
A Linear-time Algorithm for the Generation of Random Digital Curves

Partha Bhowmick
Indian Institute of Technology, Kharagpur

India

bhowmick.gmail.com

Oishee Pal
Ushacomm India Pvt Ltd, Kolkata

India

Oishee.Pal@ushacomm.com

Reinhard Klette
The University of Auckland

New Zealand

r.klette@auckland.ac.nz

Abstract

We propose an algorithm to generate random digital
curves of finite length, generating points of a digital path
ρ on the fly. Path ρ never intersects or touches itself, and
hence becomes simple and irreducible. This is ensured by
detecting every possible trap formed by the previously gen-
erated part of ρ, which, if entered into, cannot be exited
without touching or intersecting ρ. The algorithm is com-
pletely free of any backtracking and its time complexity is
linear in the length of ρ. Implemented and tested exhaus-
tively, it shows that it produces results as specified by the
user.

1. Introduction
The generation of random digital curves of finite length

is, for example, required when testing geometric algorithms
in image analysis. Assume that algorithm A takes a digital
curve as its input; see, for example, [2, 3, 9, 13]. Ideally,
one would like to test the behavior and performance of A
on various real-world digital curves being of practical rele-
vance and having also ground truth (e.g, length or curvature
of the curve) available for the studied curves. However, it is
often very difficult to obtain a sufficiently large number of
practically relevant input data sets. An other option is to run
A on a reasonably large number of random curves (e.g., us-
ing high-resolution curves for generating ground truth, and
lower resolution curves for the actual input), which neces-
sitates a proven algorithm that can generate a sufficiently
large set of random curves of finite length in the digital
plane in feasible time.

Work on generating random curves can be traced back
to studies on Brownian motion in R2, see [5, 6], or on ran-
dom walks, see [8, 10, 11]. The generation of closed ran-
dom polylines also received considerable attention in recent
times, see [1, 7, 12, 14]. However, there is no published
work so far on generating random digital curves. Polygon-
generation algorithms work with input vertices of the poly-
line which are generated randomly but a priori. On the

contrary, our algorithm generates new points on the fly (also
called online in [9]) while creating a digital curve ρ, starting
from a random point (or vertex) p1, choosing the next point
p2 randomly, connecting points p1 and p2, choosing the next
point p3 randomly, connecting it with p2, and so forth, even-
tually returning to the start point p1.

The difficulty of the problem lies in generating such a
digital curve ρ such that ρ is one pixel wide everywhere
and never intersects or touches itself, hence it becomes irre-
ducible and simple. This calls for detecting every possible
“narrow-mouthed” trap formed by the previously generated
part of ρ, which, if entered into, cannot be exited without
touching or intersecting ρ. A trap may be multiply nested
and needs to be detected ‘fast’ (i.e., without any backtrack-
ing through the mouth of the trap) in order to ensure linear
computation time. Furthermore, it must be ensured that the
(4- or 8-connected) path ρ, traced by the algorithm, finally
reaches the start point again. The proof of correctness of
our algorithm follows from the principle of mathematical
induction, and its time complexity is linear in the length of
ρ. Instances of a few variations of random digital curves
produced by the algorithm are shown in Fig. 1.

Preliminaries. We use both the grid point and the cell
model of digital geometry in the plane [9]. The canvas is a
set Gn of grid cells, forming an n × n square in the plane.
Vertices and centers of cells in Gn are assumed to be grid
points in Z2, also simply called points for brevity in this
paper. Let n = 2k.

The canvas may be partitioned into a set Gm of m ×m
square cells, m ≤ n (see Fig. 2, top), each of size s × s,
where s = 2t, with t ≥ 2. The cell belonging to the ith
row and the jth column of Gm is denoted by c(i, j); it is a
border cell if and only if {i, j} ∩ {1,m} 6= ∅, and a corner
cell if and only if (i, j) ∈ {1,m} × {1,m}.

In the digital plane, 1- or edge-adjacency [0- or
vertex-adjacency] of cells is equivalent to 4-adjacency [8-
adjacency] of centers of cells. For a cell c, adjacency
sets are denoted by Aα(c) and neighborhoods by Nα(c) =
Aα(c) ∪ {c}, for α ∈ {0, 1}. For a center point p, the sets
are Aα(p) and Nα(p) = Aα(p) ∪ {p}, for α ∈ {4, 8}.

