
CCCG 2010, Winnipeg MB, August 9–11, 2010

Watchman Route in a Simple Polygon
with a Rubberband Algorithm

Fajie Li∗ Reinhard Klette†

Abstract

So far, the best result in running time for solving the
fixed watchman route problem (i.e., shortest path for
viewing any point in a simple polygon with given start
point) is O(n3 log n), published in 2003 by M. Dror, A.
Efrat, A. Lubiw, and J. Mitchell. – This paper provides
an algorithm with κ(ε) · O(kn) runtime, where n is the
number of vertices of the given simple polygon Π, and k
the number of essential cuts; κ(ε) defines the numerical
accuracy in dependency of a selected constant ε > 0.
Moreover, our algorithm is significantly simpler, easier
to understand and implement than previous ones for
solving the fixed watchman route problem.

1 Introduction

Let Π be a planar, simple, topologically closed poly-
gon with n vertices, and ∂Π be its frontier. A point
p ∈ Π is visible from point q ∈ Π iff pq ⊂ Π. The (float-
ing) watchman route problem (WRP) of computational
geometry, as discussed in [2], is defined as follows: Cal-
culate a shortest route ρ ⊂ Π such that any point p ∈ Π
is visible from at least one point on ρ. If a start point
of the route is given on ∂Π then this refined problem is
known as the fixed WRP. In the rest of this paper, let
s ∈ ∂Π be the starting point of the fixed WRP.

A simplified WRP of finding a shortest route in a sim-
ple isothetic polygon was solved in 1988 in [7] by pre-
senting an O(n log log n) algorithm. In 1991, [8] claimed
to have presented an O(n4) algorithm, solving the fixed
WRP. In 1993, [21] obtained an O(n3) solution for the
fixed WRP. In the same year, this was further improved
to a quadratic time algorithm [22]. However, four years
later, in 1997, [10] pointed out that the algorithms in
both [8] and [21] were flawed, but presented a solution
for fixing those errors. Interestingly, two years later,
in 1999, [23] found that the solution given by [10] was
also flawed! By modifying the (flawed) algorithm pre-
sented in [21], [23] gave an O(n4) runtime algorithm for
the fixed WRP. In 1995 and 1999, [17] and [6] gave an
O(n6) algorithm for the WRP respectively. This was
∗College of Computer Science and Technology, Huaqiao Uni-

versity, Xiamen, Fujian, China, li.fajie@yahoo.com
†Computer Science Department, The University of Auck-

land, Private Bag 92019, Auckland 1142, New Zealand,
r.klette@auckland.ac.nz

improved in 2001 by an O(n5) algorithm in [24]. So far
the best known result for the fixed WRP is due to [9] by
presenting in 2003 an O(n3 log n) runtime algorithm.

Given the time complexity of those algorithms for
solving the WRP, finding efficient approximation algo-
rithms became an interesting subject. Recall the follow-
ing definition; see, for example, [11]: An algorithm is an
δ-approximation algorithm for a minimization problem
P iff, for each input of P , the algorithm delivers a solu-
tion that is at most δ times the optimum solution. In
case of the WRP, the optimum solution is defined by
the length of the shortest path.

In 1995, [14] published an O(log n)-approximation
algorithm for solving the WRP. In 1997, [5] gave a
99.98-approximation algorithm with time complexity
O(n log n) for the WRP. In 2001, [25] presented a linear-
time algorithm for an approximative solution of the
fixed WRP such that the length of the calculated watch-
man route is at most twice of that of the shortest watch-
man route. The coefficient of accuracy was improved
to
√

2 in [26] in 2004. Most recently, [27] presented a
linear-time algorithm for the WRP for calculating an
approximative watchman route of length at most twice
of that of the shortest watchman route.

Let ESP denote the class of any Euclidean shortest
path problem. Corresponding to the definition of δ-
approximation algorithms, we introduce the following
definition: A Euclidean path is a δ-approximation (Eu-
clidean) path for an ESP problem iff its length is at most
δ times the optimum solution.

The paper is organized as follows: Section 2 defines
some notations for later usage. Section 3 proposes and
discusses the main algorithm of this paper. Section 4
concludes.1

2 Preliminaries

We recall some definitions from [9] and [27]. A vertex v
of Π is called reflex if v’s internal angle is greater than
180◦. Let u be a vertex of Π which is adjacent to a reflex
vertex v. Assume that the straight line uv intersects an
edge of Π at v′. Then the segment C = vv′ partitions
Π into two parts. C is called a cut of Π if C makes a
convex vertex at v in the part containing the starting

1An expanded version is MI-tech report no. 51 at www.mi.

auckland.ac.nz/.

22nd Canadian Conference on Computational Geometry, 2010

point s, and v is called a defining vertex of C. That
part of Π which contains s is called essential part of C
and is denoted by Π(C). The other part of Π is called
the pocket induced by cut C, and C is the associated
cut of the pocket. A cut C dominates a cut C ′ iff Π(C)
contains Π(C ′). A cut is called essential if it is not
dominated by another cut. A pocket is called essential
if it does not contain any other pocket. A pocket is
essential iff its associated cut is essential.

If two points u and v are on two different edges of Π,
such that the segment uv partitions Π into two parts,
then we say that uv is a general cut of Π. We may
arbitrarily select one of both endpoints of the segment
uv to be its start point. In the rest of this paper, for
an essential cut C of Π, we identify the defining vertex
of C with its start point. If C0, C1, . . ., Ck−1 are all
the essential cuts of Π such that their start points are
ordered clockwise around on ∂Π, then we say that C0,
C1, . . ., Ck−1 and Π satisfy the condition of the fixed
watchman route problem. Let p, q ∈ Π; if pq ⊂ Π then q
can see p (with respect to Π), and p is a visible point of
q. Let q ∈ Π and assume a segment s ⊂ Π. If, for each
p ∈ s, q can see p, then we say that q can see s. Let
q ∈ Π, segment s ⊂ Π, p ∈ s, and p is not an endpoint
of s. If q can see p, but for any sufficiently small ε > 0,
q cannot see p′, where p′ ∈ s and Euclidean distance
de(p, p′) = ε, then we say that p is a visible extreme
point of q (with respect to s and Π). Let segment s ⊂ Π
and q ∈ Π \ s. If there exists a subsegment s′ ⊆ s such
that q can see s′, and each endpoint of s′ is a visible
extreme point of q or an endpoint of s, then we say that
s′ is a maximal visible segment of q (with respect to
Π). Let s0, s1, . . ., and sk−1 be k segments (k ≥ 2) in
three-dimensional Euclidean space (in short: 3D), p ∈
s0, and q ∈ sk−1. Let LS(p, q) be the length of the
shortest path, starting at p, then visiting segments s1,
. . ., and sk−2 in order, and finally ending at q, where
S = 〈s0, s1, . . . , sk−1〉. Let p, q ∈ Π. We denote by
LΠ(p, q) the length of the shortest path from p to q
inside of Π. Let ρ be a polygonal path and V (ρ) the set
of all vertices of ρ; |V (ρ)| is the number of vertices of ρ.
Denote by C(S) the convex hull of a set S. Let S0, S1,
. . ., and Sk−1 be k non-empty sets; let

∏k−1
i=0 Si be the

cross product of those sets. This ends our introduction
of technical terms. We also recall in one place here two
results which will be cited later in this paper:

• Lemma 1 ([9], page 475) A solution to the fixed
watchman route problem (i.e., a shortest tour) vis-
its the essential cuts in the same order as the defin-
ing vertices meet ∂Π.

