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Abstract. In environmental surveillance, ecology experts use a stan-
dard tracking tunnel system to acquire tracks or footprints of small ani-
mals, so that they can easily measure the presence of any selected animals
or detect threatened species based on the manual analysis of gathered
tracks. Distinguishing morphologically similar species through analysing
footprints requires a great amount of efforts on observation, even expe-
rienced wildlife experts can not accomplish this task with highly reliable
results. In recent years, image processing technology has become a model
example for applying computer science technology to many other study
areas or industries, in order to improve accuracy, productivity, and re-
liability. In this paper, we demonstrate a model/rule-based method for
automated footprint identification which includes localization and clas-
sification of small species. With appropriate developments or modifica-
tions, this method has certain potential for automated identification of
any species.

Keywords: environmental surveillance, geometric model, rule-based method,
image processing, pattern analysis, automated footprint identification,
track analysis.

1 Introduction

Computer-based system has been a common technique of humankind to perform
activities that have to be repeated numerous times [3], identifying small species
from their footprints is one of such activities. Currently ecological experts need
to spend a lot of effort and time on identifying footprints from in inked tracking
card highly regarded the experts’ knowledge and experiences, and the manual
identification analysis often requires to be repeated over and over again on many
tracking cards. Therefore, we would like to using pattern recognition technology
to provide an automated method to replace or assist the manual identification
analysis. The demand for such systems that can process the automated identi-
fication of species from their scanned footprint images is most likely to increase
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in the future [6]. It becomes essential to have such working application, that can
be properly incorporated into the current system, handles the monotonous jobs,
and outputs accurate and reliable analysis result.

However, the presentations of footprints are massively varied, the “puzzle”
is that the images of a footprint may have very different appearances (as shown
in Fig. 1). Besides normal footprints, the set of undesirable image data include
“sliding footprints”, “missing toe footprints”, and “overlapped footprints”. Be-
fore any further analysis can be carried out by the automated recognition algo-
rithm, those varied representations of the footprints need to be transformed into
digitalised geometric models. Correctly handling the transformation process is
certainly a difficult task.

(a) (b) (c) (d)

Fig. 1. Samples of mice’s footprints in different situations. (a) Normal front footprint.
(b) Sliding footprint. (c) Missing toe footprint. (d) Overlapped footprints.

In this paper we firstly give the standard geometric models of a common
mice’s footprints. Based on the geometric models, we describe a rule-based track
recognition algorithm that performs automated footprint localization and classi-
fication. It follows three major steps: (1) track acquisition: the current standard
procedure for collecting tracking cards; (2) geometric model isolation: isolate
normal footprints from the massive tracks on a tracking card; (3) algorithm
implementation: defines a set of rules to perform footprints localization and
classification.

2 Track Acquisition

The Tracking Tunnel System is a widely used standard procedure for collecting
tracks of small animals to gain an index of the density of target small species in
New Zealand [1]. It is a cost-effective method to collect tracks of small species
over large areas [8]. Providing reasonable analysis and reliable results on the
estimate of species’ presence plays an important role in ecological research when
ecologists decide to study rare species or assess community composition for en-
vironmental surveillance or pest control [5].

Traditionally, tracks or footprints are collected by this tracking tunnel sys-
tem, and the identification of tracks and footprints is handled manually by ex-
perienced wildlife experts [2]. The basic principle of animal tracking is firstly to
recognise single footprints from a number of unknown footprints, and then to
identify the species based on the analysis of its footprints [8].
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The tracking tunnel system is considered the first step when ecologists would
like to monitor or study on a selected species. The collected tracks or footprints
need to be analysed manually by human experts. In the identification proce-
dure, distinguishing them among many morphologically similar species through
analysing their footprints is extremely difficult, and one single tracking card is
also possible to contain footprints from different species [8]. Our method aims
to ultimately implement an automated recognition process to assist experts in
the current identification procedure.

3 Geometric Model Isolation

First of all, we isolate normal footprints from the massive tracks on a tracking
card. The front foot for a common rat usually has four toes, the hind foot usually
has five toes [8]. The toes of the front foot are evenly distributed around the
central pad. The hind foot normally has three toes bunched in front of the central
pad that can roughly form a straight line. Based on the pervious studies [8]
and our experimental set of tracking cards, we isolated normal footprints from
tracks. The isolated front footprint model is shown in Fig. 2, and the isolated
hind footprint model is shown in Fig. 3.

