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Abstract—The paper proposes the prediction of stereo match-
ing performance based on analyzing the given stereo data (and
not based on test runs of stereo matching algorithms). For jus-
tifying our approach we compare results obtained by prediction
error analysis (for different stereo matching algorithms) with
three different data evaluation techniques: a count of SIFT
matches, a mismatch count between census transform features,
and the quality of dense optical flow fields based on a total-
variation energy minimization. The paper shows that there are
reasonable indications that such measures, quantifying matches
of features or image regions, correlate with stereo performance
to some degree. This study on data evaluation is initiating a new
direction of research, and it concludes with the suggestion of
studying further measures or more data for the ultimate goal
of supporting an adaptive optimization or selection of stereo
matching techniques with respect to given image data.

I. INTRODUCTION

Quantitative evaluation of stereo methods supports progress
in improving the performance of stereo matching methods.
Often, the set of data used for testing algorithms remains ex-
tremely limited, compared to needs in real-world applications
such as vision-based driver assistance [6], where optimization
of stereo matching needs to be adaptive to the recorded
situations, defined by various events in traffic scenes such as
lighting, density of traffic, road geometry, and so forth. A few
image samples cannot represent the diversity of possible stereo
recordings, enforced by the fact that used data are often either
synthetic or engineered, such of a quality that is not really
challenging for the top performing stereo algorithms.

Reported differences in the performance of stereo methods
for a few image samples, such as on [8], are not applicable
when selecting matching techniques for more diversified sets
of stereo data. For example, for one of the most popular images
used for testing stereo algorithms, Teddy, we observed the
following: When comparing generated depth maps to the
provided ground truth using normalized cross correlation, the
simple sum of absolute differences (SAD) block matching
method performed almost as good as computationally expen-
sive global stereo methods. Obviously, this SAD method is
not a competitor when it comes to real world data.

The paper introduces quantitative measures that aim at
expressing the extent to which stereo matching methods are
challenged by a particular set of stereo data. A SIFT-based
measure was proposed and studied in [5]. Here we add two
more measures to the discussion.

For being absolutely clear here: We do not aim at finding a
measure to answer “How good is a particular algorithm?”, but
we are interested in the question “How difficult are particular

stereo data?”. Obviously, there is no lower limit for the
quality of stereo data. For example, even the powerful human
visual system can fail on some data (e.g., in case of major
contrast differences between left and right views; we tested
limits of human stereo fusion by viewing different sets of
recorded stereo data on 3D displays using polarized glasses).
The practical relevance of evaluating data lies in the need
to adapt stereo matching algorithms to changes in recorded
stereo data. Failure due to bad input data (e.g., driving in
the night in heavy rain) is not acceptable, for example, for
vision-based driver assistance. At least, the system needs to
understand that available methods cannot cope with the current
data complexity.

Prediction error analysis [15] was applied in [10] for stereo
matching on large datasets of trinocularly recorded video
sequences. Sparse matching statistics was used in [5] for
data evaluation. In this paper we compare the technique of
prediction error analysis with sparse matching statistics. The
only prerequisite is that we assume rectified stereo input pairs.

For defining measures that predict stereo performance, de-
pending only on the quality of available stereo data and not on
implicit assumptions (inherent to particular stereo methods),
the approach in [5] quantified performance of sparse SIFT
matching [7] between rectified stereo frames without con-
straining matching by epipolar geometry. In fact, consistency
of matches with epipolar geometry was used to evaluate those
matches. Matching-based measures in this paper include the
previously proposed SIFT-feature technique, but also census
transform signatures [14] and the plausibility of dense motion
fields, calculated as TV-L1 optical flow [2]. (This optical flow
method performed well in general on traffic-related video
sequences [17]; however, its standard sequential implemen-
tation is still computationally expensive and therefore, in this
implementation, not yet suitable for realtime applications.)

Section II reviews the application of prediction error analy-
sis for stereo evaluation. Section III introduces matching with
SIFT and census signatures. Section IV explains how these
approaches can be applied to estimate stereo frame quality.
Section V presents our experiments and discusses the results.
Section VI concludes.