• Theorem 2 ([27], Theorem 1) Given a simple
polygon Π; the set C of all essential cuts for the
watchman route in Π can be computed in O(n)
time.

3 Algorithms

In this section, we describe and discuss now the
promised algorithm for solving the fixed watchman
route problem.

3.1 Two Procedures and Main Algorithm

The main algorithm uses two procedures; the second
applies a 2D ESP algorithm (see [16], pages 639–641).
We present the used procedures first, and the main al-
gorithm later.

As described in Section B.1, the main idea of a Rub-
berband Algorithm (RBA) is as follows: In each it-
eration, we update (by finding a local minimum or
optimal vertex) the second vertex pi for every three-
subsequent-vertices subsequence pi−1, pi, pi+1 in a step
set {S1, S2, . . . , Sk}. The first procedure below com-
putes the maximal visible segment, which is actually an
element of the step set of the used RBA. The second
procedure is used for updating the vertices.

Procedure 1 Compute Maximal Visible Segment
Input: Polygon Π and a general cut C of Π; let v1 and
v2 be two endpoints of C; two points p and q such that
p ∈ C and p is a visible point of q ∈ ∂Π \ C.
Output: Two points p′1, p′2 ∈ C such that p is in the
segment p′1p

′
2, and p′1p

′
2 is the maximal visible segment

of q.

Figure 1: Illustration for Procedure 1.

We describe Procedure 1 informally. – Case 1: p is
not an endpoint of C. For i ∈ {1, 2}, if q can see vi,
(see left, Figure 1), let p′i be vi; otherwise, let Vi be
the set of vertices in V (∂Π) such that each vertex in
Vi is in 4qpvi. Apply the convex hull algorithm (see,
e.g., [15] or Figure 13.7, [12]) to compute C(Vi). Apply
the tangent algorithm (see [20]) to find a point p′i ∈ C
such that qp′i is a tangent to C(Vi) (see right of Fig-
ure 1). – Case 2: p is an endpoint of C. Without loss
of generality, assume that p = v1. Let p′1 be p. Let V2

be the set of vertices in V (∂Π) such that each vertex
in V2 is in 4qpvi. Apply the convex hull algorithm to
compute C(V2). Apply the tangent algorithm to find a
point p′2 ∈ C such that qp′2 is a tangent to C(V2).

CCCG 2010, Winnipeg MB, August 9–11, 2010

Procedure 2 Handling of Three General Cuts
Input: Three general cuts C1, C2 and C3 of Π; three
points pi ∈ Ci, for i = 1, 2, 3; and a degeneration accu-
racy constant ε2 > 0.
Output: An updated shorter path ρ(p1, . . . , p2, . . . , p3)
that might also contain vertices of the polygon Π.

1: For both i ∈ {1, 2}, let {pi, pi+1} (where pi ∈ Ci)
be the input for the 2D ESP algorithm; the output
is a set Vii+1 - the set of vertices of a shortest path
from pi to pi+1 inside of Π. Let V be V12 ∪V23.

2: Find q1 and q3 ∈ V such that 〈q1, p2, q3〉 is a subse-
quence of V (i.e., q1, p2, q3 appear consecutively in
V).

3: Let C = C2, p = p2, q = qi, apply Procedure 1 to
find the maximal visible segment si = p′1p

′
2 of qi, i

= 1, 3.
4: Find vertex p′2 ∈ s2 = s1 ∩ s3 such that de(q1, p

′
2) +

de(p′2, q3) = min{de(q1, p
′) + de(p′, q3) : p′ ∈ s2}.

5: If C2 ∩ C1 (or C3) 6= ∅ and p′2 is the intersection
point, then ε2-transform p′2 into another point (still
denoted by p′2) in C2.

6: Update V by letting p2 be p′2.

Note that in Procedure 2, if C1 or C3 degenerates to
a single point, then this procedure still works correctly.

Algorithm 1 Main Algorithm
Input: k essential cuts C0, C1, . . ., Ck−1, and Π, which
satisfy the condition of the fixed WRP, and points pi ∈
Ci, where i = 0, 1, 2, . . ., k−1; and an accuracy constant
ε > 0 and a degeneration accuracy constant ε2 > 0.
Output: An updated closed {1 + 4k[r(ε) + ε2]/L}-
approximation path ρ(s, p0, . . . , p1, . . . , pk−1, s), which
may also contain vertices of Π, where L is the length of
an optimal path, r(ε) the upper error bound2 for dis-
tances between pi and the corresponding optimal vertex
p′i: de(pi, p

′
i) ≤ r(ε), for i = 0, 1, . . . , k − 1.

The following pseudo code is fairly easy to read, and
we defer from providing another (more informal) high
level description of Algorithm 1.

1: For i ∈ {0, 1, . . . , k − 1}, let pi be the center of Ci.
2: Let V0 and V be a sequence of points
〈p0, p1, . . . , pk−1〉; L1 be

∑k
i=−1 LΠ(pi, pi+1);

and L0 be ∞ (p−1 = pk = s).
3: while L0 − L1 ≥ ε do
4: for each i ∈ {0, 1, . . . , k − 1} do
5: Let Ci−1, Ci, Ci+1, pi−1, pi, pi+1 and Π be the

input for Procedure 2, which updates pi in V0.
(C−1 = Ck = p−1 = pk = s)

6: Let Ui be the sequence of vertices of the
path ρ(pi−1, . . . , pi, . . . , pi+1) with respect to
Ci−1, Ci and Ci+1 (inside of Π); let Ui be
〈q1, q2, . . . , qm〉.

2It is obvious to see that limε→0 r(ε) = 0

7: Insert (after pi−1) the points of sequence Ui (in
the given order) into V0; i.e., we have that V1 =
〈p0, p1, . . . , pi−1, q1, q2, . . . , qm, pi+1, . . . , pk−1〉.
(Note: sequence V1 is the updated sequence
V0, after inserting Ui)

8: end for
9: Let L0 be L1 and V0 be V (Note: we use the

updated original sequence V instead of V1 for the
next iteration).

10: Calculate the perimeter L1 of the polygon, given
by the sequence V1 of vertices.

11: end while
12: Output sequence V1, and the desired length equal

to L1.

3.2 Correctness and Time Complexity

Theorem 3 If the chosen accuracy constant ε > 0 is
sufficiently small, then Algorithm 1 outputs a unique
{1+4k · [r(ε)+ε2]/L}-approximation (closed) path with
respect to the step set 〈S0, S1, . . . , Sk−1, S0〉, for any ini-
tial path.

