
MAESTRO: Making Art-Enabled Sketches
Through Randomized Operations

Subhro Roy1, Rahul Chatterjee1, Partha Bhowmick1, and Reinhard Klette2

1 Indian Institute of Technology, Kharagpur, India
2 The University of Auckland, New Zealand

subhroroy.iitkgp@gmail.com, rahuliitkgp08@gmail.com, bhowmick@gmail.com

Abstract. Contemporary digital art has an overwhelming trend of non-
photorealism emulated by different algorithmic techniques. This paper
proposes such a technique that uses a randomized algorithm to create
artistic sketches from line drawings and edge maps. A curve-constrained
domain (CCD) is defined by the Minkowski sum of the input drawing
with the structuring element whose size varies with the pencil diameter.
Each curve segment is randomly drawn in the CCD in such a way that
it never intersects itself, whilst preserving the overall input shape. An
artist’s usual trait of making irregular strokes and sub-strokes with vary-
ing shades while sketching, is realistically captured in this randomized
approach. Simulation results demonstrate its efficacy and elegance.

1 Introduction

Non-photorealistic rendering, originated as a promising digital art about two
decades back [CAS97, VG91, VB99], has gained significant impetus in recent
times [Deu10, GG01, LMHB00, MG02, Mou03, RMN03]. The works are mostly
based on simulating the physical model through frictional coefficient, viscosity,
smear factors, force factors, etc. [KHCC05, KNC08, KCC06, OSSJ09, PSNW07].
The factors of irregularity and obscurity arising out of an artist’s creative mind—
which prevail in an artistic creation and hence differentiate it from a machine-
generated product—are, however, seldom noticed in the existing approaches. In
fact, unless some (artistic) randomization is imparted, it is practically impossible
to simulate an artistic creation, since the mystical, fanciful mind of an artist can
hardly be scientifically modelled.

To incorporate a randomization factor while sketching a figure out of a set
S of (irreducible) digital curve segments, corresponding to a real-world object,
a novel simulation technique is proposed (Fig. 1). The fact that an artist often
uses irregular strokes and sub-strokes with varying shades and intensities while
sketching is rightly captured in our randomized curve sketching. In particular,
some sketched segments get lightly shaded in our technique compared to other
heavily-shaded ones, and a sub-segment also may be lighter or deeper in shade
compared to the rest of the segment—in a pseudo-random or mystic manner—
which characterizes the novelty of our algorithm.

Preliminaries. A linear-time algorithm to generate random digital curves
in a closed canvas is proposed recently in [BPR10]. The work proposed here
rests on the same theoretical foundation, but extends the algorithm further for

2 Subhro Roy, Rahul Chatterjee, Partha Bhowmick, and Reinhard Klette

Fig. 1. Proposed algorithm. Left-top: Input image. Left-mid: After edge detection. Left-
bottom: Skeletal image. Right: Final output by our algorithm, which resembles a crayon-
drawn line sketch on a piece of handmade paper.

drawing random curves in CCD. Both the grid-point model and the cell model
in Z2 are adopted in our work for their theoretical correspondence [KR04].

The input (thinned) digital image is first decomposed into a set S = {Ch}Nh=1

of digital curves, each of which is simple and irreducible [KR04]. For each curve
Ch, we prepare its curve-constrained domain (CCD), namely Dh. The domain
Dh signifies the region in which the segment (corresponding to Ch) sketched by
the pencil will lie. Figure 2 illustrates a simple case where the segment starts
from the point p and ends at the point q. Notice that the points p and q lie in
two cells of Dh. Vertices and centres of cells in Dh are assumed to be grid points
in Z2, also simply called points for brevity in this paper. For each point p ∈ Ch,
we take its Minkowski sum [KR04], namely Mp = {q : q ∈ Z2∧||p−q|| ≤ bt/2c},
t being the width/thickness of the pencil-tip; then the domain Dh corresponding
to Ch is defined by the union

⋃
p∈Ch

Mp.

