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Abstract

Visual odometry is a new navigation technology using
video data. For long-range navigation, an intrinsic problem
of visual odometry is the appearance of drift. The drift is
caused by error accumulation, as visual odometry is based
on relative measurements, and will grow unboundedly with
time. The paper first reviews algorithms which adopt var-
ious methods to suppress this drift. However, as far as we
know, no work has been done to statistically model and ana-
lyze the intrinsic properties of this drift. This paper uses an
unbounded system model to represent the drift behavior of
visual odometry. The model is composed of an unbounded
deterministic part with unknown constant parameters, and
a first-order Gauss-Markov process. A simple scheme is
given to identify the unknown parameters as well as the
statistics of the stochastic part from experimental data. Ex-
periments and discussions are also provided.

1. Introduction
Visual odometry uses camera(s) to incrementally calcu-

late a robot’s motion between frames, and finally position
the robot in the 3D world. In general, it can determine
the ego-motion in all six degrees of freedom in the 3D
world. Though there are some other sensors available for
navigation, such as odometry, GPS, IMU and so forth, vi-
sual odometry has its own advantages. Classical odome-
try, which is installed on the robot’s wheel axis, is usually
deceived by wheel slippage, especially in outdoor environ-
ments. Also, it is generally incapable of 6D motion esti-
mation. GPS is not always available for navigation, due
to signals being missing or jammed. A typical example is
the successful application of visual odometry for NASA’s
MER missions [2]; in that case GPS is completely impossi-
ble. Also, compared to GPS and IMU, cameras as used in
visual odometry are relatively cheap.

With features as stated above, visual odometry has al-
ready been widely tested or applied in many fields. For
driver assistance or autonomous driving, the ego-motion of

the vehicle can be obtained by analyzing the video input
from the camera(s) installed in the vehicle [4, 7]. Visual
odometry is also a popular choice in Simultaneous Local-
ization and Mapping (SLAM) to obtain the motion of a
robot. By looking downward, visual odometry assists a he-
licopter to calculate its own moving trajectory [5]. It is even
applied in underwater situations to help a robot to navigate
[9].

Various algorithms have been tested to implement visual
odometry using monocular [10, 12] or stereo [4, 5, 11], or
perspective or omnidirectional [10, 12] cameras. The most
popular framework for visual odometry is based on feature
matching and tracking, which adopts a general work flow
as shown in Fig. 1. While considering that feature-based
methods are sensitive to systematic errors due to intrinsic
and extrinsic camera parameters, appearance-based visual
odometry uses appearance of the world to extract motion
information (e.g., [10]). Recently, a direct method was also
tested for visual odometry with very accurate results [3].
Furthermore, many other sensors can also be integrated with
cameras to provide a more accurate result for navigation (as
in [8]).
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Figure 1. General work flow of feature-based visual odometry.

Though visual odometry can achieve very accurate re-
sults in short distance, one intrinsic problem of visual
odometry among all the algorithms is its drift in long-range
navigation, without help of global sensors like GPS. The
drift is caused by error accumulation, as visual odometry is
based on the relative measurement, and will increase un-
boundedly with time. Relative motion matrices between
frames are concatenated to produce the final position, dur-
ing which small errors in these matrices accumulate to a
large amount, and the distance measurement will drift from
its real trajectory after some long time navigation. For
feature-based algorithms, the sources for these small errors
are mainly uncertainties of feature localization and triangu-
lation.
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Section 2 will give a brief review of the various meth-
ods adopted in visual odometry algorithms to suppress the
drift. However, as far as we know, no work has been re-
ported about statistical modeling and analyzing the intrin-
sic properties of this drift. Section 3 represents the drift
by an unbounded system model combining a deterministic
part and a first-order Gauss-Markov process. Identification
of the model parameters, using a simple strategy, is also
introduced. Experiments and discussions are provided in
Sections 4 and 5.

2. State of the art
Before proceeding to drift-minimization algorithms, we

discuss at first a method to quantify drift. Currently, the
offset ratio (OR), ratio of the final drift value to the trav-
eled distance, is the common choice to measure the drift
when running a visual odometry algorithm over some dis-
tance, from tens or hundreds of meters to several kilometers.
(Drawbacks of OR, and a better quantification method will
be discussed later in this paper.)

