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Abstract—Using gradient information for a pixel-based cost
function for stereo matching has lacked adequate attention in
the literature. This paper provides experimental evidence to show
that the gradient as a data descriptor outperforms other pixel-
based functions such as absolute differences and the Birchfield
and Tomasi cost functions. The cost functions are tested against
stereo image datasets where ground truth data is available.
Furthermore, analysing the effect of the cost functions when
exposure and illumination settings are different between the left
and right camera is analysed. Not only has the performance of the
cost functions been analysed, but also analysis into “why” one cost
function is better than another. The analysis tests the global and
spacial optimality of the cost function, showing that the gradient
information returns stronger minima than the other two. These
results are aimed at future research towards the design of a new
smoothness prior that also depends on the characteristics of the
employed cost function. This paper shows that the gradient is
a simple, yet powerful, data descriptor that shows robustness to
illumination and exposure differences, but is often overlooked by
the stereo community.

I. INTRODUCTION AND RELATED LITERATURE

Stereo matching can be defined as an energy minimization
problem. The energy to be minimized is usually a combination
of a data and a smoothness term. The data term incorporates a
local matching cost into the energy, that usually relies entirely
on a similarity measure based on pixel information within a
certain neighbourhood of tested pixels. A smoothness term
adds an additional cost in order to ensure piecewise smooth
disparities to solve standard stereo matching problems that
occur in homogeneous areas and at depth discontinuities or
occlusions. In those areas the data term alone is not sufficient,
due to its inherent locality.

However, there are other problems in stereo matching that
affect, primarily, the data term, such as illumination differences
(between stereo images) and noise (obtained during image
acquisition). Those effects can have major influence on the
image data and therefore on the quality of the matching cost
itself. Especially when it comes to real world image sequences
[4]. Recent studies [16], [17], [1] suggest decomposing the
input images into a structure and a texture component. The
texture component tends to be robust against illumination
changes. Additionally, bilateral filtering [15] can be used to
reduce the noise in an image, since it applies a Gaussian
smoothing along with a spatial constraint that preserves image
discontinuities.
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Pixel-based cost functions are used as similarity measures
by state-of-the-art stereo algorithms such as belief propagation
(BP) [5], semi-global-matching (SGM) [6], or graph cuts (GC)
[3]. Those algorithms define the energy that needs to be
minimized over a disparity map D as follows:

E(D) = Edata(D) + Esmooth(D) (1)

The smoothness term is driven by a prior model and decides
whether to keep the disparity map consistent within a local
neighbourhood, or to allow a disparity jump, when a depth
discontinuity is likely. Those prior models are often based on
the input image data (e.g., first order derivatives).

The motivation of this paper is to generate a prior model that
is not only driven by the data, but also by the characteristics
of the chosen cost function. Of course this is only possible
if different cost functions do actually have a distinctive char-
acteristic. In order to avoid any bias, it is crucial to analyse
the cost functions separately from any optimization technique
(e.g., BP, SGM, or GC). Evaluation of good pixel percentages
on a winner takes all basis is clearly important to evaluate
quality of a cost function, but it is insufficient to derive any
characteristics.

In this paper, four pixel-based cost functions are evaluated,
namely the absolute difference (AD) cost function, the sam-
pling insensitive cost function [2] by Birchfield and Tomasi
(BT), the gradient absolute difference (GRAD), and an ex-
tended gradient difference (GRAD-X). While the performance
under illumination changes of AD and BT have been recently
studied [7], [8], the gradient was unfortunately not part of
those evaluations. In [11] however, the gradient was employed
in a similarity measure that was a weighted sum of AD and the
gradient (using forward differences) accumulated over a 3× 3
window. Another study introduces the gradient when creating a
similarity measure using a multiplicative contribution of SAD,
NCC and the gradient [10]. The contribution of the gradient
was shown to provide a more reliable cost function. However,
none of those studies were using or analysing the gradient
concept isolated from other cost functions to determine the
performance contribution of the gradient.

In the methodology presented below, the four cost func-
tions are evaluated under differing illumination and exposure
settings. Other than a combination, the pure gradient is used
as the cost function. The performance comparison is done
without any optimization strategy. We recall, that the goal is
(at some stage) to identify characteristics of cost functions to
employ them in an optimization prior model. Looking at how



many true disparities are identified when employing a winner
takes all approach is not sufficient for deriving characteristics.
We therefore define two cost function descriptors that should
give an intuition about the property of the identified minimum
costs, e.g., is the identified minimum strong or weak?