1

Figure 1. Instances of irreducible, 4- or 8-connected random simple curves generated by the proposed algorithm on a canvas with n = 400. Interiors are
shown in gray for better visibility of the curves.

A cell c(k, l), that is 0-adjacent to c(i, j), is denoted by
c(t) if t = tan−1((k − i)/(l − j))/(π/4), considering that
tan−1 x ∈ [0, 2π). We have that t ∈ {0, 1, 2, . . . , 7} in case
of 0-adjacency, and t ∈ {0, 2, 4, 6} in case of 1-adjacency
(see Fig. 2, lower left).

In this paper, a curve ρ is a simple, irreducible, α-
connected digital path 〈p1, p2, . . . , pn〉 of points in Z2 such
that each of p1 and p2 has at least one (at most two), and
each other point exactly two α-neighbors in ρ. If both p1

and pn have one α-neighbor in ρ only, then ρ is a simple arc
with end points p1 and pn. If each point in ρ has exactly
two α-neighbors in ρ, then ρ is a simple curve.

A hole in an α-connected set S ⊂ Z2 is a finite ᾱ-
component of Z2 rS. If α = 8 then ᾱ = 4, and vice versa.
A simple arc defines no hole, whereas a simple curve always
defines exactly one hole. A simple curve divides Z2rρ into
two regions, namely the interior (the hole) and the exterior
(also known as the ‘background’).

We generate a random simple arc or curve ρ such that
points pi ∈ ρ are in the canvas Gn only (see Fig. 1).

2. Proposed Algorithm
A cell c is said to be a occupied if and only if the gener-

ated part of curve ρ already passes through c ; otherwise it
is free. We use the following parameters for a cell c :

The blocking factor β(c) is a 5-bit number given by
the combinatorial arrangement of the occupied and the free
cells in N1(c). The most significant bit of β(c) corresponds
to c itself, and the other four bits correspond to the four cells
lying right, top, left, and below of c in that order. If a cell in
N1(c) is occupied then the corresponding bit of β(c) equals
1, otherwise 0. Thus, β(c) = 0 implies that ρ is not (yet)
passing through any cell in N1(c). If 0 < β(c) < 16 then
c is free but one or more cells in A1(c) are occupied. If
β(c) ≥ 16 then c is occupied.

The directional label δ(c) is used if 0 < β(c) < 16

which takes its value then from {L, R, B}, with the interpre-
tation: L = left, R = right, B = both left and right, depend-
ing on the position of c relative to the direction of traversal
of ρ in the cell(s) of A0(c). We use X for the initialized
value. While the construction of ρ is in progress, blocking
factors and directional labels have interim values, which are
updated and become final values when ρ is finished.

Figure 2. Top: The canvas and its initialization. Occupied cells are shown
in gray. Cells not shown have β = 0 and δ = X. The initialized part of
the curve (passing through the border cells) is shown as a solid line, and
the random part is shown as dotted. Bottom, left to right: Cells adjacent to
a cell c and three types of turns, with only one (out of four) combinatorial
cases shown (dark gray: current cell ci, light gray: previous and next cells).

2.1. Initialization of the Canvas

The initialization of the canvas is illustrated in Fig. 2. A
cell c(u, 1) is randomly chosen from {c(i, 1) : 2 < i <
m − 2}. Curve ρ is assumed to enter c(u, 1) from its left
edge, and then progresses (in straight or right-angle moves)
through the border cells, finally reaching cell c(u + 2, 1).
From c(u + 2, 1), ρ is now entering c(u + 2, 2). In other
words: by this initialization, c(u + 1, 1) is free and has B
as δ-value, whereas all other border cells are occupied. The
free cells, adjacent to the border cells, have L as δ-value, as
shown in Fig. 2, top. While generating the random curve,
if some cell c is visited which is adjacent to some border
cell, then the corresponding parameters of c are updated ac-
cordingly. These parameters help advancing the curve in a
random and yet ‘safe’ direction.

Clearly, that virtual part of ρ lying in the border cells
[except c(u + 1, 1)] of Gm is not random, and hence not
considered as being a part of the random curve. The random
curve starts and ends at the cell c1 := c(u+ 2, 2).