Analysing the isolated footprints could provide geometric models for both
front and hind footprints. The isolated front footprint has a clear geometric
structure. The toe prints are marked by blue circles, the central pad and acces-
sorial pads prints are marked by red circles. The central pad is distributed in
the middle point of that line segment. The central pad and two accessorial pads
clearly form a triangle. Also there are three straight lines all across the central
pad, they are ’T1’ to ’T4’, ’T2’ to ’A2’, and ’T3’ to ’A1’ (as shown in Figure 4,
left).

Fig. 2. Isolated front footprint model example.

Fig. 3. Isolated hind footprint model example.
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The isolated hind footprint has a similar geometric structure to the front
footprint. However, by contrast it has three toes in the front that can form a
straight line that is parallel with the line formed by the two outer toes. Compar-
ing with the front footprint, it does not only have the three lines we indicated
in the analysis of front footprint, but also it has one extra line, which is ’T5’ to
the middle point of ’A1’ and ’A2’ (as shown in Figure 4, right).

Fig. 4. Left: Geometric model for mice front footprint. Right: Geometric mode for mice
hind footprint.

Since normally every two nearby toes have certain angles in between, a statis-
tic analysis was used to find out the angles between every two nodes of the foot-
print samples. The corresponding statistic analysis of those angles provide us
the following classification rules:

Front or hind footprints classification: for front footprints, the average value
for angle ∠T2CT3 is 46.2◦ in the range from 43.6◦ to 48.9◦; for hind foot-
prints, the average value for angle ∠T2CT3 is 56.1◦ in the range from 53.2◦

to 59.8◦. There is a clear difference between the two ranges.
Left or right footprints classification: if angle ∠A1CT1 is less than angle

∠T4CA2, then this is a left footprint; otherwise, this is a right footprint.

4 Algorithm Implementation

In the algorithm implementation, the filtering procedure is given the name ’pre-
processing’. Since there are too many interest points detected on the input image.
The next challenge would be to filter out insignificant interest points from the
image and to define the areas of interest for further analysis. Therefore, we define
a set of rules for filtering out the irrelevant interest points:

Rule 1. If an interest point indicates a white blob on a dark background (e.g.
a gap between two toes of a footprint), this points should be removed.

Rule 2. If an interest point has a reasonable small radius – less than 6 pixels,
then this point should be removed from list.

Rule 3. If an interest point (A) fully contains another interest point (B): if
interest point B has a radius greater than or equal to 7/10 of the radius of
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interest point A, then remove interest point A; otherwise interest point B
needs to be removed.

Rule 4. If an interest point (A) partially contains another interest point (B): if
the distance between their centres is less than a reasonable length (6 pixels),
then these two interest points are recognised as fully containing each other,
then apply Rule 3 to test them; otherwise remove interest point A from list.

Fig. 5. Left: Detected interest points before preprocessing. Right: Identified areas of
interest after preprocessing.

After the rule-based conditional filtering function is applied, most of the
insignificant interest points can be detected and removed. An example of the
filtering result is shown in Fig. 5.

The left image shows all the detected interest points on the image, and the
insignificant interest points could be the points indicated the same location as
other points did, but it has a slightly different radius, or it is partially contained
by other interest points with an irrespective small radius.

The right image gives the processing results after we applied the filtering
function. Basically all the areas of interest on the image are correctly and com-
pletely recognised by our algorithm.

4.1 Identifying Central Pads and Toes

After the areas of interest have been successfully recognised by the algorithm,
the next step is to identify which areas of interest are more likely to be a central
pad. From analysing the standard models of the front and the hind footprints,
it provides us with the following organised truths:

For accurate matching: a central pad normally has the largest area within
the six times its radius bounded region, and there should be exactly six (for
the front footprint) or seven (for the hind footprint) smaller areas of interest
in that particular region.
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For loose matching: a central pad normally has a radius larger than the av-
erage radius within the six times its radius bounded region, and the number
of areas of interest in this particular region should be greater than or equal
to four, and less than or equal to ten.

Fig. 6. Left: Original image. Middle: Preprocessed image. Right: Central pad recogni-
tion result. Blue circles indicate ’area of interest’; red circle indicate ’recognised central
pad’; green circles indicate distance from the centre of the central pad, each gap rep-
resents one times the radius of the central pad area.