Note that the following review of algorithms is not for
visual odometry, but for drift-minimization methods along
with motion catenation adopted in these algorithms. It has
been proved and widely accepted that integrating visual
odometry with other positioning sensors, such as gyro or
GPS, will reduce the drift to a great extent. But this is not
the problem to be discussed in this paper. As visual odome-
try alone has its practical and theoretical meanings, the pa-
per analyzes drift without any help from additional sensors.
Obviously, increasing the accuracy of the estimated mo-
tion vectors in every time step will definitely slow down the
growth of the overall drift. This kind of drift-minimization
is also not discussed in the paper.

A “fire wall” was inserted into sequences in [7] to pro-
tect against error propagation. With fire walls, those rela-
tive poses estimated before the fire wall will only affect the
choice of the coordinate system for subsequent poses, and
the relative poses after a fire wall will be estimated as if
the system is started afresh. It is supposed that fire walls
suppress the propagation of gross errors and slow down the
error buildup. From the provided experimental results, vi-
sual odometry had an accuracy, compared to the ground
truth measured by a Differential Global Positioning System
(DGPS), of 1.07%, 4.86%, and 1.63%, for three outdoor
runs with a traveled distance of 185.88, 266.16, or 365.96
meters, respectively.

Bundle adjustment is another scheme that can be adopted
to suppress error accumulation. It is widely used for off-line
structure and motion or SLAM problems. Full bundle ad-
justment is almost impossible for on-line long range naviga-
tion, as there will be a huge number of poses and features to
be optimized. A sliding-window sparse bundle adjustment
was applied in [11] for visual odometry. A subset of several

images (the number is fixed, or adaptive to the motion vec-
tor) is continuously selected to perform bundle adjustment.
Experiments on some simulated data show that sparse bun-
dle adjustment slows down the drift.

Though visual odometry uses commonly various meth-
ods to suppress the drift, no work has been done to clearly
model it. The authors of [8] analyzed the contribution of
position and orientation errors to the overall drift, and ob-
served that the drift will not grow linearly in the distance
traveled, but super-linearly. The growth was regarded as
O(dist

3
2 ), but no specific models and parameters were pro-

vided. In order to eliminate this super-linear drift, an abso-
lute orientation sensor was used to provide periodic updates
to the orientation estimate. Simulations indicated that less
than 1% OR is achievable if an absolute orientation sensor
is integrated.

As a new and promising sensor, visual odometry needs
a methodology for systematic and comparative analysis of
its drift, in order to quantify the performance of various al-
gorithms. For this purpose, OR has its drawbacks. First,
drift will not increase linearly with the distance traveled,
which was stated in [8] and will be further proved in this pa-
per. Thus, OR from running algorithms on some distances
will change with the different distances traveled. Moreover,
running the same algorithms on the same dataset repeatedly
will produce quite different ORs. The reason is that drift
is a random process, and it will not always increase, but
sometimes it decreases at some places, as errors in differ-
ent motion vectors will compensate each other to some ex-
tent. Thus, using end-point values (the final drift values, and
the final traveled distances) is incapable to model the whole
random process. An example is shown in Fig. 2. Consid-

Figure 2. Position drifts after running the same visual odometry
with simulated data for the same time steps. Note that drift values
can be quite different, which results into incapability of the offset
ratio.



ering these findings, a more accurate quantification method
will be introduced in this paper.

3. Drift model and identification
In this paper, coordinate frame transformations are used

to represent both poses and motions. Using a general no-
tation, a pose E is the transformation from the world coor-
dinate frame to that of the camera, and a motion M is the
transformation of the coordinate frame of the camera be-
tween time t to t + 1. As drift in orientation is limited to a
range of [−π, π], and will finally contribute to a drift in po-
sition, thus only positional drift is considered in this paper.

The concatenated camera pose at time t is denoted by
Et, and the estimated motion from time t to t+1 is denoted
by Mt. Then,

Et+1 = Et ·Mt (1)

Note that the multiplication of Mt from the right is because
the motion Mt is relative to the camera coordinate frame at
t. A general algebraic structure of E and M is[

R3×3 T3×1

01×3 1

]
4×4

(2)

where R3×3 is the rotational matrix, and T3×1 = [x, y, z]T

is the translational vector. Considering the translational
drift, let

∆dt+1 = ‖dt+1 − d̄t+1‖ (3)

where ‖ · ‖ is the Euclidean distance, and dt+1 and d̄t+1

are the camera’s estimated and true positions at time t + 1,
respectively.

