
3D Cascade of Classifiers for
Open and Closed Eye Detection
in Driver Distraction Monitoring

Mahdi Rezaei and Reinhard Klette

The .enpeda.. Project, The University of Auckland
Tamaki Innovation Campus, Auckland, New Zealand

mrez010@aucklanduni.ac.nz

Abstract. Precise eye status detection and localization is a fundamental
step for driver distraction detection. The efficiency of any learning-based
object detection method highly depends on the training dataset as well
as learning parameters. The reported research develops optimum val-
ues of Haar-training parameters to create a nested cascade of classifiers
for real-time eye status detection. The detectors can detect eye-status
of open, closed, or diverted not only from a frontal faces but also for
rotated or tilted head poses. We discuss the unique specification of our
robust training database that significantly influenced the detection per-
formance. The system has successfully been implemented in a research
vehicle for real-time and real-world processing with satisfactory results
on determining driver’s level of vigilance.

Keywords: Driver distraction detection, eye detection, Haar-like masks, cas-
cade of classifiers.

1 Introduction

The automotive industries implements active safety systems into their top-end
cars for lane departure warning, safe distance driving, stop and speed sign recog-
nition, and currently also first systems for driver monitoring [Wardlaw 2011].
Stereo vision or pedestrian detection are further examples of components of a
driver assistant system(DAS).

Any sort of driver distraction and drowsiness can lead to catastrophic cases
of traffic crashes not only for the driver and passengers in the ego-vehicle (i.e.
the car the DAS is operating in) but also for surrounding traffic participants.
Face pose and eye status are two main features for evaluating a driver’s level
of fatigue, drowsiness, distraction or drunkenness. Successful methods for face
detection emerged in the 2000s. Research is now focusing on real time eye detec-
tion. Concerns in eye detection still exist for non-forward looking face positions,
tilted heads, occlusion by eye-glasses, or restricted lightening conditions.

Research on eye localization can be classified into four categories: knowledge-
based methods, template-matching, feature-invariance approaches, and appea-
rance-based methods; see[Zhang and Zhang 2010].



2 Mahdi Rezaei and Reinhard Klette

Knowledge-based methods include some predefined rules for eye detection.
Template-matching methods generally judge the presence or absence of an eye
based on a generic eye shape as a reference; a search for eyes can be in the whole
image or in pre-selected windows. Since eye models vary for different people, the
locating results are heavily affected by eye model initialization and image con-
trast. High computational cost also prevents a wide application for this method.
Feature-based approaches are based on fundamental eye-structures; typically a
method starts here with determining properties such as edges, intensity of the
iris and sclera, plus colour distributions of the skin around eyes to identify ‘main
features’ of eyes [Niu et al. 2006]. This approach is relatively robust to lightning
but fails in case of face rotation or eye occlusion (e.g. by hair or eye-glasses).
Appearance-based methods learn different types of eyes from a large dataset and
are different to template matching. The learning process is on the basis of com-
mon photometric features of human eye from a collective set of eye images with
different head poses.

The paper focuses on appearance-based methods and is organized as follows:
In Section 2 we review the concept and structure of Haar classifiers. Section 3
discusses the process of designing a 3D cascade detector that fits our applica-
tion for driver vigilance analysis. The specification of our training database is
provided in Section 4. Next we propose optimum learning parameters and show
experimental results in Section 5. Finally we conclude with Section 6.

2 Cascade Classifiers Using Haar-like Masks

Such a system was developed by [Viola and Jones 2001] as a face detector. The
detector combines three techniques:

– the use of a comprehensive set of Haar-like masks (also called Haar-like
features by Viola-Jones) that are in analogy to the Haar transform,

– the application of a boosted algorithm to select a set of masks for classifier
training, and

– forming a cascade of strong classifiers by merging week classifiers.

Haar-like masks are defined by some adjacent dark and light rectangular regions;
see Fig. 1.

The used features (i.e. value distributions in dark or light regions of a mask)
model expected intensity distributions. For example, the mask in Fig. 2, left,

Fig. 1. Four different sets of masks for calculating Haar-like masks.
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Fig. 2. Application of two triple masks at different scales for collecting mean intensities
in bright or dark regions.

relates to the idea that in a face there are darker regions of eyes compared to
the bridge of the nose. The mask in Fig. 2, right, models that the central part
of an eye (the iris) is darker than the sclera area.