2 Curve Randomization in CCD
Contrary to polygon-generation algorithms [ZSSM96, AH96] that work with in-
put vertices generated randomly but a priori, our algorithm generates new points
on the fly (also called online in [KR04]) while creating a digital curve ρ. The curve
ρ starts from p = p1 and randomly chooses all the successive points, eventually
ending at the destination point q (Fig. 2). The difficulty lies in making ρ one
pixel wide everywhere without intersecting itself, thus becoming irreducible and
simple. This calls for detecting every possible “narrow-mouthed” trap formed
by the previously generated part of ρ, which, if entered into, cannot be exited
without touching or intersecting ρ.

Principle of the Algorithm. A cell c (of a CCD, say, Dh) is said to be
occupied if and only if the generated part of curve ρ already passes through c ;
otherwise it is free. We use the following parameters for a cell c (see Fig. 2):

MAESTRO: Making Art-Enabled Sketches Through Randomized Operations 3

c c(0)

c(1)c(2)c(3)

c(4)

c(5) c(6) c(7)

(a)

R

L

R L

R

L

RL

L

L

L

L

L L L

L

L

L

LL

RR

R R

RR

R R

R R

R R

(b)

p

q

(c)

p

q

(d)

Fig. 2. The CCD and its initialization. (a) 8-N of a cell c. (b) Three types of turns with
four combinatorial cases each. The current cell ci is shown in blue, and the previous
and the next cells in faded blue. (c) Minkowski sum (in blue) of a typical (simple
and irreducible) digital curve (deep green) from p to q; red lines show the borderlines
through p and q for CCD initialization. (d) Cells occupied (β > 0) by the initialized
curve are shown in violet.

The blocking factor β(c) is a 5-bit number given by the combinatorial ar-
rangement of the occupied and the free cells in N1(c). The most significant bit
of β(c) corresponds to c itself, and the other four bits correspond to the four cells
lying right, top, left, and below of c in that order. If a cell in N1(c) is occupied,
then the corresponding bit of β(c) equals 1, otherwise 0. Thus, β(c) = 0 implies
that ρ is not (yet) passing through any cell in N1(c). If 0 < β(c) < 16, then c is
free but one or more cells in A1(c) are occupied. If β(c) ≥ 16, then c is occupied.

The directional label δ(c) is used if 0 < β(c) < 16 which takes its value then
from {L, R, B}, with the interpretation: L = left, R = right, B = both left and
right, depending on the position of c relative to the direction of traversal of ρ
in the cell(s) of A0(c). We use X for the initialized value. While the construction
of ρ is in progress, blocking factors and directional labels have interim values,
which are updated and become final values when ρ is finished.

Initialization of CCD. The initialization of a CCD is illustrated in Fig. 2.
The cells cp and cq, corresponding to p and q, are obtained first. The initialized
curve ρ is assumed to enter c(6)q from its left edge, and then progresses through
the border cells, to finally reach the cell cp so that Cq has its label δ = B. By
this initialization, cq is free and has B as δ-value, whereas all other border cells
are occupied, the (actual) random curve starts from p, and the free cells, adja-
cent to the border cells, have L or R as δ-value. While generating the random

4 Subhro Roy, Rahul Chatterjee, Partha Bhowmick, and Reinhard Klette

L

LLL

L L

L

ci

L

LL

L L

L

L

LL

L L

L

L L

L

L

L L

L

L

B B

(a) (b) (c) (d)

ci

Fig. 3. Distinguishing the formation of a hole (a,b) from an ensuing hole (c,d). Ensu-
ing hole: (a) Before formation, all the concerned cells have label L. (b) After forma-

tion, label of bi := c
(2)
i gets modified to B, and a free path exists from each free cell in

Ei ∩N4(ci+1) := {c(2)i+1, c
(4)
i+1, c

(6)
i+1} to bi. Hole: (c) Before formation, cells have label L.

(d) After formation, label of bi := c
(2)
i becomes B, and a free path to bi is not possible

from c
(4)
i+1 and c

(6)
i+1, as c

(3)
i+1 is blocked.

curve, if some cell c is visited which is adjacent to some border cell, then the
corresponding parameters of c are updated accordingly. The initialized and the
runtime parameters help advancing the curve in a random and yet ‘safe’ direc-
tion. Clearly, that virtual part of ρ lying in the border cells of Dh is not random,
and hence not considered as being a part of the random curve.