II. PREDICTION ERROR ANALYSIS

For evaluating stereo algorithms on real-world images, an
application of a prediction error technique [15] was proposed
in [10], using three time-synchronized and calibrated cameras
for recording “long” (i.e., 100 to 300 stereo frames) image
sequences. Two of those sequences were the input data for



(a) Reference image (b) Match image (c) Control image (d) Disparity map (e) Warped match image

Fig. 1. Illustration for prediction error analysis. The disparity map is used for creating a virtual view for the right (i.e., control) camera. This virtual view
is compared with the actually recorded right camera image.

Fig. 2. Disparity maps and corresponding virtual views for the dataset 092110 (BP on the left, and DP on the right).

various stereo algorithms, and the third sequence was used as
“ground truth”. We briefly recall this approach.

Rectified images from two cameras (the reference camera
Cr and the matching camera Cm, respectively) are selected
as input data for a given stereo matching algorithm. Images
recorded with a third camera (the control camera Cc) are used
to evaluate the disparity map D as calculated with a stereo
algorithm. Using the disparities in D, and the calibration data
between Cr and Cc, images recorded with Cr are warped into
a virtual image that predicts what would actually be recorded
with Cc. See Figs. 1 and 2.

The evaluation is carried out by comparing the virtual
image with the corresponding image of Cc using normalized
cross correlation (NCC), what is a common choice for a
similarity measure. Let Ic be an image recorded with Cc and
Iv the corresponding virtual image. The NCC between them
is defined as follows:

S(Ic, Iv) =
1
|Ω|

∑
(x,y)∈Ω

[Ic(x, y)− µc][Iv(x, y)− µv]
σcσv

(1)

where µc and µc denote the means, and σc and σv the standard
deviations of Ic and Iv , respectively. Ω is the set of pixels
showing non-occluded points (i.e., seen by the three cameras);
|.| is the cardinality.

The main advantage of this evaluation approach is that
performance evaluation of stereo algorithms can be done
objectively using a broader class of data sets, as no ground
truth of disparity data is required.

In this work, we analyze the performance of some stereo
algorithms using this approach of prediction error analysis,
while analyzing the proposed measures of data complexity at
the same time on the trinocular sequences.

III. MATCHING TECHNIQUES

We apply SIFT and census transform features. Interest
points of SIFT features [7] are defined by extrema in a
difference-of-Gaussians scale-space, also applying sub-pixel
accuracy and rejection of poorly defined locations. Together
with a “well-defined” descriptor, these are called distinctive
features.

A SIFT descriptor is defined by image gradients at different
locations around the interest point. Neighboring pixels are
summarized in orientation histograms. The original imple-
mentation of SIFT uses 16 × 16 descriptor arrays. These
are summarized in 4 × 4 histogram bins, each containing
magnitudes for eight different orientations. Thus, a descriptor
vector is of dimension 128.

Matching can be done by choosing corresponding vectors
according to their Euclidean distance, usually involving some
heuristics to exclude unreliable matches. Best SIFT matches
in stereo frames are illustrated in Fig. 3.

This sketched SIFT process, and the dimension of the
descriptor vector make this method computationally expensive
for deriving matching statistics and less suitable for realtime
applications than, for example, the following census transform.

The census transform is successfully used in correspondence
analysis [18], for example, for calculating sparse optical flow
in realtime [14]. For defining the census transform descriptor
(also called signature), consider a (e.g., square) neighborhood
N (p), for pixel p. For q ∈ N (p), let

ξ(p, q) =
{

1 I(q) < I(p)
0 I(p) ≤ I(q)

A bitstring (i.e., the signature) is generated by concatenation of
all ξ(p, q) values when traversing N (p) in a specified order.



(a) Best SIFT matches on a recorded stereo frame (b) Best SIFT matches on a synthetic stereo frame

Fig. 3. Both images show the left image of a stereo frame, and best matches in the right image are projected into the left image and connected by a line
segment. Best matches which are inconsistent with epipolar geometry are not “on the same image row”. Synthetic images tend to have very few of those
inconsistent matches.

(a) Real world input image (b) Census flow

Fig. 4. Census-based matches may be numerous in some of the image regions; correct matches are here superimposed by many incorrect ones.

The matching measure between two pixels is the Hamming
distance of their corresponding bitstrings.

For optical flow calculation, ternary signatures are used in
[18], defined as follows for some small ε:

ξ(p, q) =

 0 I(p)− I(q) > ε
1 |I(q)− I(p)| ≤ ε
2 I(q)− I(p) > ε

The distance between ternary signatures can be computed by
the number of positions with differing values at that position.