See Section C for the proof of Theorem 3.
Theorem 3 shows that Algorithm 1 outputs an ap-

proximate solution to the fixed WRP; we have the fol-
lowing:

Theorem 4 Algorithm 1 outputs an
{1 + 4k · [r(ε) + ε2]/L}-approximation solution to the
fixed WRP.

Proof. By Corollary 7,∑k
i=−1 LΠ(pi, pi+1) :

∏k
i=−1 Ci → R is a convex func-

tion, where LΠ(pi, pi+1) is defined as in Step 2 of Algo-
rithm 1. Proposition 3 and Theorem 3 prove then the
theorem. �

Regarding the time complexity of our solution to the
fixed WRP, we first state the fact that Procedure 1 and
Procedure 2 can be computed in time O(|V (∂Π)|). Fur-
thermore, note that the main computation is in the two
stacked loops. The while-loop takes κ(ε) iterations. By
the stated fact, the for-loop can be computed in time
O(k · |V (∂Π)|). Thus, Algorithm 1 can be computed in
time

κ(ε) · O(k · |V (∂Π)|)

By Lemma 1 and Theorem 2, we may conclude that this
paper provided an {1+4k · [r(ε)+ε2]/L}-approximation
solution to the fixed WRP, having time complexity κ(ε)·
O(k · |V (∂Π)|), where k is the number of essential cuts,
and L is the length of an optimal watchman route.

4 Concluding Remarks

This paper applies basic ideas of RBAs, which were pro-
posed in digital geometry [3, 12] for the specific 3D ESP

22nd Canadian Conference on Computational Geometry, 2010

of calculating shortest Euclidean “loops” in a sequence
of cubes. We refined those ideas such that we now have a
general “arc” version of an RBA; see Algorithm 2. This
paper provides a simple and efficient way for solving the
system (4) formed by partial differential equations. Al-
gorithm 2 runs in time κ(ε) · O(k), while the solution
proposed by [7] has a time complexity which is dou-
bly exponential in k. The basic idea of an RBA might
be generalized to establish a whole class of rubberband
algorithms (RBAs) for solving various Euclidean short-
est path problems. The main algorithm of this paper
(Algorithm 1) is just an example for such an RBA. As
indicated in Note 1, in distinction to already published
approximation algorithms, our algorithm offers a high
accuracy. In some simple polygons, we find the exact
solution to the fixed WRP, in the others we converge
to the correct solution. A large number of experimen-
tal results also indicate that κ(ε) = O(k), where k is
the number of essential cuts. It remains a challenge to
prove a smallest upper bound for κ(ε).

Altogether, our algorithm is not only faster than pre-
viously published solutions to the fixed WRP, but also
significantly simpler, easier to understand and to imple-
ment.

References

[1] E. M. Arkin, J. S. B. Mitchell, and C. Piatko. Minimum-
link watchman tours. Report, University at Stony
Brook, 1994.

[2] T. Asano, S. K. Ghosh, and T. C. Shermer. Visibility
in the plane. In Handbook of Computational Geometry
(J.-R. Sack and J. Urrutia, editors), pages 829–876, El-
sevier, 2000.

[3] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, Cambridge, UK, 2004.

[4] T. Bülow and R. Klette. Digital curves in 3D space
and a linear-time length estimation algorithm. IEEE
Trans. Pattern Analysis Machine Intelligence, 24:962–
970, 2002.

[5] S. Carlsson, H. Jonsson, and B. J. Nilsson. Approximat-
ing the shortest watchman route in a simple polygon.
Technical report, Lund University, Sweden, 1997.

[6] S. Carlsson, H. Jonsson, and B. J. Nilsson. Finding the
shortest watchman route in a simple polygon. Discrete
Computational Geometry, 22:377–402, 1999.

[7] W. Chin and S. Ntafos. Optimum watchman routes.
Information Processing Letters, 28:39–44, 1988.

[8] W.-P. Chin and S. Ntafos. Shortest watchman routes
in simple polygons. Discrete Computational Geometry,
6:9–31, 1991.

[9] M. Dror, A. Efrat, A. Lubiw, and J. Mitchell. Touring
a sequence of polygons. In Proc. STOC, pages 473–482,
2003.

[10] M. Hammar and B. J. Nilsson. Concerning the time
bounds of existing shortest watchman routes. In Proc.
FCT’97, LNCS 1279, pages 210–221, 1997.

[11] D. S. Hochbaum (editor). Approximation Algorithms
for NP-Hard Problems. PWS Pub. Co.,Boston, 1997.

[12] R. Klette and A. Rosenfeld. Digital Geometry. Morgan
Kaufmann, San Francisco, 2004.

[13] H. Luo and A. Eleftheriadis. Rubberband: an improved
graph search algorithm for interactive object segmenta-
tion. In Proc. Int. Conf. Image Processing, volume 1,
pages 101–104, 2002.

[14] C. Mata and J. S. B. Mitchell. Approximation algo-
rithms for geometric tour and network design problems.
In Proc. Ann. ACM Symp. Computational Geometry,
pages 360–369, 1995.

[15] A. Melkman. On-line construction of the convex hull
of a simple polygon. Information Processing Letters,
25:11–12, 1987.

[16] J. S. B. Mitchell. Geometric shortest paths and network
optimization. In Handbook of Computational Geometry
(J.-R. Sack and J. Urrutia, editors). pages 633–701,
Elsevier, 2000.

[17] B. J. Nilsson. Guarding art galleries; Methods for mo-
bile guards. Ph.D. Thesis, Lund University, Sweden,
1995.

[18] A. W. Roberts and V. D. Varberg. Convex Functions.
Academic Press, New York, 1973.

[19] R. T. Rockafellar. Convex Analysis. Princeton Univer-
sity Press, Princeton, N.J., 1970.

[20] D. Sunday. Algorithm 14: Tangents to and between
polygons. See http://softsurfer.com/Archive/

algorithm_0201/ (last visit: November 2008).

[21] X. Tan, T. Hirata, and Y. Inagaki. An incremental
algorithm for constructing shortest watchman route al-
gorithms. Int. J. Comp. Geom. and Appl., 3:351–365,
1993.

[22] X. Tan and T. Hirata. Constructing shortest watch-
man routes by divide-and-conquer. In Proc. ISAAC,
LNCS 762, pages 68–77, 1993.

[23] X. Tan, T. Hirata, and Y. Inagaki. Corrigendum
to ‘An incremental algorithm for constructing short-
est watchman routes’. Int. J. Comp. Geom. and Appl.,
9:319–323, 1999.

[24] X. Tan. Fast computation of shortest watchman routes
in simple polygons. Information Processing Letters,
77:27–33, 2001.

[25] X. Tan. Approximation algorithms for the watch-
man route and zookeeper’s problems. In Proc. Com-
puting and Combinatorics, LNCS 2108, pages 201–206,
Springer, Berlin, 2005.

[26] X. Tan. Approximation algorithms for the watchman
route and zookeeper’s problems. Discrete Applied Math-
ematics, 136:363–376, 2004.

[27] X. Tan. A linear-time 2-approximation algorithm for
the watchman route problem for simple polygons. The-
oretical Computer Science, 384:92–103, 2007.