In general, the start cell c1 has three cells in A1(c1)
which are free. We enter randomly one of those via either
the right, top, or bottom edge of c1. On the selected edge, a
random start point p1 is selected (i.e., p1 is not a grid point
in general). After initialization of the canvas, all cells ex-
cept those adjacent to already occupied cells have β = 0, as
shown in Fig. 2, top. Blocking factors and directional labels
of those cells are later updated while generating the random
curve.

2.2. Updating the Cell Parameters

The current cell, which ρ has currently entered, is de-
noted by ci (i > 1), unless mentioned otherwise. The cell
ci corresponds to the ith iteration of our algorithm. Param-
eters β and δ are updated in (appropriate cells of) A0(ci),
as shown in Fig. 2, bottom row. Each current cell ci has
a previous cell, ci−1, from where ρ has entered ci, and a
next cell, ci+1, where ρ will enter next. We do not label
those cells of A0(ci) that are common with A1(ci−1) or
A1(ci+1), because cells in A0(ci)∩A1(ci−1) have been al-
ready labeled when ci−1 was the current cell in the previous
(i.e., (i−1)th) iteration, and those inA0(ci)∩A1(ci+1) will
be labeled when ci+1 is the new current cell in the next (i.e.,
(i+ 1)th) iteration.

Thus, only the cells belonging to the region Ñ(ci) :=
A0(ci) r (A1(ci−1) ∪A1(ci+1)) are labeled in the ith iter-
ation, as illustrated in Fig. 2. In the (i+ 1)th iteration, there
are at most three possibilities of choosing the next cell, since
there can be at most three free cells in A1(ci), as given by
β(ci). In each case, a cell of A0(ci), which is not labeled in
the ith iteration, is either labeled or chosen as the next cell
(i.e., gets occupied) in the (i + 1)th iteration. As evident
from Fig. 2, bottom row, at least two and at most three cells

Figure 3. Open and blocked regions and holes formed during construction
of ρ. Left: There exists at least one free path ρ(ci, c1) from the current cell
ci to c1, where ρ could also enter, e.g., the white cell when leaving ci. On
the contrary, there exists no free path from any cell of the blocked region
to c1. Right: Part of a random curve with four holes. Cells in holes are
free but do not offer any path to start cell c1 (not shown here).

will be labeled in each iteration. For the current cell ci, the
entry point of ρ can lie on one of its four edges, and the exit
point on one of the remaining three edges. As a result, there
are three types of turns at ci, each having four sub-types,
considering the previous cell ci−1 and the next cell ci+1,
which are dealt with as follows:

NO TURN: Ñ(ci) consists of two cells; the one lying left
to the direction of the traversal of ρ is labeled by L, and the
other, lying right to the direction of traversal, by R.

LEFT TURN: All three cells in Ñ(ci) get label R.
RIGHT TURN: All three cells in Ñ(ci) get label L.

The most significant bit of β(ci) is updated from 0 to 1 be-
cause cell ci is now occupied. Blocking factors of the free
cells [as given by β(ci)] in A1(ci) are updated accordingly.
Cells in Ñ(ci) which are free (β < 16) are labeled with
proper directional labels.

2.3. Choosing the Next Cell

From the current cell ci, the next cell ci+1 is (ran-
domly) chosen in such a way that there exists at least one
free path from ci+1 to c1. (A free path from a cell ci
to a cell ci+k, k > 1, is given by a sequence of cells,
ρ(ci, ci+k) := 〈ci, ci+1, . . . , ci+k〉, such that each cell in
〈ci+1, . . . , ci+k−1〉 is free and distinct, and every two con-
secutive cells in ρ(ci, ci+k) are 1-adjacent.) A safe edge of
ci is a possible exit edge; the algorithm selects randomly
one of the safe edges for exit.

For the current cell ci we have the free region Ri of all
free cells c of the canvas Gm such that there exists still at
least one free path from c to the free border cell (i.e., to c(5)1).
Similarly, a blocked region H is a maximal (connected) re-
gion of free cells such that there does not exist any free path
from any cell ofH to c(5)1 . A cell inH is said to be blocked,
and edges of a blocked cell are also blocked.