Cell Parameters. The current cell, which ρ has currently entered, is denoted
by ci (i > 1), unless mentioned otherwise. The cell ci corresponds to the ith
iteration of our algorithm. Parameters β and δ are updated in (appropriate cells
of) A0(ci), as shown in Fig. 2. Each current cell ci has a previous cell, ci−1, from
where ρ has entered ci, and a next cell, ci+1, where ρ will enter next. The cells
belonging to the region Ñ(ci) := A0(ci) r (A1(ci−1) ∪ A1(ci+1)) are labelled in
the ith iteration, as illustrated in Fig. 2.

Progressing the Random Curve. From the current cell ci, the next cell
ci+1 is (randomly) chosen in such a way that there exists at least one free path
from ci+1 to the destination cell cq. (A free path from a cell ci to a cell ci+k,
k > 1, is given by a sequence of cells, ρ(ci, ci+k) := 〈ci, ci+1, . . . , ci+k〉, such that
each cell in 〈ci+1, . . . , ci+k−1〉 is free and distinct, and every two consecutive
cells in ρ(ci, ci+k) are 1-adjacent.) A safe edge of ci is a possible exit edge; the
algorithm selects randomly one of the safe edges for exit. For the current cell
ci we have the free region Ri of all free cells c of the CCD Dh such that there
exists still at least one free path from c to cq. Similarly, a blocked region H is a
maximal (connected) region of free cells such that there does not exist any free
path from any cell of H to cq. A cell in H is said to be blocked, and edges of
a blocked cell are also blocked. There exists a free path from the current cell ci
to the destination cell cq if and only if A1(ci) ∩ Ri 6= ∅. (If A1(ci) ∩ Ri 6= ∅,
then there exists a free cell c(t)i ∈ A1(ci) lying in Ri. Conversely, the existence
of a free path from ci to cq implies that at least one cell of A1(ci) is in Ri, thus
A1(ci) ∩ Ri 6= ∅.) As a result, the edge between ci and c

(t)
i is safe if and only if

c
(t)
i belongs to Ri.

MAESTRO: Making Art-Enabled Sketches Through Randomized Operations 5

S t = 7,m = 3 t = 7,m = 7 t = 12,m = 5

Fig. 4. Effect of varying m versus t on another set, S (γmax = 255, γ0 = 0).

Ensuring Simple and Irreducible Property: ρ is allowed to enter and exit a
cell at most once. Hence, an exit edge of the current cell ci cannot be an entry
edge of the next cell if the latter is already occupied (using β(ci)). Furthermore,
a blocked edge cannot be an exit edge. The crux of the problem is, therefore,
to decide whether or not an edge of ci is a blocked edge. Each event of forming
a hole is detected based on (changes in the components of the cells in) A0(ci).
The advantage of detecting such a hole event is that, once ρ enters the next cell
ci+1 from ci by selecting a safe edge, it can never enter the hole H formed by ci,
since H gets surrounded by occupied cells after it is formed.

Further characterizations of cells in the local neighbourhood of ci are required
to distinguish whether there is a hole event or an event of an ensuing hole (Fig. 3).
Ei ⊂ Ri defines an ensuing hole corresponding to ci if and only if
(e1) there exists c ∈ Ñ(ci) such that δ(c, i) = B,
(e2) for each c′ ∈ Ei, we have that δ(c′, i) ∈ {L, R, X},
(e3) there exists a free path ρ(ci+1, cq), and for any such path, c is on ρ(ci+1, cq).
Note that, δ(c, i) denotes the label of cell c when the current cell is ci.

Either a hole or an ensuing hole is created if and only if at least one free cell
in Ñ(ci) gets the label B as ci becomes the current cell. The current cell ci gives
rise to an ensuing hole Ei if and only if there exists a free cell bi ∈ Ñ(ci) with
(E1) δ(bi, i) = B;
(E2) there exists ρ(ai, bi) ⊆ A0(ci+1) for each ai ∈ Ei ∩ A1(ci+1). In particular,
ci gives rise to a hole Hi if and only if E1 is true and E2 is false. The proof
follows from the combinatorial arguments given in [BPR10].