CCCG 2010, Winnipeg MB, August 9–11, 2010

A The Origin of Rubberband Algorithms

In this section, we recall the original rubberband algorithm,
as defined for regular grids in 3D [3]. The ideas and ba-
sic steps of this algorithm will then guide us when solving
the WRP. The original (or first) rubberband algorithm was
defined in the context of 3D digital geometry, assuming a
regular orthogonal grid in 3D.

Figure 2: Example of a cube-curve which has 22 critical
edges.

A cube-curve g is a loop of face-connected grid cubes in
a 3D regular orthogonal grid; the union g of those cubes
defines the tube of g. The original rubberband algorithm
in [3] discusses ESPs in such tubes, which are also called
minimum-length polygonal curves (MLPs). A critical edge
of a cube-curve g is such a grid edge which is incident with
exactly three different cubes contained in g. Figure 2 shows
all the critical edges of a cube-curve.

The computation of 3D MLPs was at first published in
[1, 2, 3, 5], proposing and discussing a rubberband algorithm3.
This original rubberband algorithm is also published in the
book [12].

Let ρ = (p0, p1, · · · , pm) be a polygonal curve contained
in a tube g. Such a curve is complete if it intersects with
every cube of g. A polygonal curve ξ is a g-transform of ρ iff
ξ may be obtained from ρ by a finite number of steps, where
each step is a replacement of a triple a, b, c of vertices by
a polygonal sequence a, b1, · · · , bk, c such that the polygonal
sequence a, b1, · · · , bk, c is contained in the same set of cubes
of g as the polygonal sequence a, b, c.

Assume a polygonal curve ρ = (p0, p1, · · · , pm) and three
pointers addressing vertices at positions i− 1, i and i+ 1 in
this curve. There are three different options that may occur,
and which define a specific g-transform:

(O1) Point pi can be deleted iff pi−1pi+1 is a line seg-
ment within the tube. Then the subsequence (pi−1, pi, pi+1)
is replaced in the curve by (pi−1, pi+1). In this case, the
algorithm continues with vertices pi−1, pi+1, pi+2.

(O2) The closed triangular region 4(pi−1, pi, pi+1) inter-
sects more than just three critical edges of cube-curve g (i.e.,
a simple deletion of pi would not be sufficient anymore).
This situation is solved by calculating a convex arc and by

3Not to be confused with a 2D image segmentation algorithm
of the same name [13].

replacing point pi by a sequence of vertices q1, · · · , qk on this
convex arc between pi−1 and pi+1 such that the sequence of
line segments pi−1q1, . . . , qkpi+1 lies within the tube. In this
case, the algorithm continues with a triple of vertices start-
ing with the calculated new vertex qk.

If (O1) and (O2) do not lead to any change, the third
option may lead to an improvement (i.e., a shorter polygo-
nal curve which is still contained and complete in the given
tube). Here, le denotes the straight line defined by extending
an edge e at both ends to infinity:

(O3) Point pi may be moved on its critical edge to obtain
an optimum position pnew minimizing the total length of
both line segments pi−1pnew and pnewpi+1. First, find popt ∈
le such that

|popt − pi−1|+ |popt − pi+1| = minp∈leL(p)

with L(p) = |p− pi−1|+ |p− pi+1|. Then, if popt lies on the
closed critical edge e, let pnew = popt. Otherwise, let pnew

be that vertex bounding e and lying closest to popt.
The authors showed in various previous publications (see,

for example, [6]) that the basic idea of (O3) can be gener-
alized to establish a whole class of rubberband algorithms
(RBAs) for solving various Euclidean shortest path prob-
lems. The main algorithm of the report is also just some
kind of adaptation of this original rubberband algorithm.

B Sequences of Line Segments in 3D

In this section, we present a simple rubberband algorithm
which receives as input a finite sequence of line segments
in 3D. Later it will be generalized and then becomes the
main algorithm; see Section 3. We discuss the simple RBA
without degenerate cases in Subsections B.1 and B.2, leav-
ing degenerate cases in Subsection B.3 with which we can
simply deal with, without affecting the time complexity of
our algorithms.

B.1 The Algorithm

The numerical accuracy of results obtained by a rubberband
algorithm is controlled by a chosen accuracy constant ε > 0.
For example, with respect to current computer technology, a
constant such as ε = 10−15 is appropriate. However, when-
ever ε is mentioned, have in mind that its value may further
decrease with the progress in computer technology.

Algorithm 2 (RBA for a sequence of pairwise disjoint 3D
line segments)
Input: A sequence of k pairwise disjoint line segments
S1, S2, . . . , Sk in 3D; two points p, q /∈

Sk
i=1 Si, and an ac-

curacy constant ε > 0.
Output: A sequence 〈p, p1, p2, . . . , pk, q〉 of an
[1 + 4(k + 1)r(ε)/L]-approximation path which starts at p,
then visits (i.e., passes through) segments Si at pi in the
given order, and finally ends at q, where L is the length
of an optimal path, r(ε) the upper error bound4 the for
distances between pi and the corresponding optimal vertex
p′i: de(pi, p

′
i) ≤ r(ε), for i = 1, . . . , k, where de denotes the

Euclidean distance.

4It is obvious to see that limε→0 r(ε) = 0

22nd Canadian Conference on Computational Geometry, 2010

Figure 3: Illustration for Algorithm 2.

We provide an informal specification of the algorithm. The
algorithm consists of two parts: initialization and iteration
step. In the initialization part, we select an initial path and
calculate its length. For example, take arbitrarily one point
in each segment and connect those points into a sequence, to
obtain an initial path. We could also take the center or one
of the endpoints in each segment. In each iteration cycle,
we update all the vertices of the path in sequence: For every
three subsequent vertices pi−1, pi and pi+1 in the path, we
consider the first and third vertices, pi−1 and pi+1, as being
fixed and slide pi freely in segment Si into an optimal point
with respect to this local configuration; we update pi by
replacing it with this newly detected, locally optimal point.
That is, we apply

de(pi−1, pi) + de(pi, pi+1)

= min{de(pi−1, p) + de(p, pi+1) : p ∈ Si}

At the end of the iteration cycle we compute the difference
between the length of the previous path to that of the current
(i.e., updated) path; if this is less than or equals ε then
this terminates the algorithm. Otherwise, we go to the next
iteration cycle.

Figure 3 shows on the left an initial path
〈p, p1, p2, p3, p4, q〉 for Algorithm 2; on the right it
shows an optimal point q2 ∈ S2 for the given positions of p1

and p3, defining the new position of p2. Note that optimal
points are not necessarily at endpoint positions.

B.2 Proof of Correctness

We have to show that these repeated local optimizations
of Algorithm 2 ensure that the calculated path converges
against the shortest path.