Theorem 1 There exists a free path from the current cell ci
to the start cell c1 if and only if A1(ci) ∩Ri 6= ∅.

Proof: IfA1(ci)∩Ri 6= ∅, then there exists a free cell c(t)i ∈
A1(ci) lying in Ri. Thus, by definition of a free region,
there exists a free path from c

(t)
i to c(5)1 ∈ A0(c1) rA1(c1).

Since c(6)1 is the only free cell (of the canvas, after initial-
ization) in A1(c(5)1), a free path from c

(t)
i to c

(5)
1 always

contains c(6)1 ∈ A1(c1). Thus, there exists a free path from
ci to c1. – Conversely, the existence of a free path from ci
to c1 implies that at least one cell of A1(ci) is in Ri, thus
A1(ci) ∩Ri 6= ∅. �

Using Theorem 1 we can decide whether an edge e of
the current cell ci is safe or not, since e is also incident with
another cell c(t)i that lies in A1(ci). Since ci is occupied,
it does not lie in a blocked region, wherefore c(t)i lies in
a blocked region if and only if the edge e belongs to (the
border of) a blocked region. If e is selected as the exit edge
of ci, then c(t)i becomes the next cell from where a free path
to c1 is not possible:

Corollary 1 The edge between ci and c(t)i is safe if and only
if c(t)i belongs to Ri.

2.3.1 Determining Safe Edges

To ensure that ρ is simple and irreducible, it is allowed to
enter and exit a cell at most once. Hence, an exit edge of
the current cell ci cannot be an entry edge of the next cell if
the latter is already occupied. This is determined using the
blocking factor β(ci). Furthermore, a blocked edge can-
not be an exit edge (Sec. 2.3). The crux of the problem is,
therefore, to decide whether or not an edge of ci is a blocked
edge. Since a hole is surrounded by occupied cells, and the
next cell is never an occupied cell, ρ enters a hole H if and
only if ci (which had been free until ρ entered ci) gives rise
to such a hole H . Thus, each event of forming a hole is
detected based on (changes in the components of the cells
in) A0(ci). The advantage of detecting such a hole event is
that, once ρ enters the next cell ci+1 from ci by selecting a
safe edge, it can never enter the hole H formed by ci, since
H gets surrounded by occupied cells after it is formed.

Thus, it has to be ensured that the exit edge of ci is a
safe edge, which is determined using the “interim label” of
a cell.1 However, only the interim label of a cell is not suf-
ficient to decide about a hole event. Further characteriza-
tions of cells in the local neighborhood of ci are required to
distinguish whether there is a hole event or an event of an
ensuing hole, as explained next. We use the notation δ(c, i)
to indicate the label of cell c when the current cell is ci.

1 As mentioned in Sec. 2, the directional label δ(c) provides only an
interim value, since δ(c) may be updated when ρ visits some other cell(s)
in A0(c) later on.

Definition 1 Ei ⊂ Ri is an ensuing hole corresponding to
ci if and only if
(e1) there exists c ∈ Ñ(ci) such that δ(c, i) = B,
(e2) for each c′ ∈ Ei, we have that δ(c′, i) ∈ {L, R, X},
(e3) there exists a free path ρ(ci+1, c

(5)
1), and for any such

path, c is on ρ(ci+1, c
(5)
1).

The formation of an ensuing hole is illustrated in Fig. 4.
It should be mentioned here that the initialization of the
canvas (Fig. 2) is done in a way that gives rise to an en-
suing hole, E1, corresponding to c1 as the current cell. The
ensuing hole E1 comprises of all the cells inside the can-
vas except the border cells and c1, the reason being as fol-
lows: The cell c(5)1 := c(1, u + 1) had its label L with
c(1, u), c(1, u − 1), . . . , c(1, u + 2) as the current cells,
which changed to B when the current cell becomes c1. Thus,
the condition (e1) of Definition 1 is true. It is easy to see
that conditions (e2) and (e3) are also true. Such an ensuing
hole E1 is formed during the initialization to ensure that ρ
finally returns to c(5)1 in order to become closed. In short,
the algorithm finally converts the cell of each ensuing hole
into a occupied cell or a hole-cell by the time ρ is closed;
and more importantly, each cell having the interim label B is
finally occupied. The following theorem captures this con-
cept.