3.1. Drift model

The drift in Eq. 3 is a nonstationary random process, and
will increase unboundedly with time. We adopt a similar
model as introduced in [6] to describe the long-range un-
bounded drift d in visual odometry. This model was consid-
ered as a general tool for a wide range of navigation instru-
ments, but it was never introduced to visual odometry. For
visual odometry, the drift model is

ln ∆dt = Ft · p + ut (4)

where Ft = [1, ln dt] is an unbounded deterministic matrix,
p = [a, b]T is a constant parameter vector to be identified,
and ut is a zero mean stochastic process. As noted in [6],
ut can be a correlated nonstationary process. The model is
composed of two parts: a deterministic component Ft · p
and a stochastic component ut.

Without considering the stochastic process ut, we have
the following from Eq. 4:

∆dt = ea · dbt (5)

This equation describes the relationship between the drift
and the traveled distance (or camera position). The ratio-
nality of this model lays in the fact that the drift will in-
crease exponentially with the distance traveled, and will be
unbounded, as revealed in the current research.

3.2. Parameter identification

The identification of this drift model is then given by es-
timating p and characterizing ut from ∆dt. The steps of the
whole identification process are as follows:

1. Estimate p = [a, b]T assuming that ut equals zero.
The estimated parameter vector is denoted by p̄.

2. Estimate the sample function of the stochastic process
ut using

ūt = ∆dt − F (t) · p̄ (6)

3. Characterize the process ut using ūt.

Before describing those steps further in detail, we as-
sume that p̂ is the true parameter vector for the measure-
ment ∆dt. The available number of measurements equals
N , which is assumed to be relatively large. As we are mod-
eling an unbounded drift, a larger value of N means that
parameters are estimated more accurately.

3.2.1 Estimation of p̄

If ut is equal to zero then the parameter estimate p̄ is de-
fined to be that p-value which minimizes

J(p) =
N∑
t=1

(∆dt − Ftp)T (∆dt − Ftp) (7)

Using a least-squares approach, the solution is defined by

p̄(N) = M−1(N) ·
N∑
t=1

FTt ∆dt (8)

where

M(N) =
N∑
t=1

FTt Ft (9)

As Ft is an unbounded matrix, [6] proved that the smallest
eigenvalue of M(N) will grow at least as fast as N when
N goes towards infinity. The same paper concluded that
M−1(N) exists, and its largest eigenvalue will decrease to-
wards zero at least as fast asN−1 ifN goes towards infinity.

As N measurements are used to model the whole un-
bounded system, a convergence problem must be consid-
ered. The covariance P (N) of p̄ is equal to

P (N) = E(p̂− p̄(N))(p̂− p̄(N))T (10)

= M−1(N)

{
N∑

t,s=1

FTt E[utuTt ]Fs

}
M−1(N)



Dataset Method ea b τ σ2
u

Simulated ABSOLUTE 0.025 1.20 110 11.7
SBA 0.0025 0.98 44 8e-8

Real ABSOLUTE 0.0103 1.23 232 1.34
SBA 0.000342 1.64 290 0.60

Table 1. Drift model parameters as identified in our experiments.

[6] proved almost sure (AS) convergence and mean square
(MS) convergence of the estimated p̄(N) towards p̂ as N
approaches infinity.

3.2.2 Characterization of ūt

When the parameter vector p̄ is estimated by Eq. 8, the sam-
pled process can be calculated from Eq. 6. Then a first-order
Gauss-Markov process can be used to characterize the sam-
pled process ūt as follows:

ūt = (1− 1
τ

)ūi−1 + ωn (11)

where τ is a constant called correlation time, and ωn is the
driving noise modeled as zero-mean wide-band noise with
variance σ2

n. The variance of the Gauss-Markov process σ2
u

equals

σ2
u = σ2

n/(
2
τ

+
1
τ2

) (12)

The parameters for the ūt-process are given by τ and
σ2
u, and both can be identified from experimental data by

stochastic methods. Parameter σ2
u is the variance of the

sampled functions ūt. The time constant τ can be estimated
from ūt’s autocorrelation data. This is because the first-
order Markov process has an autocorrelation known as

Ru(t) = σ2
ue
−t/τ (13)

For the normalized autocorrelation R̄u(t) (normalization
means R̄u(0) = 1), we have that τ = t when R̄u(t) = e−1.
In this way, the time constant τ can be estimated which is
the value of t corresponding to the normalized autocorrela-
tion value 0.368 (i.e., e−1). For an example of parameter
identification, see the experimental section below.