If an expression is derived from a finite number of polyno-
mials in x by only applying operations “+”, “-”, “×”, “÷”,
or “
√

” finitely often, then we say that this expression is a
simple compound of polynomials in x. Let f be a function,
mapping R into R. If interval J ⊆ I, then we say that J is
a subinterval of interval I. If f is monotonous in J , then we
say that J is a monotonous interval of f in I. If x0 satisfies
f(x0) = 0, and for a sufficiently small numbers δ > 0 and
all x1 in the interval (x0− δ, x0 + δ), f(x1) 6= 0, then we say
that x0 is an isolated solution of f(x). If I ⊂ R is a bounded
interval, and for all x in I, f(x) = 0, then we say that I is an
interval solution to f(x). We generalize those two definition
for the multi-variable case: Let f be a function from Rm into
R, for m ≥ 1. At a point (x10 , x20 , . . . , xm0), assume that
f(x10 , x20 , . . . , xm0) = 0, and for a sufficiently small number

δ > 0 and all (x11 , x21 , . . . , xm1) such that i = 1, 2, . . ., m,
and

xi1 ∈ (xi0 − δ, xi0 + δ) \ {xi0}
we have that f(x11 , x21 , . . . , xm1) 6= 0; then
point (x10 , x20 , . . . , xm0) is an isolated solution of
f(x1, x2, . . . , xm). If I1 ⊂ R is a bounded interval,
and for i = 2, 3, . . ., m, Ii ⊂ R is a bounded interval
or a single point (i.e., a degenerated bounded interval),
and for all x11 ∈ I1, there exists an xi1 in Ii such that
f(x11 , x21 , . . . , . . . xm1) = 0, then we say that 〈I1, I2, . . . , Im〉
is an interval solution to f(x1, x2, . . . , xm). We say that
(x10 , x20 , . . . , xm0) is an isolated solution to the system
formed by fj(x1, x2, . . . , xm) = 0, for j = 1, 2, . . ., m, if
for any of those j, (x10 , x20 , . . . , xm0) is an isolated solution
to fj(x1, x2, . . . , xm). We say that 〈I1, I2, . . . , Im〉 is an
interval solution to the system formed by fj(x1, x2, . . . , xm)
= 0, for j = 1, 2, . . ., m, if for any of those j, 〈I1, I2, . . . , Im〉
is an interval solution to fj(x1, x2, . . . , xm).

Let s0, s1 and s2 be three (closed) pairwise disjoint line
segments; the two endpoints of si be ai = (ai1 , ai2 , ai3) and
bi = (bi1 , bi2 , bi3). A point pi ∈ si, for i = 0, 1, 2, may be
written as

pi(ti) = ai + (bi − ai)ti

= (a11 + (b11 − a11)ti,

a12 + (b12 − a12)ti,

a13 + (b13 − a13)ti)

where ti ∈ [0, 1]. Let
d(t0, t1, t2) = de(p1(t1), p0(t0)) + de(p1(t1), p2(t2)). Then we
have the following

Corollary 1
∂d(t0, t1, t2)

∂t1
= 0 (1)

implies that t2 is a simple compound of polynomials of t0
and t1. All the t0, t1 and t2 are in [0, 1].

Proof. The formula
de(p1(t1), p0(t0)) =vuut 3X

i=1

{[a1i + (b1i − a1i)t1)]− [a0i + (b0i − a0i)t0)]}2 (2)

can be simplified: Without loss of generality, we can assume
that s1 is parallel to one of the three coordinate axes. It
follows that only one element of the set {b1i−a1i : i = 1, 2, 3}
is not equal to 0, and the other two are equal to 0. Thus,
we can assume that the expression inside the square root in
Equation (2) can be written as

3X
i=1

{[a1i + (b1i − a1i)t1)]− [a0i + (b0i − a0i)t0)]}2

= {[a11 + (b11 − a11)t1)]− [a01 + (b01 − a01)t0)]}2

+{a12 − [a02 + (b02 − a02)t0)]}2

+{a13 − [a03 + (b03 − a03)t0)]}2

Thus, we have that

de(p1, p0) = |A1|
q

(t1 +B0t0 + C0)2 +D0t02 + E0t0 + F0

CCCG 2010, Winnipeg MB, August 9–11, 2010

where A1 is a function of a1i and b1i ; B0, C0, D0, E0 and
F0 are functions of a0i , b0i , a1i and b1i , for i = 0, 1, 2. –
Analogously, we have that

de(p1, p2) = |A1|
q

(t1 +B2t2 + C2)2 +D2t22 + E2t2 + F2

where B2, C2, D2,E2 and F2 are functions of a1i , b1i , a2i

and b2i for i = 0, 1, 2. By Equation (1) or the following,

∂(de(p1, p0) + de(p1, p2))

∂t1
= 0

we have that

t1 +B0t0 + C0p
(t1 +B0t0 + C0)2 +D0t02 + E0t0 + F0

+
t1 +B2t2 + C2p

(t1 +B2t2 + C2)2 +D2t22 + E2t2 + F2

= 0

This equation can be written as

At2
2 +Bt2 + C = 0

where A, B, and C are polynomials of t0, t1 (and a0i , b0i ,
a1i , b1i , a2i and b2i for i = 0, 1, 2). To keep t2 inside of [0,
1], let t2 = 0 if we have to satisfy t2 < 0; and let t2 = 1 if
we have to satisfy t2 > 1. This proves the corollary. �

Analogously, we have

Corollary 2 Equation (1) uniquely implies that t1 is a con-
tinuous function in t0 and t2.

Proof. We may translate two points p0(t0) and p2(t2), and
line segment s1 such that the endpoint a1 of s1 is identical to
the origin. Then rotate p0(t0), p2(t2), and s1 such that the
other endpoint b1 of s1 is (also) on the x-axis. Let p0(t0) =
(p01 , p02 , p03), p2(t0) = (p21 , p22 , p23). After translation and
rotation, we have that a1 = (0, 0 ,0) and b1 = (b11 , 0, 0).
Thus, p1(t1) = (b11t1, 0, 0), and

de(p1, p0) =
p

(b11t1 − p01)2 + p02
2 + p03

2

de(p1, p2) =
p

(b11t1 − p21)2 + p22
2 + p23

2

Equation (1) is equivalent to

∂(de(p1, p0) + de(p1, p2))

∂t1
= 0

From this we obtain that

b11t1 − p01p
(b11t1 − p01)2 + p02

2 + p03
2

+
b11t1 − p21p

(b11t1 − p21)2 + p22
2 + p23

2
= 0

This equation has a unique solution

t1 =
p01

p
p22

2 + p23
2 + p21

p
p02

2 + p03
2

b11(
p
p22

2 + p23
2 +

p
p02

2 + p03
2)

Again, to keep t2 inside of [0, 1], let t2 = 0 if we have to
satisfy t2 < 0; and let t2 = 1 if we have to satisfy t2 > 1.
This proves the corollary. �

Let s0, s1, . . ., and sk+1 be k + 2 (closed) line segments.
Let the two endpoints of si be ai = (ai1 , ai2 , ai3) and bi =
(bi1 , bi2 , bi3). Points pi ∈ si, for i = 0, 1, 2, . . . , k + 1, can be
written as follows:

pi(ti) = ai + (bi − ai)ti

= (a11 + (b11 − a11)ti,

a12 + (b12 − a12)ti,

a13 + (b13 − a13)ti)

where ti ∈ [0, 1].
Let

d(t0, t1, t2, . . . , tk+1) =

kX
i=0

de(pi(ti), pi+1(ti+1)) (3)

Assume that both s0 and sk+1 degenerate into single
points p and q. Then we have that t0 = tk+1 = 0. We
also have the following

Corollary 3 For each i ∈ {1, 2, . . . , k},

∂d(t0, t1, t2, . . . , tk, tk+1)

∂ti
= 0 (4)

is equivalent to

∂d(ti−1, ti, ti+1)

∂ti
= 0 (5)

where t1, t2, . . ., tk are in [0, 1].