Computing Mask Values. Mean values in rectangular mask regions are
calculated by applying the integral image as proposed in [Viola and Jones 2001];
see Fig. 3. For a given M ×N picture P , at first the integral image

I(x, y) =
∑

0≤i≤x∧0≤j≤y

P (i, j) (1)

is calculated. The sum P (R1) of all P -values in rectangle region R1 (see Fig. 3) is
then given by I(D) + I(A)− I(B)− I(C). Analogously we calculate sums P (R2)
and P (R3) from corner values in the integral image I. Values of contributing
regions are weighted by reals ωi that create “regional mask values” in form of
vi = ωi.P (Ri), and then the “total mask value” for the shown is then Vi =
ω1 · P (R1) + ω2 · P (R2) + ω3 · P (R3). The signs of ωi are opposite for light and
dark regions.

In generalizing this approach, we also allow for arbitrary rotations. A bright
or dark region Ri is now defined by five parameters x, y, w, h, and ϕ, where x
and y are coordinates of the lower-right corner, w and h are width and height,
and ϕ is the rotation angle. See Fig. 4. for ϕ = 45◦, a rotated integral image Iϕ

Fig. 3. Illustration for calculating a mask value using integral images. The coordinate
origin is in the upper left corner.
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Fig. 4. The rotated rectangle R1 is defined by its lowest pixel C, parameters w and h,
and the angle of rotation.

is calculated first, with values

Iϕ(x, y) =
∑

|x−i|≤y−j ∧ 0≤j≤y

P (i, j) (2)

With reference to Fig. 4, in this case the sum P (R1) of all P -values in region R1

is then given by Iϕ(B) + Iϕ(C)− Iϕ(A)− Iϕ(D).
For a given angle ϕ of rotation, the calculation of all M ×N integral values

takes time O(M ×N). This allows for real-time calculation of Haar-like masks.
Cascaded Classifiers via Boosted Learning. We discuss the selection of

a limited number of masks such that their specification fits the query object (e.g.
the eye). For example, in a search window of 24× 24 pixel there are more than
180,000 different rectangular masks of different shape, size, or rotation. Only a
small number of masks (usually less than 100) is sufficient to detect a desired
object in an image. In addition to regional mask weight wi, a boosting algorithm
also learns to sort out the prominent masks µi based on their overall wight Wi.
Such wights determine the importance of each mask in object detection process
so we can arrange all the masks in cascaded nodes as figure 5.

Actually, we are going to learn a strong classifier out of many weak classifiers.
Each classifier (or stage) tries to determine whether the object (e.g. an eye) is
inside the search window or not. The initial classifiers simply reject non-objects
if main masks (such as in Fig. 2) do not exist. If they exist then more detailed

Fig. 5. A cascade of classifiers.
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masks will be evaluated and the process continues. In Fig. 5, each node represents
a boosted classifier adjusted not to miss any object while it is rejecting non-
objects if not matching the desired masks. Reaching the final node means that
all non-objects have already been rejected and we have only one object (here:
an eye).

The function µi returns +1 if the mask value Vi is greater or equal to trained
threshold and -1 if not. +1 means that the current weak classifier matches to
the object and has been passed. So we can go for next classifier.

µi =

{
+1 if Vi ≥ Ti

−1 if Vi < Ti

(3)

Statistically about 75% of non-objects are rejected by the first two classifiers;
the remaining 25% are for a more detailed analysis. This speeds up the process
of object detection.

On the first pass through the positive image database, we learn threshold
T1 for µ1 such that it best classifies the input. Then boosting uses the resulting
errors to calculate the weight W1. Once the first node is trained then boosting
continues for another node but with some other masks that are more sophisti-
cated than the previous ones [Freund et al. 1996].

Assume that each node (a weak classifier) is trained to correctly match and
detect objects of interest with the true rate of p = 99.5% (true positive, TP).
Since each stage alone is a weak classifier there would be many false detections
of non-objects in each stage, say f = 50% (false positive, FP). This is still
acceptable because, due to the serial nature of cascade classifiers, the overall
detection ratios remains high (near 1) but it leads to a sharp decrease in the
false positive rate. For the above example and n = 10 stages it would be:

TP =
10∏

i=1

pi = 0.99510 ≈ 95.1% and FP =
10∏

i=1

µi = 0.5010 ≈ 0.001%

3 Scenarios and 3D Cascaded Classifiers

Most of eye detection algorithms such as [Wang et al. 2010] just look for the
eyes in an already localized face. Therefore, eye detection simply fails if there is
no full frontal view of a face, if some parts of the face are occluded, or if parts
of a face are outside of the camera viewing angle .

Our method is able to directly detect eyes even when the face is not detected;
but, if the initial result of face detection is positive then we hierarchically look
just through the face region instead of the whole image. The detection of an eye
in a previously detected face region supports a double confirmation, thus more
confidence for the validity of eye detection results. If there is no detected face
then we search through the whole image to detect the presence of eyes.