Theorem 2 When the construction of ρ is over, each cell
c can have either β(c) ≥ 16 (c is occupied) or δ(c) ∈
{L, R, X}; that is, B can be the interim label but cannot be
the final label of any free cell.

Proof: Assume that cell c had the interim label δ(c) = R
when the current cell was ci−k, and let it be updated to
δ(c) = B when the current cell becomes ci. Thus, both
ci and ci−k belong to A0(c). With ci as the current cell,
the part of ρ from ci−k to ci, therefore, corresponds to a se-
quence of occupied cells 〈ci−k, . . . , ci〉 with two options:
Case 1: The (only possible) next cell is c with label B.
Case 2: The next cell can be c or some other cell in A1(ci)
having a label different from B.

If 〈ci−k, . . . , ci, c〉 does not enclose any free cell, then
the only possible next cell is c (Case 1), and c becomes oc-
cupied. If 〈ci−k, . . . , ci, c〉 encloses a region R consisting
of one or more free cells, then, in Case 1, there does not
exist any free path from a cell in R to the cell c(5)1 once c
becomes the current cell; thus,R becomes a hole. In Case 2,
if the next cell is different from c, then ρwill visit c at a later
point of time after visiting (and blocking) some cells of R,
which implies that R would be dissociated from the free re-
gion in future. In Case 2, therefore, either all free cells of R
finally get occupied or some get occupied and the rest gives
rise to one or more blocked regions. Hence, the region R in
Case 2 is an ensuing hole. From ci on, ρ visits cells of the
ensuing hole, and later on ρ must come out of the ensuing

(a) (b) (c) (d)
Figure 4. Distinguishing the formation of a hole (a,b) from an ensuing
hole (b,c). Ensuing hole: (a) Before formation, all the concerned cells
have label L. (b) After formation, label of bi := c

(2)
i gets modified

to B, and a free path exists from each free cell in Ei ∩ A1(ci+1) :=

{c(2)i+1, c
(4)
i+1, c

(6)
i+1} to bi. Hole: (c) Before formation, cells have label L.

(d) After formation, label of bi := c
(2)
i becomes B, and a free path to bi is

not possible from c
(4)
i+1 and c(6)i+1, as c(3)i+1 is occupied.

hole, failing which ρ cannot reach c(5)1 in order to become
a simple curve. The only cell through which ρ comes out
of the ensuing hole is c (Definition 1), whereby c becomes
finally occupied. Thus, if a cell c has the interim label B,
then it would finally have β(c) ≥ 16; otherwise, its final
label is δ(c) ∈ {L, R, X}. �

From the proof of Theorem 2, it is clear that a change of
label L or R (of a free cell) in Ñ(ci) indicates either a hole
event or an ensuing hole event, as stated in the following
corollary.

Corollary 2 Either a hole or an ensuing hole is created if
and only if at least one free cell in Ñ(ci) gets the label B as
ci becomes the current cell.

It is, therefore, necessary to distinguish a hole event from
an ensuing hole event if there occurs a label B in Ñ(ci) cor-
responding to the current cell ci. The following theorem
explicates the necessary and sufficient conditions to decide
whether such a label B corresponds to an ensuing hole event.
If not, then the only other possible event associated with the
label B is a hole event, based on which the safe edges can
be determined accordingly.

Theorem 3 The current cell ci gives rise to an ensuing hole
Ei if and only if there exists a free cell bi ∈ Ñ(ci) such that
(E1) δ(bi, i) = B;
(E2) there exists ρ(ai, bi) ⊆ A0(ci+1) for each ai ∈ Ei ∩
A1(ci+1).

Proof: Condition E1 follows from Corollary 2. W.l.o.g., let
ci+1 lie left of ci, and let the the cell bi := c

(1)
i+1 get the label

B when there is a left turn at the current cell ci (Fig. 4).
In order that the concerned region Ei is an ensuing hole,
the cell next to ci+1 should be one of the cells constituting
A1(ci+1) r {ci} = {c(2)i+1, c

(4)
i+1, c

(6)
i+1}.