Note that Equation (4) is related to a global minimum prop-
erty of the Euclidean path 〈p, p1, p2, . . . , pk, q〉 while Equa-
tion (5) is related to a local minimum property of the same
path. Therefore, Corollary 3 describes a relationship be-
tween global and local minimum properties of the same path.

Corollary 4 The equational system formed by Equation (4)
(where i = 1, 2, . . ., k) implies a unary equation f(t1) = 0
which has only a finite number of isolated or interval solu-
tions in [0, 1].

Proof. By Corollary 3 and Corollary 1, ti+1 is a simple
compound of polynomials in ti−1 and ti, denoted by ti+1

= fi(ti−1, ti). Thus, the system formed by Equation (4)
(where i = 1, 2, . . ., k) implies an equational system formed
by t2 = f2(t0, t1), t3 = f3(t1, t2), t4 = f4(t2, t3), · · · ,
tk = fk(tk−2, tk−1), and tk+1 = fk+1(tk−1, tk). Now note
that t0 = tk+1 = 0. Therefore, f(t1) is a simple compound
of polynomials in t1. Note that function f(t1) has only a
finite number of monotonous intervals in [0, 1], and f(t1) is
differentiable in each of those monotonous intervals. Thus,
f(t1) can be approximately expressed as a linear function in
a finite number of monotonous subintervals in [0, 1]. There-
fore, Function f(t1) has only a finite number of isolated or
interval solutions in [0, 1]. This proves the corollary. �

Corollary 5 Algorithm 2 defines a continuous function
fRBA(p1, p2, . . . , pk) in

Qk
i=1 Si = S1 × S2 × . . . × Sk, or a

function fRBA(t1, t2, . . . , tk) in
Qk

i=1 Ii = I1×I2× . . .×Ik =
[0, 1]k. And fRBA(t1, t2, . . . , tk) has only a finite number of
values.

22nd Canadian Conference on Computational Geometry, 2010

Proof. For each (p1, p2, . . . , pk) ∈
Qk

i=1 Si or each
(t1, t2, . . . , tk) ∈ [0, 1]k, Algorithm 2 outputs the vertices of
an approximate path. It can also output the length of the
approximate path, which is a positive real. In this way, Algo-
rithm 2 defines a mapping from

Qk
i=1 Si to R, or from [0, 1]k

into R. By Corollary 2, and because Algorithm 2 will termi-
nate after a finite number of steps, thus, fRBA(t1, t2, . . . , tk)
is continues in its domain [0, 1]k.

To prove the second conclusion of the corollary, it is suffi-
cient to prove that for each interval solution J to the equa-
tional system formed by Equation (4) (where i = 1, 2, . . .,
k), the following function

fRBA(t1, t2, . . . , tk) : J → R

has only a finite number of values. Suppose that f(t1) ≡ 0,
where t1 is in an interval I ⊆ [0, 1], and f(t1) is defined as
in Corollary 4. By Corollary 4, d(t0, t1, t2, . . . , tk+1) implies
a unary length function L(t1), where t1 is in an interval I ′

⊆ I, d(t0, t1, t2, . . . , tk+1) is defined as in Equation (3), and

d[L(t1)]

dt1
≡ 0

(t1 ∈ I ′ ⊆ I). This implies that the length function L(t1) ≡
constant, where t1 ∈ I ′ ⊆ I. Thus, function

fRBA(t1, t2, . . . , tk) : J → R

has only a finite number of values. We have proven the
corollary. �

Theorem 5 If the chosen accuracy constant ε is sufficiently
small, then, for any initial path, Algorithm 2 outputs a
unique [1 + 4(k + 1) · r(ε)/L]-approximation path.

Proof. By Corollary 5, Algorithm 2 defines a function
fRBA(p1, p2, . . . , pk) in

Qk
i=1 Si which is continuous and only

maps into a finite number of positive real numbers (i.e., the
lengths of paths), for any points p1, p2, . . . , pk sampled inQk

i=1 Si. Therefore, fRBA(p1, p2, . . . , pk) must be a single-
ton.

For each i ∈ {1, 2, . . . , k − 1}, the error of the difference
between de(pi, pi+1) and de(vi, vi+1)) is at most 4 · r(ε) be-
cause of de(pi, vi) ≤ r(ε). Let p = p0 = v0 and q = pk+1 =
vk+1. We obtain that

L ≤
kX

i=0

de(pi, pi+1) ≤
kX

i=0

[de(vi, vi+1) + 4r(ε)]

= L+ 4(k + 1)r(ε)

Thus, the output path is an [1 + 4(k + 1) · r(ε)/L]-
approximation path. This proves the theorem. �

Note 1 In the proof of Theorem 5, it is possible to find
the explicit expression for r(ε). And it is obvious that
limε→0 r(ε) = 0. Therefore, unlikely the approximation algo-
rithms mentioned in Section 1, Algorithm 2 could have very
high accuracy.

Based on

Proposition 1 (see [4, 7, 8]) The shortest path from p
to q, which passes through the interior points of a se-
quence 〈S1, S2, . . . , Sk〉 of line segments in the given order,
is unique.

and also based on our experiments we conclude that the
equational system formed by Equation (4) (where i = 1, 2,
. . ., k) has only isolated solutions in [0, 1].

We implemented5 Algorithm 2, and were running the pro-
gram several thousands of times. For each run we took a
random configuration of line segments S1, S2, . . . , Sk.

For example, Table 1 shows the results for three ran-
dom configurations of 5,000 line segments. Each column
summarizes results corresponding to one configuration. For
each configuration of line segments, we ran Algorithm 2 fifty
times with 50 random initial paths when starting the pro-
gram. The table shows that for each configuration, although
the lengths of initial paths are different, the lengths of final
paths are approximately identical.

B.3 A Degenerate Case

In this section we study a degenerate case: when applying
(O3) of the original rubberband algorithm (see Section A),
assume that at least two vertices of the obtained updated
polygonal path are identical. In this case, RBAs may not
work properly. Unfortunately, this may actually occur some-
times when working with RBAs, and we show (one possible
way) how to handle such degenerate cases.

Having an option for dealing with such degenerate cases,
we may even remove “pairwise disjoint” from the input con-
ditions for the 3D line segments in Algorithm 2. The more
general algorithm is now as follows:

Algorithm 3 (RBA for a sequence of arbitrary 3D line seg-
ments)
Input: A sequence of k line segments S1, S2, . . . , Sk in 3D;
two points p and q which are both not in

Sk
i=1 Si, and an

accuracy constant ε > 0.
Output: Exactly the same as for Algorithm 2.