Figure 6 shows the progress of recognizing a possible central pad on an input
image. We use green circles to indicate the distance from the centre of the central
pad, which also is the centre of the possible region for a footprint. From the inside
to the outside boundary, each gap between every two green circles represents the
length of the radius of the central pad area. The outside boundary shows the
region of a possible footprint on the image. This region could be valuable when
human experts decide to do manual additional analysis of the tracking card
image.

4.2 Matching Footprint Models

As the central pad can be recognised, the region of a possible footprint is lo-
cated with a proper boundary, which is six times the radius of the central pad.
The algorithm can then test the interest points within this range whether their
distribution matches the pre-defined model. In order to find the best matches
footprint, we defined a number of rules for the footprint identification process:

Rule 1. Two accessorial pads should be close to the central pad, generally
within the range of three times the radius of the central pad.

Rule 2. Two accessorial pads must have smaller distance to each other than
their distance to other areas of interest in this particular region.

Rule 3. Two accessorial pads need to have the smallest radius among the in-
terest points in the relevant region. Considering the ink of the tracking card
is not stable, the accessorial pads could possibly leave prints appear bigger



7

than they should be. Thus, it is reasonable to define conditions loosely: the
radius of accessorial pads does not need to be the smallest, but only smaller
than the average radius.

Rule 4. Two accessorial pads and the central pad can form a triangle at the
back of the footprint. Each angle inside the triangle should be only smaller
than or equal to 90◦, and the sum of the three angles is exactly 180◦.

Rule 5. A line segment can be drawn between every two toes. The longest line
segment, which is the line between the left and the right outer toes, must
cross the area of the central pad.

Rule 6. If the region with a recognised central pad can not completely match
all the rules, it should be considered and marked as a ’possible region of a
footprint’ on the result image for human experts to review.

Rule 7. If the region with a recognised central pad has more than ten areas of
interest within its considerable range, which is six times the radius of the
central pad, the algorithm should identify this region as an ’unpredictable
region’, and it will refuse to do any further analysis.

5 Conclusion

The experimental result (as shown in Table 1) indicates that the algorithm has
fairly high success rate for sensitive footprint identification and loose-condition
matches for images with clear prints and clean background. The accuracy for
dim background and foreground images is reasonably lower than the results for
images from Group One. In addition, the accuracy for tracking cards with tracks
from unexpected species (e.g. insects) is surprising good; the reason might be
that the track recognition algorithm has a filtering function that filters out all
the tracks with very small regions, which just matches the appearances of insect
tracks.

Table 1. The experimental results for the algorithm accuracy evaluation.

Percentage of Accuracy
Classification Group 1 (72 cards) Group 2 (42 cards) Group 3 (22 cards)

Sensitive matches 77.8 % 61.9 % 68.2 %
Loose matches (True) 85.7 % 68.3 % 80.7 %
Loose matches (False) 16.3 % 31.7 % 19.3 %
Did not detect print 1.4 % 9.5 % 9.1 %
Unidentified print 3.8 % 4.8 % 4.5 %

Notes: ”Sensitive matches” indicates rate of best matched footprints. The correctly

and incorrectly detected possible footprints are assigned as ”loose matches (true)” and

”loses matches (false)”. ”Did not detect print” records no footprints detected for a

card. If the majority of footprints for a card is not detected, then it is recorded as

”unidentified”.
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Comparing with some pervious studies [4, 6–9] in this research field, we come
up with two new ideas for this algorithm:

Rule-based identification. A footprint could be identified being either ”fully
matched” or ”partially matched”, which depends on the degree of matching
the pre-defined rules. Due to the sparse amount of information provided
by the detected interest points, rule-based identification process could be a
key to the shortage of information. Moreover, rule-based identification could
allow developers to add a new rule or modify the existing rules. This provides
a great extensibility to this algorithm.

Geometric models. Footprint geometric models could provide precise math-
ematical relationships among nodes of the standard footprint for any target
species. In practical implementations, numbers, equations and formulas are
always considered useful information for footprint identification.

The experimental results provide positive feedback on the accuracy of this
algorithm; if the image cards have clear prints and clean background, 85.7 % of
them can be detected as ”loosely matched” the pre-defined rules in this algo-
rithm. The identification of individual species comes next in the project.
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