If Ei ⊂ A0(ci+1), and Ei be such that a free path from
a cell ai in Ei ∩ A1(ci+1) cannot be made to bi, then ρ
may enter the cell ai in the next iteration from where a free
path to bi is not possible. This prevents Ei to be an ensuing
hole. For example, if Ei = {c(2)i+1, c

(4)
i+1} and the cell next to

ci+1 is c(4)i+1, then a free path from c
(4)
i+1 to bi is not possible;

the free path, however, exists if Ei = {c(2)i+1, c
(3)
i+1, c

(4)
i+1}.

Hence, if Ei ⊂ A0(ci+1) be such that a free path from each
cell ai ∈ Ei ∩ A1(ci+1) to bi is possible, then Ei is an
ensuing hole. Conversely, if there exists a free path from
each ai ∈ Ei ∩ A1(ci+1) to bi, then there is always a free
path from ci+2 ∈ Ei to bi. Thus, Ei ⊂ A0(ci) is an ensuing
hole if and only if E1–E2 are true.

The general proof for E2, corresponding to the case
Ei 6⊂ A0(ci+1), follows from mathematical induction on
the number n of (free) cells in Ei. Let there exist a free
path ρ(ai, bi) for each ai ∈ Ei ∩ A1(ci+1). The basis of
induction is n = 1, which occurs only when Ei = {c(2)i+1}.
The inductive hypothesis is, if E2 is true for less than n
cells, then the corresponding Ei is an ensuing hole. In the
inductive step, we show that, if E2 is true for n cells, then
Ei is an ensuing hole.

The cell ci+1 is the current cell in the (i + 1)th itera-
tion. If the label of some cell bi+1 in Ñ(ci+1) is B, then
either a hole or an ensuing hole Ei+1 is again formed in
the (i + 1)th iteration (Corollary 2). Considering the facts
that bi+1 ∈ Ei, bi+1 6∈ Ei+1 (since δ(bi+1; ci+1) = B),
ci+2 ∈ Ei, and ci+2 6∈ Ei+1, we get Ei+1 ⊂ Ei, whence
|Ei+1| < |Ei| = n. If the label of no cell in Ñ(ci+1) is B,
then also |Ei+1| < n, since Ei+1 = Ei r {ci+2}. We have
the following three cases corresponding to Ei+1:
Case 1: E1 and E2 are true; Ei+1 is an ensuing hole (induc-
tive hypothesis).
Case 2: E1 is true, but E2 is not; Ei+1 is a hole (Corol-
lary 2).
Case 3: E1 is not true; Ei+1 is neither a hole nor an ensuing
hole (Corollary 2).2

In Case 1, there exists a free path ρ(ci+2, bi+1). Since
bi+1 ∈ Ñ(ci+1) ⊂ A0(ci+1) and bi+1 ∈ Ei, we have
bi+1 ∈ Ei ∩ A0(ci+1), which means either bi+1 ∈ Ei ∩
A1(ci+1) or bi+1 ∈ Ei ∩ (A0(ci+1) r A1(ci+1)). If
bi+1 ∈ Ei ∩ A1(ci+1), then we get a free path from bi+1

to bi, and hence a free path from ci+2 to bi (via bi+1). If
bi+1 ∈ Ei ∩ (A0(ci+1) r A1(ci+1)), then bi+1 is adja-
cent to some cell in Ei ∩ A1(ci+1), and since each cell in
Ei ∩ A1(ci+1) has a free path to bi (E2), a free path exists
from ci+2 to bi.

In Case 2, since Ei+1 is a hole, ρ does not enter Ei+1;
i.e., cj 6∈ Ei+1 for j > i+1. Since ci+2 ∈ Ei∩A1(ci+1), a

2 For example, in Fig. 4(b), for ci+2 = c
(2)
i+1, Ei+1 is a hole; for

ci+2 = c
(4)
i+1 or c(6)i+1, Ei+1 is an ensuing hole as δ(c(2)i+1) changes from

L to B.

(a) Canvas (b) Visited cells (c) Traversed curve (d) Final output

Figure 5. Result of a random curve (blue) blocking some canvas cells (yellow) generated in a “duck”-shaped canvas (gray).

free path exists from ci+2 to bi, wherefore Ei is an ensuing
hole.