However, before specifying this algorithm, we discuss at
first three examples, which will help to understand the issue
of degenerated cases, and will then be used to motivate this
modified RBA.

Example 1 Let the input for Algorithm 4 be as follows (see
also Figure 4):

S1 = q1q2, S2 = q2q3, q1 = (0, 0), q2 = (2, 4),
q3 = (3, 0), p = (1, 0), and q = (2, 0).

To initialize, let p1 and p2 be the centers of S1 and S2, re-
spectively [i.e., p1 = (1, 2), and p2 = (2.5, 2)]. We obtain
that the length of the initialized polyline ρ = 〈p, p1, p2, q〉
is equal to 5.5616. Algorithm 4 finds the shortest path
ρ = 〈p, p′1, p′2, q〉 where p′1 = (0.3646, 0.7291), p′2 =
(2.8636, 0.5455) and the length of it is equal to 4.4944 (see
Table 2, which lists resulting δs for the number t of itera-
tions).

5The source code can be downloaded at www.mi.auckland.ac.
nz/; follow the link at the 2009 MI-tech Report 51.

CCCG 2010, Winnipeg MB, August 9–11, 2010

min iterations 2039 2888 2133
max iterations 3513 3243 8441
min run time 44.11 s 62.922 s 47.188 s
max run time 77.657 s 70.094 s 187.672 s
min initial length 827430 822952 822905
max initial length 846928 841860 839848
min final length 516994.66273890162 513110.99723050051 512768.28438387887
max final length 516994.66273896693 513110.99723056785 512768.28457121132

Table 1: Three examples of experimental results, for three randomly generated sequences of 5,000 line segments in
3D space.

Figure 4: Illustration of a degenerate case of a rubber-
band algorithm.

t δ
1 -0.8900
2 -0.1752
3 -0.0019
4 -1.2935e-005
5 -8.4435e-008
6 -5.4930e-010
7 -3.5740e-012

Table 2: Number t of iterations and resulting δs, for
Example 1, illustrated by Figure 4, with p1 = (1, 2) and
p2 = (2.5, 2) as initialization points.

Example 2 Now we modify Example 1 such that p1 = p2 =
q2; in this case, the output of Algorithm 4 will be false: the
calculated path equals ρ = 〈p, p′1, p′2, q〉, where p′1 = q2 and
p′2 = q2, and its length equals 8.1231.

We call a situation as in the previous example a degenerate
case when applying a rubberband algorithm. In general, it is
defined by the occurrence of at least two identical vertices of
the updated polygonal path. Such a degenerate case causes
Algorithm 2 to fail.

A degenerate case can be solved approximately: we will
not allow that a case p2 = q2 is happening. To do so, we can
remove sufficiently small endsegments from both segments
S1 and S2. The following example shows how to handle
such a degenerate case.

Example 3 We modify the initialization step of Example 2
as follows: Let the accuracy be

ε = 1.0× 10−100

and let

δ′ = 2.221× 10−16

x1 = 2− δ′ and y1 = 2× x1

x2 = 2 + δ′ and y2 = −4× (x2 − 3)

p1 = (x1, y1) and p2 = (x2, y2)

The length of the initialized polyline ρ = 〈p, p1, p2, q〉 is equal
to 8.1231. Algorithm 4, to be defined below, will calculate the
shortest path ρ = 〈p, p′1, p′2, q〉, where p′1 = (0.3646, 0.7291)
and p′2 = (2.8636, 0.5455), and its length equals 4.4944 (see
Table 3 for resulting δs in dependence of the number I of
iterations).

Of course, if we leave the accuracy to be ε = 1.0× 10−10,
then the algorithm will stop sooner, after less iterations. For
example, the algorithm was implemented on a Pentium 4 PC
using Matlab 7.04. If we change the value of δ′ into

δ′ = 2.22× 10−16

then we obtain the same false result as that of Example 1.
This is because this particular implementation was not able
to recognize a difference between x1 and x1 ∓ 2.22× 10−16.
However, for practical applications in general, the value

δ′ = 2.221× 10−16

should be small or accurate enough for this implementation.

We summarize the method for handling a degenerate
case with the modified rubberband algorithm (thus further
preparing for defining Algorithm 2):

Figure 5: Handling a degenerate case of a rubberband
algorithm.

22nd Canadian Conference on Computational Geometry, 2010

t δ t δ t δ t δ
1 -5.4831e-007 7 -1.2313 13 -7.0319e-010 19 8.8818e-016
2 -6.2779e-006 8 -2.0286 14 -4.5732e-012 20 8.8818e-016
3 -7.7817e-005 9 -0.2104 15 -3.0198e-014 21 -8.8818e-016
4 -9.6471e-004 10 -0.0024 16 -8.8818e-016 22 8.8818e-016
5 -0.0119 11 -1.6550e-005 17 8.8818e-016 23 -8.8818e-016
6 -0.1430 12 -1.0809e-007 18 -8.8818e-016 24 0

Table 3: Number t of iterations and resulting δs, for the example shown in Figure 4, with p1 = (2− δ′, 2(2− δ′)) and
p2 = (2 + δ′,−4((2 + δ′)− 3)) as initialization points and δ′ = 2.221e-16.

Let Si−1, Si and Si+1 be three continuous segments in the
input such that Si ∩ Si+1 6= ∅. Assume that pi−1, pi and
pi+1 are three continuous vertices of the updated polygonal
path such that pi and pi+1 are identical (see left of Figure 5).
Let ε2 be a sufficiently small positive number. There are at
most two possible points p in Si such that de(p, pi+1) = ε2.
Select one such point p such that de(p, pi) + de(p, pi+1) is
smaller, and update the polygonal path by letting pi = p
(see right of Figure 5). We say that pi is ε2-transformed to
be p in Si. Analogously to the explanation of Equation (6),
the total error of this ε2-transform is 4(k−1)ε2, for handling
the degenerate case, and ε2 is called a chosen degeneration
accuracy constant.

To finalize this section, we provide a pseudo code of
Algorithm 4 which also handles degenerate cases as dis-
cussed above. Let p0 = p and pk+1 = q. The output
of this algorithm is a sequence 〈p, p1, p2, . . . , pk, q〉 of an
{1 + 4[(k+ 1)r(ε) + (k−1)ε2]/L}-approximation path which
starts at p, then visits segments Si at pi in the given or-
der, and finally ends at q, where L and r(ε) are defined as
in Algorithm 2, and ε2 is a chosen degenerative accuracy
constant. The pseudo code is listed below:

Algorithm 4 (RBA for a sequence of arbitrary 3D line seg-
ments)
Input: A sequence of k line segments S1, S2, . . . , Sk in 3D;
two points p and q which are both not in

Sk
i=1 Si, an accu-

racy constant ε > 0, and a degeneration accuracy constant
ε2 > 0.
Output: Modified from the output of Algorithm 2 (see Sec-
tion B.3).