The analysis is expanded by evaluating those cost functions
when accumulated over a small 3×3 window, as is commonly
employed for disparity estimation. This usually provides a
performance gain in terms of quality of the match, while taking
a performance degradation in terms of computation time.
However, as shown in the experimental evidence, the gradient
clearly outperforms the other cost functions in all measures
for all illumination and exposure settings, which supports our
agenda to promote the gradient as a strong candidate to serve
as a matching cost in disparity estimation.

The paper is structured as follows. The following section
introduces the pixel-based matching costs. This is followed
by the methodology, data sets, and testing measures used for
evaluation. This leads onto a discussion of the experimental
results, which is then finalised by a conclusions section.

II. PIXEL-BASED COST FUNCTIONS

In a rectified stereo image pair we consider a base and
a match image. The base image is assumed to be the left
image L. The match image R is usually the right image.
The images are of same size with a dimension of n × m
(width times height) pixels within the image domain Ω. We
only consider intensity images (ignoring colour) in this paper
with values between 0 and Imax. Any cost function Γ defines
a global mapping Γ(L,R) = C that takes rectified stereo
images L and R as input, and outputs a 3D cost matrix C
with elements C(i, j, d), representing the cost when matching
a pixel at (i, j) in L with a pixel at (i − d, j) in R, for any
relevant disparity d in the range [1, dmax] ⊂ N (zero is used for
an “invalid” disparity, such as for occlusion). The ranges for i
and j are [0, n] ⊂ N and [0,m] ⊂ N, respectively. We simplify
notation as we are working with rectified images (epipolar
lines are aligned to the x-axis), and we consider a fixed image
row j in both the base and match image. Let pi denote a pixel
location in L at column i. Let Li be the value at this location
in the base image; qi−d denotes the pixel location (i − d, j)
in the match image R with intensity Ri−d. The cost can be
abbreviated to omit the row C(i, d).

A pixel-based cost function determines the matching cost
for a disparity on the basis of a descriptor that is defined
for one single pixel. Pixel-based cost functions can easily be
extended to window-based matching costs by integrating pixel-
based costs within a certain (usually square) neighbourhood.

The following four cost functions are categorized in the
literature as pixel-based cost functions. They are presented
briefly with an additional computational cost estimation. For
simplicity, a multiplication operation is considered equal to an
addition or subtraction and also to a sign switch or a min/max
evaluation.

A. Absolute Difference

The absolute difference (AD) of base and match pixel is
the simplest and cheapest (in terms of computational cost)
measure:

CAD(i, d) = |Li −Ri−d| (2)

The calculation cost at each pixel for every valid disparity is
one subtraction and one sign switch, which gives us the total
computational cost of:

2dmaxnm (3)

There is no preprocessing possible in order to speed up
calculation.

B. Birchfield and Tomasi Metric

Another commonly used pixel-based cost function (BT) was
presented in [2]. The intention of this cost is to be more insen-
sitive to image sampling by using absolute differences between
identified extrema of interpolated intensities. In a first step,
intensities in L and R are interpolated using either a previous
or a subsequent pixel along the epipolar line. For example,
Li−1/2 = 1

2 ( Li + Li−1 ) is an interpolated value at pi,
with respect to the previous pixel. Li = {Li−1/2, Li, Li+1/2}
is a set containing the intensity at pi in L as well as the
interpolated intensities with previous and subsequent pixels.
Analogously, Ri−d is a set containing the intensity at qi−d
in R as well as the interpolated intensities with previous and
subsequent pixels. The BT cost function is then as follows:

CBT(i, d) = min{a, b} (4)

where

a = max {Li −max(Ri−d), min(Ri−d)− Li, 0} (5)
b = max {Ri−d −max(Li), min(Li)−Ri−d, 0} (6)

The cost here is somewhat more expensive. At each pixel the
interpolation is needed with the successor and the predecessor
along the epipolar line. This can however, be pre-calculated to
speed up time. Each interpolation required two multiplications
and one addition. There are about1 n × m interpolations
necessary. At each pixel we have four subtractions along
with seven min/max decisions. The total computational cost
is therefore

3nm+ 11dmaxnm = (11dmax + 3)nm (7)

This is however a lower estimate than found in practice, as
min/max operations have a much higher computational cost
when compared to multiplication, sign checks, and addition.

1There are only (n−1)×m interpolations required, but we keep it simple.