In Case 3,Ei+1 has size n−1, and is neither a hole nor an
ensuing hole. Hence, after entering ci+2 ∈ Ei ∩ A1(ci+1),
in case the next cell ci+3 leads to a hole, ρ would traverse
the free path ρ(ci+2, bi) ⊆ A0(ci+1), whence Ei becomes
an ensuing hole.

Conversely, if Ei is an ensuing hole, then E1 is true, and
each path from ci+1 ∈ Ei (via any cell in Ei) to c(5)i con-
tains bi (Definition 1). Hence, there exists a free path from
each cell in Ei ∩A1(ci) to bi, which implies E2 is true. �

A hole event is evident from Corollary 2 and Theorem 3:

Corollary 3 ci gives rise to a hole Hi if and only if E1 is
true and E2 is false.

3. Conclusions
The strength of Theorem 3 and Corollary 3 is that, start-

ing from c1, each cell is randomly and safely selected from
the available free cells in the neighborhood of the current
cell using the cell components β and δ. Whether there arises
any ensuing hole or hole is determined at the current cell by
checking E1 and E2, which needs constant time. Since each
cell, getting the interim label B, is finally occupied (The-
orem 2), and the canvas is initialized in such a way that
δ(c(5)1) = B (Fig. 2), ρ reaches the cell c(6)1 prior to c(5)1 [as
any free path from c1 to c(5)1 contains c(6)1] after traversing
randomly in the canvas. The algorithm is made to termi-
nate when the next cell ci+1 is c(6)1 so that the point pk−1

(selected randomly) on the right edge of c(6)1 , can be joined
with the point pk on the top edge of c(6)1 , and then to p1, as
shown in Fig. 2, thereby producing a random curve. Leav-
ing aside the initialization time of the canvas, the time com-
plexity of generating a random curve that blocks k cells of
the canvas is, therefore, given by Θ(k).

References
[1] T. Auer and M. Held. Heuristics for the generation of random

polygons. In Proc. CCCG, pages 38–44, 1996. 1
[2] P. Bhowmick and B. B. Bhattacharya. Fast polygonal ap-

proximation of digital curves using relaxed straightness
properties. IEEE Trans. PAMI, 29(9):1590–1602, 2007. 1

[3] I. Debled-Rennesson, R. Jean-Luc, and J. Rouyer-Degli.
Segmentation of discrete curves into fuzzy segments. Elec-
tronic Notes in Discrete Mathematics, 12:372–383, 2003. 1

[4] I. D.-Rennesson and J. P. Reveilles. A linear algorithm for
segmentation of digital curves. IJPRAI, 9:635–662, 1995.

[5] A. Einstein. Über die von der molekularkinetischen The-
orie der Wärme geforderte Bewegung von in ruhenden
Flüssigkeiten suspendierten Teilchen. Annalen der Physik,
17:549–560, 1905. 1

[6] A. Einstein. Investigations on the Theory of Brownian Move-
ment. Dover Publications, NY, 1926 (reprint: 1956). 1

[7] P. Epstein. Generating geometric objects at random. CS
Dept., Master thesis, Carleton University, Canada, 1992. 1

[8] S. Finch. Pòlya’s random walk constant. In § 5.9 in Mathe-
matical Constants, Cambridge University Press, 2003. 1

[9] R. Klette and A. Rosenfeld. Digital Geometry: Geometric
Methods for Digital Picture Analysis. Morgan Kaufmann,
San Francisco, 2004. 1

[10] G. Pòlya. Über eine Aufgabe der Wahrscheinlichkeitsrech-
nung betreffend die Irrfahrt im Strassennetz. Mathematische
Annalen, 84:149–160, 1921. 1

[11] S. Rohde and O. Schramm. Basic properties of sle. Annals
Math., 161:879–920, 2005. 1

[12] J. Rourke and M. Virmani. Generating random polygons.
TR:011, CS Dept., Smith College, Northampton, 1991. 1

[13] A. W. M. Smeulders and L. Dorst. Decomposition of dis-
crete curves into piecewise straight segments in linear time.
Contemporary Math., 119:169–195, 1991. 1

[14] C. Zhu, G. Sundaram, J. Snoeyink, and J. S. B. Mitchell.
Generating random polygons with given vertices. CGTA,
6:277–290, 1996. 1