Final Sketch Creation. For each curve Ch in S, we create m random
curves. Note that, S is obtained in our work by Canny edge detection [Can86]
and thinning [RK82]. If p and q be the respective start and end points of the
curve Ch, then each of these m random curves is made to start from p and end
at q. Further, due to the curve-constrained domain, Dh, corresponding to Ch,
each random curve strictly lies in Dh. The cells of Dh are always (re-)initialized
for creating each instance of the m random curves corresponding to Ch.

Let Sh =
{
C

(z)
h

}m

z=1
be the set of m random curves corresponding to Ch.

Let ch be a cell of the domain Dh. We maintain a counter, namely count[ch],

6 Subhro Roy, Rahul Chatterjee, Partha Bhowmick, and Reinhard Klette

Fig. 5. Results on another image. Top-left: A photograph. Top-right: Product of our
algorithm. Bottom: After overlaying on a canvas.

corresponding to each ch ∈ Dh. Each such count[ch] is initialized to 0 before
generating the random curves in Dh. Whenever a random curve C(z)

h visits ch,
count[ch] is incremented. Thus, after all m random curves are constructed in
Dh, we get 0 ≤ count[ch] ≤ t ∀ch ∈ Dh.

In order to create the artistic curve C̃h corresponding to Ch, we use the
counter values {count[ch] : ch ∈ Dh}. For each ch ∈ Dh, the corresponding im-
age pixel is intensified to the value

γmax −
(
γ0 +

count[ch]
m

× (γmax − γ0)
)
,

since we consider 8-bit intensity of the image (with γmax = 255, γ0 = 0) as
the final output corresponding to the input set S. To achieve an overall darker
intensity (as in Fig. 4) in simultaneity with the randomized finish, we scale the
colour spectrum to a smaller interval, namely [γ0, γmax − γ0], and measure the
pixel intensity by setting γ0 to an appropriately high value.

3 Results and Conclusion

We have developed the software in JavaTM API, version 1.5.2, the OS being Linux
Fedora Release 7, Kernel version 2.6.21.1.3194.fc7, Dual Intel Xeon Processor 2.8

MAESTRO: Making Art-Enabled Sketches Through Randomized Operations 7

Fig. 6. Effect of using mixed pencils. Left: Input sketch. Middle: Product of our algo-
rithm. Right: After overlaying on a canvas. Note that our algorithm uses thick curves
in the relevant portion (e.g., nose) and thin curves for small details, which, in turn,
creates the desired artistic touch.

GHz, 800 MHz FSB. It has been tested on several datasets containing various
digital images of different shapes and forms. Snapshots on a typical set are
already given in Fig. 1. The summary of results for a few images is presented
in Table 1. From this table, it may be noticed that as the width of pencil-tip
increases, the run-time also increases, since it needs a larger number of iterations
to create sufficient stroke intensity.

The effect of number of iterations of randomized curve tracing with changing
width of the pencil-tip is shown by a set of results in Fig. 4. It shows how the
intensity of the pencil stroke increases with increase in m for a given value of t.
A proper value of m has to be selected, therefore, for a given pencil to ensure
the aesthetic quality of the sketch produced by our algorithm. Finer details,
of course, can be captured with a fine-tipped pencil (i.e., having a low value of
t), as evident in Fig. 4. Figures 5 and 6 show how our algorithm successfully
produce the desired artistic impression—whether the type of input be a line-
sketch or a photograph. Figure 6, in particular, shows the usage of mixed pencils
(with varying widths of pencil-tips) depending on demand of the local region
of interest. When a curve is fairly long, it signifies possibly a strong structural
information of the underlying object—demanding a bold stroke from the artist—

Table 1. Summary of simulation results.

