0 iterations δ0 δ50 δ100 δ200
1000 14969.9626681692 554 1.0000633331 1.0000008158 1.0000001081 1.0000000031

2000 29969.9438111304 945 1.0000352022 1.0000011979 1.0000003088 1.0000000370

5000 74969.9324651109 1980 1.0000154133 1.0000010049 1.0000004172 1.0000001248

10000 149969.92867794 3364 1.0000080563 1.0000007009 1.0000003510 1.0000001456

Table 1. The ns are the numbers of vertices of a regular polygon P . The L0s are the
lengths of initial routes. By iterations we list the numbers of iterations to obtain true
routes. By δi = Li/L we characterize the i-the iteration, where Li and L are the length
of the route obtained in the i-th iteration or of the true route, respectively. We only
show values for i = 0, 50, 100, 200.

Table 2 shows results obtained for different values of δ. The input is the
simple polygon shown in Figure 10.

δ L0 iterations L0/L

1 98.7989122759 17 1.0000279637

1.5 92.7823178547 21 1.0000933844

2 86.9251557575 25 1.0002145610

2.5 81.2466385573 29 1.0003975345

3 75.7705619909 34 1.0006375863

Table 2. Column iterations are the minimum numbers of iterations sufficient to obtain
the true routes. L0 or L are the lengths of initial or true routes, respectively.
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Fig. 10. An example of a non-convex simple polygon as used in our experiments.

6 Conclusion

In this paper we presented an approximate (rubberband-type) algorithm for
computing a shortest route ρ for δ-visibility of the frontier ∂P of a given simple
polygon P , a start point s, and δ > 0. The algorithm has a run time in O(n2),
where n is the number of vertices of polygon P . Experiments indicate that an
approximate route is very close to the true after a relatively small number of
iterations.
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