There are already general definitions for fatigue or distraction. In our partic-
ular context we consider driver fatigue, drowsiness, distraction, or drunkenness
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Fig. 6. Left to right: Scenarios 1 to 5 for driver’s face and eye poses; see text for details.

when the driver misses to look forward on the road, or when the eyes are closed
for some long uninterrupted period of time (say 1 second or more). As an exam-
ple, when driving with a speed of 100 km/h, just one second eye closure means
passing of 28 meters without paying attention. This can easily cause lane drift
and a fatal crash. States Looking Forward and Open Eyes are important proper-
ties for determining a driver’s vigilance. During the process of driver monitoring
we follow the classifier in [Lienhart et al. 2003] for face detection; but for the
eye status detection we design our own classifiers. Our proposed 3D designed
classifier is able to detect and define 5 different scenarios while driving as below
(see Fig. 6 from left to right):

Scenario 1: Default case; the eyes are obviously in the upper half of the
face region. By assessing 200 different faces from different races we derived that
human eyes are geometrically located in segment A (see figure) between 0.55
to 0.75 of the face’s height. Applying this rough estimate in eye localization we
already increased the search speed by factor 5 compared to normal search as we
are only looking into 20% of the face’s region. An eye pair is findable in segment
A while the driver is looking forward.

Scenario 2: At rare times it happens that just one eye is detectable in
segment A. That happens when the driver tilts his face. In such case we need
to look for the second eye in segment B in the opposite half of the face region.
Segment B is considered to be between 0.35 to 0.95 of the face’s height; this
covers more than ±30 degrees of face tilt. The size of the search window in
segment B is 30% of the face region. Thus, in that rare case of a tilted face we
search both sections A and B (in total, 50% of the face’s region). In Scenarios 1
and 2, the driver is looking forward to the roadway. So if we detect two open
eyes then we decide that the driver is in the Aware.

Scenario 3: If a frontal face is not detectable and just one of the eyes is
detected, then this can be due to more than 45◦ of face rotation. The driver is
looking towards the right or left such that the second eye is occluded by the
nose. We assume this is a sign of potential and forthcoming distraction. Thus
the system immediately measures the period of time that the driver is looking
to other sides instead of forward. This scenario also happens if a driver looks
to the left or right mirror (but this takes normally only a fraction of a second).
Depending on the ego-vehicles speed, any occurrence of this scenario that takes
more than 1 sec is considered to be dangerous and the system will raise an alarm
for this Distracted status.
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Scenario 4: Detection of closed eyes. Here we use an individual classifier
for close eye detection. A closed-eye status happens frequently for normal eye
blinking. In that case the eye closure time tc is normally less than 0.3 sec. Any
longer eye closures is a strong evidence of fatigue, drowsiness, or drunkenness.
The system will raise an alarm for the Closed Eye status.

Scenario 5: The worst case while driving is when neither face, nor open
eyes, nor closed eyes are detectable. This case occurs, for example, when the
driver is looking over the shoulder, when the head falls in, or when the driver
is picking up something inside the car (a secondary task). The system will raise
an alarm for a detected Risky Driving status.

In our approach we apply two separate classifiers for eye status detection. One
for open eye detection and one for closed eye detection. Considering all active
detectors (face, open-eye, and close-eye detectors), we have cascaded classifiers
in three dimensions that work in parallel. Implementing separate detectors for
open and closed eye detection is important because at some times the open eye
detector may fail to detect open eyes, but this does not automatically mean
that the eyes are closed! Missing eyes may be because of a specific head pose
or bad lightening conditions. Thus, having a separate closed-eye detector is for
double confirmation of the result, and one more step toward high accuracy in
driver distraction detection. If no open eyes are detected in Scenarios 1 to 3, or
if at least one closed eye is detected in Scenario 4, then the system detects a
Drowsiness state and raises an alarm.

4 Training Image Database

The process of selecting positive and negative images is a very important step
that affects the overall performance considerably. After several experiments it is
determined that, although a larger number of positive and negative images can
improve the detection performance in general, there is also an increase of the risk
of mask mismatching during the training process. Thus, a careful consideration
for number of positive and negative images and their content is essential. In
addition, the multi-dimensionality of training parameters and the complexity of
the feature space defines challenges. We propose optimized values of training
parameters as well as unique features for our robust database.