Image w h n t m T

houses 480 320 3441 8 10 10.871
houses 480 320 3441 5 5 6.257
nestle 320 480 2579 8 10 9.755
statue 481 321 6200 8 10 11.267
elephants 480 320 6256 5 5 10.306
vase 220 400 5048 5 5 3.333

w = image width; h = image height; n =
number of curve points in the input im-
age; t = width/thickness of pencil-tip; m =
number of random curves; T = CPU time
in seconds for the algorithm to produce the
final output.

8 Subhro Roy, Rahul Chatterjee, Partha Bhowmick, and Reinhard Klette

which is drawn by a thick and bold line in our algorithm. Nevertheless, it retains
its non-uniformity of shade, thus giving a crayon-like appeal, wherefore the piece
of output gets the artistic finish.

References

[AH96] Auer T., Held M.: Heuristics for the generation of random polygons. In
Proc. 8th Canad. Conf. Comput. Geom. (1996), pp. 38–44.

[BPR10] Bhowmick P., Pal O., Klette R.: A linear-time algorithm for generation
of random digital curves. In Proc. PSIVT 2010, 168–173.

[Can86] Canny J.: A computational approach to edge detection. IEEE Trans.
PAMI 8, 6 (1986), 679–698.

[CAS97] Curtis C. J., Anderson S. E., Seims J. E., Fleischer K. W., Salesin
D. H.: Computer-generated watercolor. In Proc. SIGGRAPH ’97, 421–430.

[Deu10] Deussen O.: Oliver’s artistic attempts (random line). http://graphics.uni-
konstanz.de/artlike, 2010.

[GG01] Gooch B., Gooch A.: Non-photorealistic rendering. A.K. Peters Ltd.,
NY, 2001.

[KCC06] Kang H. W., Chui C. K., Chakraborty U. K.: A unified scheme for
adaptive stroke-based rendering. The Visual Computer 22, 9 (2006), 814–
824.

[KHCC05] Kang H. W., He W., Chui C. K., Chakraborty U. K.: Interactive
sketch generation. The Visual Computer 21 (2005), 821–830.

[KNC08] Kopf J., Neubert B., Chen B., Cohen M., Cohen-Or D., Deussen O.,
Uyttendaele M., Lischinski D.: Deep photo: Model-based photograph
enhancement and viewing. In SIGGRAPH Asia ’08 (2008), pp. 1–10.

[KR04] Klette R., Rosenfeld A.: Digital Geometry: Geometric Methods for
Digital Picture Analysis. Morgan Kaufmann, San Francisco, 2004.

[LMHB00] Lake A., Marshall C., Harris M., Blackstein M.: Stylized rendering
techniques for scalable real-time 3d animation. In Proc. NPAR ’00, 13–20.

[MG02] Majumder A., Gopi M.: Hardware accelerated real time charcoal render-
ing. In Proc. NPAR ’02, 59–66.

[Mou03] Mould D.: A stained glass image filter. In Proc. EGRW’03, 20–25.
[OSSJ09] Olsen L., Samavati F. F., Sousa M. C., Jorge J. A.: Sketch-based

modeling: A survey. Computers and Graphics 33, 1 (2009), 85–103.
[PSNW07] Pusch R., Samavati F., Nasri A., Wyvill B.: Improving the sketch-

based interface: Forming curves from many small strokes. The Visual Com-
puter 23, 9 (2007), 955–962.

[RK82] Rosenfeld A., Kak A. C.: Digital Picture Processing, 2nd ed. Academic
Press, NY, 1982.

[RMN03] Rudolf D., Mould D., Neufeld E.: Simulating wax crayons. In Proc.
PG ’03, 163–172.

[VB99] Verevka O., Buchanan J. W.: Halftoning with image-based dither
screens. In Proc. Graphics Interface ’99, 167–174.

[VG91] Velho L., Gomes J. d. M.: Digital halftoning with space filling curves.
Proc. SIGGRAPH 91, 81–90.

[ZSSM96] Zhu C., Sundaram G., Snoeyink J., Mitchell J. S. B.: Generating
random polygons with given vertices. Computational Geometry Theory and
Applications (1996), 277–290.