Matching is dense when applying those signatures (i.e.,
correspondences are sought for every pixel), but without
having an option for subpixel accuracy. Initial matches are
calculated by a cascade of filters that remove (e.g.) “poorly

defined” matches [18]; this results in sparse matching. An
example for such a matching process (using ternary signatures)
is shown in Fig. 4.

IV. MATCHING STATISTICS AND DATA QUALITY

At this point it is just our hypothesis that sparse matching
of distinctive features may provide a measure that is strongly
correlated to the outcome dense stereo matching processes
(say, “scaled by the quality of the actually applied matching
algorithm”). However, this hypothesis (i.e., the existence of
such a correlation) was already supported by results in [5].

To check the correctness of a match in a rectified stereo
frame, we do the following: A match between a feature
location (il, jl) in the left image and a feature location (ir, jr)



(a) Reference image (b) Match image (c) TV-L1 flow for reference image

Fig. 5. Applying dense flow to a stereo frame of suboptimal quality. All areas that are not light blue or not colored contribute to our error measure.

in the right image is considered to be correct up to known
constraints if

|jl − jr| < ε ∧ ir ∈ [il, il − dmax] (2)

for a chosen small ε > 0 (we choose ε = 1); dmax is the
maximum disparity between both stereo views.

Equation (2) appears to be very much “forgiving”. However,
the probability of a misclassification is at most (2εdmax −
1)/(M ·N) in an image of size M×N . This assumption may
be violated, for example, for images with repetitive textures
in some areas.

When applying SIFT features, we use the counts of correct
(up to known constraints) matches and the ratio between
detected and matched features for given stereo pairs. If the
feature detector identifies n features in the base image that
lead to m matches in the match image, and that from those
m matches, o are classified as being incorrect (up to known
constraints), then we define that

x = n/m and y = 100× o/m (3)

where x is the matching rate and y the mismatch rate. Thus,
x ≥ 1 and y ≤ 100%.

The matching rate x expresses how many features on
average lead to one match (no matter whether correct or not),
while the mismatch rate y identifies the percentage of incorrect
(up to known constraints) matches.

For the much faster census transform matching process, we
only count the mismatch rate y, also referring to Eq. (2).

Estimating stereo performance based on dense (TV-L1)
optical flow maps is done as follows: We assume that a motion
vector has direction a, with a value between 0 and 2π, and
length b ∈ [0, 1]. Ideally, the direction a should always be π
(i.e., horizontal). However, for vectors with length b close to
zero, the direction is meaningless and should not contribute
(much) to an error measure. Thus, for each pixel p = (i, j)
we calculate the magnitude of an error at p as follows:

eij = b2 |a− π| (4)

The total error E for an image equals

E =
∑
(i,j)

eij (5)

V. EXPERIMENTS

We compare stereo performances on four different datasets,
each consisting of up to 150 trinocular frames with known
intrinsic and extrinsic calibration parameters. For each of these
trinocular frames, we compute the prediction error as outlined
in Section II using dynamic programming stereo (DP) [12],
and belief propagation stereo (BP) [4]; BP is on residual
images [1]. Furthermore, we compute SIFT and census based
correspondences and apply the matching count as outlined in
Section IV. For SIFT, we use the value x + y as a resulting
scalar measure. Finally, we also calculate dense flow using
TV-L1 optical flow [2] (illustrated in Fig. 5) and use the error
measure described at the end of the last section. Each of these
values is plotted in Fig. 6 for the four datasets.

To enhance compatibility between different measures, we
plot normalized values: Let T be the number of frames, E(t)
be the error measure for frame at time t. For 1 ≤ t ≤ T , we

TABLE I
SUMMARIZING CROSS CORRELATION VALUES.

Dataset 081409

Method SIFT DP BP TV-L1
Census -0.25 0.34 0.17 0.25
SIFT 0.30 0.42 -0.12
DP 0.85 0.33
BP 0.38

Dataset 092110

Method SIFT DP BP TV-L1
Census -0.50 -0.01 -0.27 -0.78
SIFT -0.17 0.49 0.57
DP -0.14 -0.12
BP 0.66

Dataset 141610

Method SIFT DP BP TV-L1
Census 0.02 -0.36 -0.54 -0.67
SIFT -0.16 -0.14 -0.22
DP 0.93 0.20
BP 0.36

Dataset 142707

Method SIFT DP BP TV-L1
Census -0.79 -0.27 0.08 0.50
SIFT 0.13 0.12 -0.52
DP -0.01 -0.21
BP 0.12
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(a) Dataset 081409
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(d) Dataset 142707

Fig. 6. Four datasets, each with five different error measures. For better visual comparison, we display normalized values for all error measures.

display En(t) in our charts, with

En(t) = (E(t)− µT )/σT (6)

for mean µT and variance σ2
T of E(t) on those T frames.