C. The Gradient

This cost function [11] employs the spatial distance of the
end points of the gradient vectors as the similarity measure. It
therefore falls into a different category than the previous two
functions, because it is based on first order approximations
rather than on intensity data. It is defined as:

CGRAD(i, d) = |∇Li −∇Ri−d|1 (8)

where ∇ is estimated using central differences2 and | ∗ |1 is
the L1 norm.

The computational costs are as follows. For the gradient
calculation we need to calculate the gradient at each pixel
using two subtractions (central differences) in a preprocessing
step. Calculating the costs for each disparity needs two sign
checks, one addition, and two subtractions. This results in the
total computational cost of:

2nm+ dmaxnm = (5dmax + 2)nm (9)

D. A Gradient Extension

The gradient operator in its standard form takes a scalar
field (like an image) and converts it into a 2D vector field,
where the vectors consist of the derivatives in horizontal x and
vertical y directions, i.e., ∇ =

(
∂
∂x ,

∂
∂y

)T
. We use central

differences in x and y approximating the derivatives. However,
this incorporates only the 4-neighbourhood of a pixel. We
may as well define central differences in diagonal direction
to include the whole 8-neighbourhood. Thus we extend the
gradient formulation to a 4D operator

∇4 =
(
∂

∂x
,
∂

∂y
,

∂

∂(x+ π
4 )

,
∂

∂(y + π
4 )

)T
(10)

where ∂(x+ π
4 ) denotes the approximate changes of the scalar

field when changing the reference direction by 45 degrees
(i.e., π4 ). We define

CGRAD−X(i, d) = |∇4Li −∇4Ri−d|1 (11)

The computational cost would be twice that of the standard
gradient plus one extra addition. So the total cost in our
reference system is

(11dmax + 4)nm (12)

We included the computational cost evaluation to keep a cer-
tain level of fairness, when we compare the performance of the
cost functions. Clearly, using central differences to obtain the
gradient information incorporates a one pixel neighbourhood
in both the horizontal and vertical direction. Therefore, the
information from four pixels is used to describe the matching
cost at each pixel, or 8 pixel when looking at the extended
version. The same happens with BT. Because interpolation
is performed on intensities forward and backward along i,
three pixels are incorporated for the BT descriptor. It is not

2For the experiments in this paper, central differences are used, however,
other gradient operators can be used, and may provide better, depending on
the image data used.

surprising that extending the area of influence for a descriptor
may have a positive impact on the matching quality, but this
also has a negative impact on computational costs. These two
issues need to be considered when comparing results in the
discussion.

E. Winner Takes All Matching

To calculate the optimal disparity map, a winner takes all
approach is used. This approach finds the minimum cost for
C at every pixel (i, j). Formally, this is calculated as follows:

D(i, j) = mind∈[1,dmax] {C(i, j, d)} (13)

If there is no unique minimum (i.e., if there are two or more
costs that have the same minimum value) then the optimal
disparity D(i, j) is set to the disparity value of the first
minimum cost that is found. It would also be possible to
handle these ambiguities (non-unique situations). We choose
not to, since ambiguities are rarely considered in optimization
techniques so far. The high ambiguity however, could be a
distinctive characteristic for the AD and BT cost functions.
Considering this in the prior model of a subsequent optimiza-
tion technique may improve results (e.g., ignoring the data
term when ambiguities are detected).

III. METHODOLOGY AND DATASETS

Illumination issues have been proven to cause major issues
when it comes to stereo matching and may, in fact, be the
worst type of noise for stereo matching [14]. The methodology
here tests the cost functions under normal lighting conditions,
as well as with different exposures and illuminations between
the left and right camera. Furthermore, the tests are performed
using single pixel data (1 × 1 window) and a 3 × 3 window.
Incorporating more data is likely to provide better results
overall.

The dataset and methodology are presented below. Not only
is the best performer analysed (comparing estimates to ground
truth), but also the properties of the cost function that aims to
answer to the question “why is this cost function better?”

A. Dataset

Stereo images where ground truth is available is used to
evaluate the cost functions. Furthermore, the stereo images
are recorded under different lighting and exposure settings, to
provide test data where illumination/exposure could cause is-
sues. Such data is available, for example, from the Middlebury
Stereo Vision webpage [8]. Figure 1 shows an example (in this
case, the Art images) of the dataset used in this paper.