In the initial negative image database, we removed all images that contained
any object that is similar to a human eye (such as animal eyes). We prepared the
training database by cropping thousands of closed or open eyes manually from
positive images. Important questions needed to be answered: how to crop the
eye regions? in what shapes (e.g. circular, isothetic rectangles, squares)? There
is a general believe that circles or horizontal rectangles are best for fitting eye
regions. However, we obtained the the best experimental results by cropping
eyes in square form. We fit the square enclosing full eye-width; for the vertical
positioning we select balanced portions of skin area below and above the eye
region. We cropped eyes from 12,000 selected positive images from our own
image database plus from six other databases as listed below:
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– FERET database sponsored by the DOD Counterdrug Technology Develop-
ment Program Office [Phillips et al. 1998,Phillips et al. 2000],

– Radbound face database [Langner et al. 2010],
– Yale facial database B [Lee et al. 2005],
– BioID database [Jesorsky et al. 2001],
– PICS database [PICS], and the
– “Face of Tomorrow” [FTD].

The positive database includes more than 40 different poses and emotions for
different faces, eye types, ages, or races:

– Gender and age: females and males between 6 to 94 years old,
– Emotion: neutral, happy, sad, anger, contempt, disgusted, surprised, and

feared,
– Looking angle: frontal (0◦), ±22.5◦, and profile (±45.0◦), and
– Race: East-Asians, Caucasians, dark-skinned people, and Latino-Americans.

The generated multifaceted database is unique, statistically robust and compet-
itive compared to other training databases.

We also selected 7,000 negative images (non-eye and non-face images) that
include a combination of objects that are common in indoor or outdoor scenes.
Considering a search window of 24 × 24 pixel, we had about 7,680,000 sub-
windows in our negative database. An increasing number of positive images in
the training process caused a higher rate for true positive cases (TP) which is
good, and also increased false positive cases (FP) which is bad. Similarly, when
the number of negative training images increased, it lead to a decrease in both FP
and TP. Therefore we need to consider a good trade-off for the ratio of numbers
of negative sub-windows to the number of positive images. For eye classifiers, we
got the highest TP and lowest rate for false negative detection when we arranged
for a ratio of Np/Nn = 1.2 (this may be different for face detection).

5 AdaBoost Learning Parameters and Experiments

We applied the training algorithm as available in OpenCV 2.1. With respect to
our database we gained a maximum performance when applying the following
settings:

– Size of mask-window: 21× 21 pixel.
– Total number of classifiers (nodes): 15 stages; any smaller number of stages

brought a lot of false positive detection, and a larger number of stages re-
duced the rate of true positive detection.

– Minimum of acceptable hit rate for each stage: 99.8% and increasing; a rate
too close to 100% may cause the training process to take for ever or cause
early failure.

– Maximum acceptable false alarm for the 1st stage: 40.0% per stage; this error
goes to zero exponentially when the number of iterations increases.
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Table 1. Classifiers accuracy (in %) in terms of true positive and false positive rate.

Open-eye detection Closed-eye detection
Facial status TP FP TP FP

Frontal face 98.6 0.0 97.7 0.20

Tilted face (up to ±30◦) 98.2 0.002 97.1 0.54

Rotated face (up to ±45◦) 96.8 0.0 96.8 0.7

– Weight trimming threshold: 0.95; this is the similarity weight to pass or fail
an object in each stage.

– AdaBoost algorithm: among four types of boosting (Discrete AdaBoost, Real
AdaBoost, Logit AdaBoost, and Gentle AdaBoost), we got about 5% more
TP detection rate with Gentle AdaBoost. [Lienhart et al. 2003] also proved
that GAB will result into lower FP ratios for face detection.

Table 1 shows final results of open and closed eye detection when testing on
2,000 images from the second part of the FERET database plus on 2,000 other
image sequences recorded by HAKA1, our research vehicle (Figure 7). None of
the test images were included before in the training process. All the images are
captured in daylight condition.

Fig. 7. Camera assembly for driver distraction detection in HAKA1.

6 Conclusions

With the aim of driver distraction detection, we implemented a 3D robust de-
tector based on Haar-like masks and AdaBoost machine learning that is able to
inspect for face pose, open eyes and closed eyes at the same time. Despite the sim-
ilar research that are only able to work on frontal faces, The developed classifier
is also able to works for tilted and rotated faces in real-time driving applica-
tions. There are no comprehensive data about performance evaluation for eye
detection. Comparing results in [Kasinski and Schmidt 2010], [Niu et al. 2006],
[Wang et al. 2010] and in [Wilson and Fernandez 2006] with our results (see Ta-
ble 1), our method appears to be superior in a majority of cases. The method
still needs improvement for dark environments. High-dynamic range cameras or
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some kind of preprocessing might be sufficient to obtain satisfactory detection
accuracy also at night or in low-light environments.
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