We also compute cross correlations between these series
of values for each dataset. For example, consider normalized
values EnBP (t) for BP prediction errors, and normalized
values EnDP (t) for DP prediction; then the cross correlation
equals 1/T

∑T
t=1EnBP (t)EnDP (t).

Table I provides these cross correlation values for all
combinations of error measures E, and for all four datasets.
The complete graphs of error measures are shown in Fig. 6.

The tables of cross correlation values indicate that there is
only a minor correlation between summarized errors on whole
sequences, except stronger correlations between DP and BP
prediction error results on the first two datasets (i.e., 081409
and 092110).

We discuss the obtained results qualitatively, for each
dataset separately.

1) Dataset 081409: There is an obvious divergence of
stereo and matching results for Frames 45 – 56. Matching or
flow results do not indicate an expected drop in performance,
although prediction error analysis does for the actual stereo
results. In fact, visual inspection of these frames did not
tell us about a particular issue with image quality in those
frames. Frames 110 – 114 are the only ones that appeared
problematic in this sequence. (The car is passing below a
highway, leading to strong changes in exposure.) Prediction
errors detect problems only on residual images. Optical flow
and census matching detected this “critical” situation, while
SIFT-matching did not.

2) Dataset 092110: The sequence contains major bright-
ness differences between reference and match images, due
to shadows caused by trees along the road. Visual inspection
verifies good stereo image quality only for Frames 28-46, what
is noticed by the census measure, but not by any of the others.
Even the results of prediction error analysis are contradictory
for the whole sequence.



3) Dataset 141610: The whole sequence is prone to severe
reflections on the windscreen of the test vehicle, except for
Frames 49 – 51 and Frames 120 – 125. For all of the proposed
methods, the good (i.e., by visual inspection) quality of these
few frames goes unnoticed.

4) Dataset 142707: In this sequence, major brightness
differences are starting at Frame 110, and all previous frames
appear (i.e., by visual inspection) to be of satisfactory quality.
Changes in the curves in Fig. 6 (for this dataset) are not related
to variations in image quality.

VI. CONCLUSION

The undertaken studies confirm the initial findings in [5]
that measures for evaluating stereo data sets verify different
stereo matching complexities for different data sets (in short:
evaluations of stereo matchers on one data set may not be
of relevance for estimating performance on another dataset).
However, correspondences between the performance of stereo
matching techniques and proposed data complexity measures
still needs to be understood for challenging real-world se-
quences, as used as examples in this paper.

In [5] it was shown that there is a correspondence between
challenges in stereo matching when using either synthetic
or engineered stereo pairs, or real world sequences. In this
paper we attempted to go one step further: leaving synthetic
or engineered data aside, how about having some convinc-
ing measures for the huge diversity of real-world stereo
sequences? We have proposed measures in this paper, and
understand that any single measure of those is still insufficient
to cope with the complexity of real-world data. This “one
step further” proved to be a step into a new dimension of the
problem.

Not surprisingly, the evaluation of stereo methods without
having ground truth about disparities is an extremely chal-
lenging task. The prediction error analysis technique [9] is a
promising way to evaluate stereo techniques. This paper is on
evaluating stereo data for adding another option for evaluating
stereo techniques, and the proposed measures appear to be
“somehow” useful for indicating “critical” frames, but do
not succeed in general, and also do not “behave” in a way
that visual checks of data are consistent with the calculated
measures.

The general intention is to design an automatic system
to isolate potential sources of stereo matching errors (i.e.,
to identify “interesting” scenarios for further improvements
of stereo matching techniques). The decoupling of disruptive
influences (also called “events” at the beginning of this paper)
in recorded scenes is probably impossible without having first
a comprehensive analysis of the recorded scene. But studies
on more advanced stereo data complexity measures (e.g., by
combining the proposed measures) are certainly needed to
obtain further clarity on this issue.
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