The cost functions are tested against the following images
from the dataset: Art, Books, Dolls, Laundry, Moebius, and
Reindeer. For each image pair used, the base image is using
the exposure setting of 1 and illumination setting of 2. The
left image is kept at this setting, but both illumination and
exposure are varied in the right hand image. For each measure
(outlined below) three tests are performed using different right
hand images:

1) Identical lighting conditions (exp. 1, illum. 2)



Fig. 1. Top row: shows the left reference (base) and right (match)
image, respectively, of the Art input pair under identical lighting conditions.
Bottom row: shows the right image with illumination and exposure change,
respectively.

2) Illumination difference (exp. 1, illum. 1)
3) Exposure difference (exp. 0, illum. 2)

In the experiments we see how those cost functions based
purely on intensity fail terribly, which is obvious because of
the high reliance on the intensity consistency between images.

B. Good Pixel Percentage

Let T be the ground truth image of the corresponding data
set where Ti encodes the true disparity at pixel pi. The good
pixel percentage is defined below:

GPP = 100%× 1
|Ω|

∑
(i,j)∈Ω

{
1, if |D(i, j)− Ti| ≤ 1
0 otherwise

(14)

where Ω is the set of all pixels where Ti 6= 0, as 0 is used to
identify occlusions, and |Ω| is the cardinality.

In other words, if the minimum cost disparity is within one
disparity distance of the ground truth, it is a good pixel. This
measure was used as the base test for answering the question:
“which cost function provides the best results?”

C. Local Data Term Descriptor

A local data term descriptor indicates the strength of the
minimum cost, in a local context. This approach is closely
related to confidence measures [9]. The chosen measure used
here is the angle α between neighbouring pixels. This measure
helps to answer the question of “why does the function
perform better?”

α = arccos
( v1 · v2

|v1|2|v2|2

)
(15)

1 2 3 4 5 6 7 8 9 10

7 3 10 5 1 2 9 2 6 4

3.3 1.25.1 3.7 4.1 2.92.74.33.5
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Fig. 2. Visual interpretation of the data descriptors. Top: local data descriptor,
which takes into account the neighbouring left and right pixels, and calculates
the angle. Bottom: global data descriptor, which reorders the cost values
globally, and calculates the relative difference between the bottom two costs
vs. the cost range.

where · denotes the dot product of two vectors and

v1 = (−1, C(i, dw−1)− C(i, dw))T (16)
v2 = (1, C(i, dw+1)− C(i, dw))T (17)

where dw is the index (position) of the optimal disparity. To
summarise the data over an image, the angle α is averaged
over Ω.

We calculate the angle in degrees to have a better visual
understanding of the results (compared to radians values).

The top half of Figure 2 shows an example of this
data descriptor. Here, a disparity range of 1, ..., dmax where
dmax = 10 is assumed. In this case, the minimum disparity
index dw is 7. The angle α is calculated between 6→ 7→ 8.
The larger the angle, the less descriptive the cost function in
a local context.

Examples of the pixel-wise local descriptor are shown in
Figure 3. Here, the Laundry stereo pair is used for the input
images.

D. Global Data Term Descriptor

This measure is used to analyse how definitive the minimum
cost is in a global context (at each pixel). In order to test this,
we sort the costs at each pixel, then measure the absolute
distance between the lowest two costs.

This measure further helps answer the question of “why
does the function perform better?” It shows how descriptive



Fig. 3. Angle based local descriptor at each pixel for the Laundry stereo pair. The images are intensity coded with low to high representing the size of the
angle (results are scaled to 8-bit for visualisation). The lower the angle, the more descriptive the cost at that point. Left to right shows results for AD, BT,
GRAD and GRAD-X, respectively.

the cost function is, when comparing it globally within the
disparity range. This is defined formally below.

Let C(i, j, d)0<d≤dmax
be the finite sequence of all costs

at a pixel location (i, j) for the chosen disparity range. We
can order this sequence from the lowest to the highest cost.
We chose the absolute distance from the lowest to the second
lowest cost as a global descriptor for the cost functions at a
specific pixel.

The bottom half of Figure 2 provides an example of this
data descriptor. Here, the disparity range of 1, ..., dmax is
sorted (ascending) by cost. Then the difference between the
two lowest costs is taken. This gives a absolute descriptor of
the cost distance between first and second lowest cost.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Summarising the paper so far, the experiments were run for
each pixel-based cost functions (with two different window
sizes), against the Middlebury data set with three different
settings: no lighting changes, illumination difference, and
exposure difference. For each image pair, the good pixel
percentage was calculated, along with the local and global
data descriptors. The results are summarised in Figure 4. For
GPP and the global descriptor a higher value is better than a
lower value, and for the local angular descriptor a lower value
is better than a higher one.