3.3. Drift quantification

There are four parameters in the drift model as estab-
lished: a, b, τ , and σ2

u. Among those, a and b can be used
to quantify the drift for various visual odometry algorithms.
The value of a (then used in ea) is in the scale between the
drift and the distance traveled, while b describes the trend
of the drift with respect to the distance.

4. Experiments
Experiments are conducted to illustrate the validation of

the established drift model. Moreover, some important facts
of the drift in visual odometry are also revealed from the
experimental results. We report about experiments which
use simulated data, as well as a real data set (see Fig. 7).
For both of these data, feature matching and tracking are
simulated as in [1]. The reason for using simulated features
is that visual odometry will not be affected in this case by
other error sources except the controlled feature localization
uncertainty, and will reveal the intrinsic properties of the
drift.

We simulate stereo pairs of images. Feature-based visual
odometry algorithms are considered, as they are more gen-
eral compared to appearance-based algorithms and direct
visual odometry, and it is easy to control them by the errors
in the estimated motion matrix (by controlling feature lo-
calization uncertainties). No feature matching and tracking
failures are considered in the simulation, thus robust regres-
sion is not adopted to remove the outliers.

Two typical feature-based visual odometry algorithms
are implemented here, to illustrate the behavior of drift. The
first one, named ABSOLUTE here, estimates the motion
matrix between frames as an absolute orientation problem.
Motion matrices are directly concatenated to estimate cam-
era poses, so drift will not be suppressed, and is expected
to be large. While the second one, named SBA here, uses
sliding window sparse bundle adjustment to optimize the
motion matrices as estimated by the ABSOLUTE method.

The whole implementation is similar as reported in [11].
The number of features tracked for both algorithms are set
to 200, and the standard deviation of feature localization
uncertainty is 0.5 pixel.

Figure 7. A frame from the real sequence, and the trajectory of the
vehicle.



Figure 3. Experimental results for the ABSOLUTE method with simulated data. (left) Raw drift values and the deterministic part of the
drift model with respect to the distance traveled when running the ABSOLUTE method for 500 steps. (middle) The residual (ūt-process)
component of the drift value. (right) Raw and model fitted autocorrelation values for the ūt-process.

Figure 4. Experimental results for the SBA method with simulated data. Meaning for (left), (middle), and (right) as in Fig. 4.

For SBA, the number of frames for bundle adjustment
equals 5. We assume that the frames are taken with a time
interval of one second.

The results of the ABSOLUTE and SBA visual odome-
try algorithms for the simulated data are presented in Figs. 3
and 4, respectively.

The results with the real sequence from the Malaga
datasets, as described in [13], are presented in Figs. 5 and
6. It can be seen that the absolute value of drift for SBA is
much smaller than that for ABSOLUTE. But the distance-
varying trend looks similar. For the identified parameters,
as described in Tab. 1, ea is much larger in ABSOLUTE
than in SBA.

5. Discussion and conclusions
Modeling and analyzing long-range drift in visual odom-

etry is of practical and theoretical significance. Drift in vi-
sual odometry is represented using an unbounded system
model, and its analysis is divided into three steps, namely:

1. Estimating the distance-varying trends.

2. Computing a sample function of the residual process.

3. Characterizing the residual as a first-order Gauss-
Markov process.

Experimental results reveal several important facts:

1. Modeling drift using an unbounded system model in
form of a combination of a deterministic part and a
first-order Gauss-Markov process is validated.

2. Drift in visual odometry will increase exponentially
with the distance traveled, but different algorithms will
increase differently.

3. Quantifying drift from a specific algorithm by τ and
σ2
u is a more reasonable way than the usual offset ratio

method.
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