When looking at the 1 × 1 window good pixel percentage
results for the cost functions (top row of Figure 4) the first
thing we notice is that both GRAD and GRAD-X outperform
BT and AD, for all situations. This makes sense if we
think about the information captured from each cost function.
GRAD-X is using eight pixels of information, GRAD is using
four, BT is using three, and AD is using one. Surprisingly,
AD is higher than BT, thus AD would be an obvious choice
between the two as it also has a lower computational cost.
However, the concept of BT may become of relevance when
applied within a subsequent optimization scheme; as the cost
function was introduced in combination with one [2] and only
then used with other optimization techniques. We notice that
as soon as there are illumination issues (two right graphs) AD
and BT become almost unusable; this is expected because the
constant intensity assumption is violated. Illumination issues
degrade the quality of GRAD and GRAD-X, but not by too

much. From this we can declare that gradient based operators
provide better results than intensity based measures, and are
also robust to illumination conditions.

Analysing the local and global descriptor for the 1× 1 cost
functions provides some interesting results. The local descrip-
tor ordering is the same as for GPP; GRAD-X has the lowest
angle (thus strongest descriptor), followed by GRAD, AD,
then BT. There is no way to compare the global descriptors
against each other, but the consistent range of values for each
cost function will guide decisions for choosing smoothing
priors. Illumination changes do not have a consistent effect
on the descriptors. The aim of analysing these descriptors is
to help drive the penalty choice globally (using the global
descriptor) along with a spatially adapting penaliser (using the
local descriptor).

Continuing with the local descriptors, Figure 3 shows the
pixel-wise data descriptor. Visual inspection shows that angles
in the gradient cost functions seem to be more consistent,
providing clear object boundaries and low information on
homogeneous areas. This is favourable for an optimisation
scheme if spatially varying penalisers are to be used. However,
this has to be further analysed in order to exploit this infor-
mation for incorporating this into optimization techniques.

Results get more interesting when we look at the results for
good pixel percentages on the 3 × 3 window cost functions.
For the three different illumination conditions we notice that
AD and BT are overlapping, and so are GRAD-X and GRAD.
This makes sense if we remember that AD and BT are both
intensity based, so summarising the data over a small window
negates the interpolation of BT. Similarly, GRAD-X has two
extra angles of gradient when compared to GRAD, but this
extra information is almost negligible on a window as only
four extra pixels of information are being included. Results
are improved for all cost functions, with the intensity-based
cost functions showing some robustness to lighting change,
but not exposure change. GRAD-X only slightly out performs
GRAD; if you take into consideration the computational
difference (GRAD-X is twice that of GRAD) then GRAD
would probably be the best choice here.

Looking at the local and global descriptor for the 3 × 3
window does not provide any extra information. The results
are similar when compared to a 1× 1 window.



Summarising the results, there is one major characteristic
difference between the two groups of cost functions: gradient-
based (GRAD, GRAD-X) and intensity-based (AD,BT). We
can say from these experiments that gradient-based cost func-
tions do not only provide better results, but have stronger local
minima and show high robustness to illumination changes.
The GRAD-X operator provides better results for single pixel
operators, but this advantage is reduced dramatically for higher
window sizes (where GRAD would be favourable due to
the much lower computational cost). Unfortunately, ordering
based cost functions like census [18] were not included, but
are planned for future extensions with analysis of optimization
techniques.

V. CONCLUSIONS

This paper provided experimental evidence on the differ-
ences between gradient-based and intensity-based cost func-
tions. The study included stereo data where illumination
causes an issue for most disparity estimation algorithms. The
gradient-based functions provided better results, that were also
robust against the illumination changes. The top performer for
single pixel cost functions was the new gradient operator in-
troduced in this paper. However, the advantage of the operator
is lost when using larger window sizes. In addition to the good
pixel percentage, a local and global descriptor was introduced
to guide a user on the penalisers that should be used in an
optimisation scheme.

Future works include analysing ordering based cost func-
tions, such as the census function. Furthermore, these cost
functions need to be incorporated into different optimisation
strategies to analyse how the local and global descriptors can
help guide the optimisation.
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Fig. 4. Experimental results on the stereo dataset. The upper half (first 9 graphs) represent the 1 × 1 window cost functions, and the lower half represent
3 × 3 window cost functions. Within each section, the top row is the evaluation of the good pixel percentage, the second row displays the local descriptor,
and the third row the global descriptor. The columns (left to right) show the analysis using identical illumination condition, with illumination differences, and
then with exposure changes.