1: For each i ∈ {1, 2, . . . , k}, let pi be the center of Si such
that pi (if Si ∩ Si∓1 6= ∅, then select pi such that pi is
not the intersection point).

2: Calculate L1 =
Pk−1

i=0 LS(pi, pi+1); and let L0 be 0.
3: while L1 − L0 ≥ ε do
4: for each i ∈ {1, 2, . . . , k} do
5: Compute a point qi ∈ Si such that

de(pi−1, qi) + de(qi, pi+1) = min{de(pi−1, p) +
de(p, pi+1) : p ∈ Si}

6: if Si ∩ Si∓1 6= ∅ and qi is the intersection point
then

7: ε2-transform qi to be another point (still denoted
by qi) in Si.

8: end if
9: Update the path 〈p, p1, p2, . . . , pk, q〉 by replacing pi

by qi.

10: end for
11: Let L0 be L1 and calculate L1 =

Pk−1
i=0 LS(pi, pi+1).

12: end while
13: Return {p, p1, p2, . . . , pk, q}.

In other words, Algorithm 4 is modified from Algorithm 2
by adding Steps 6–8 in this pseudo code for handling the
degenerate case. An informal specification of Algorithm 4
can also be obtained by modifying the informal specification
of Algorithm 2 in Section B.1 as follows:

For each updated point pi in Equation (1), if it is the
intersection point between Si and Si−1 or Si+1, then ε2-
transform pi into another point.

We call
{S1, S2, . . . , Sk}

the step set of the rubberband algorithm, and each Si is a
step element of the rubberband algorithm, where i = 1, 2,
. . ., k.

B.4 Time Complexity

The time complexity of Algorithm 2 and Algorithm 4 can
be analyzed as follows: The main computation occurs in
two stacked loops. Each iteration of the inner for-loop runs
in time O(k). In theory, the outer while-loop might take
κ(ε) = L0−L

ε
times, where L is the length of an optimal

path, L0 is the length of an initial path. Thus, Algorithm 2
and Algorithm 4 will run in time κ(ε)O(k). We will see that
L0−L

ε
is usually too large to estimate κ(ε). If we let Lm be

the length of m-th updated path, where m = 1, 2, . . ., then
we have L0−L

ε
=

L0 − L1 + L1 − L
ε

> 1 +
L1 − L
ε

> · · · > m+
Lm − L

ε

As the sequence {m+ Lm−L
ε
} is monotonously decreasing

and lower bounded by 0, it converges to κ(ε).

Note 2 It is obvious that κ(ε) depends on the selection of
initial path. By Theorem 5, we can take each vertex of the
initial path as the center of each segment. Then κ(ε) only
depends the chosen accuracy constant ε.

Algorithm 2 has been implemented and tested for a large
number of various inputs. We let the chosen accuracy con-
stant to be ε = 10−15, and generated input for k = 5000,
k=10,000, or k=20,000.

For each of those different numbers of segments, we were
running the program several thousands of times. According
to the resulting observations, the program often terminates

CCCG 2010, Winnipeg MB, August 9–11, 2010

min iterations 2605 1522 2926
max iterations 3227 2741 7573
min work time 158.771 s 93.235 s 178.516 s
max work time 196.584 s 167.844 s 461.938 s
min initial length 3.32576e+006 3.33183e+006 3.33079e+006
max initial length 3.36785e+006 3.37652e+006 3.37889e+006
min final length 2085786.2964211311 2083340.4955095584 2068552.0753370232
max final length 2085786.2964214147 2083340.4955139237 2068552.0753745015

Table 4: Experiment results for three random configurations of 20,000 line segments.

after k iterations. These cases occurred at more than 90%
of all inputs. So far, the worst case for all the tested inputs
was 7 · 2k iterations, and worst cases in this order occurred
at less than 0.01% of all inputs.

Based on these thousands of runs, we conclude that Algo-
rithm 2 runs practically with κ(ε) = O(k), or, equivalently,
in time O(k2).

For example, Table 4 shows the results for three random
configurations of 20,000 line segments. Each column shows
summary results corresponding to one configuration. For
each configuration of line segments, we ran Algorithm 2 fifty
times with 50 random initial paths for starting the program.
The table shows that for each configuration, although the
lengths of initial paths are different, the lengths of final paths
are approximately identical.

C Proof of Theorem 5

We apply basic results of convex analysis; see, for example,
[3, 18, 19]:

• Theorem 6 ([19], Theorem 3.5) Let S1 and S2 be con-
vex sets in Rm and Rn, respectively. Then S1 ×S2 is a
convex set in Rm+n, where m, n ∈ N.

• Proposition 2 Each line segment is a convex set ([3],
page 27); each norm on Rn is a convex function ([3],
page 72); a nonnegative weighted sum of convex func-
tions is a convex function ([3], page 72).

• Proposition 3 ([19], page 264) Let f be a convex func-
tion. If x is a point where f has a finite local minimum,
then x is a point where f has its global minimum.

By Theorem 6 and Proposition 2, we have the following

Corollary 6 LS(p, q): s0× sk−1 → R is a convex function.

Let C1, C2, and Π satisfy the condition of the fixed watch-
man route problem. By Corollary 6, we have the following

Corollary 7 LΠ(p, q): C1 ×C2 → R is a convex function.

Line segment s2 in Step 4 of Procedure 2 is called associ-
ated to the updated (optimal) point p2. Let si ⊆ Ci be the
line segment associated to the final updated point pi ∈ Ci

in Algorithm 1, where i = 0, 1, 2, . . ., k − 1. Analogous
to Theorem 5, we have Theorem 3. Regarding the proof of
Theorem 3, at first we define that Algorithm 2 is also called
an arc version of an RBA. If we modify Algorithm 2 such

that p and q are not specified by finding a shortest closed
path which passes through line segments 〈S1, S2, . . . , Sk, S1〉
in order, then we obtain a curve version of Algorithm 2
(which also allows to calculate a loop). Basically, follow-
ing the same way as demonstrated with the proof of Theo-
rem 5, we can prove that the curve version outputs a closed
{1 + 4k · [r(ε) + ε2]/L}-approximation path. Thus, Algo-
rithm 1 defines a closed {1+4k ·[r(ε)+ε2]/L}-approximation
path to the step set 〈S0, S1, . . . , Sk−1, S0〉; we skip the proof
due to given similarities.

References

[1] T. Bülow and R. Klette. Rubber band algorithm for es-
timating the length of digitized space-curves. In Proc.
Intern. Conf. Pattern Recognition, volume 3, pages
551–555, 2000,

[2] T. Bülow and R. Klette. Approximation of 3D shortest
polygons in simple cube curves. In Proc. Digital and
Image Geometry, LNCS 2243, pages 281–294, Springer,
Berlin, 2001.

[3] T. Bülow and R. Klette. Digital curves in 3D space
and a linear-time length estimation algorithm. IEEE
Trans. Pattern Analysis Machine Intelligence, 24:962–
970, 2002.

[4] J. Choi, J. Sellen, and C.-K. Yap. Precision-sensitive
Euclidean shortest path in 3-space. In Proc. Ann. ACM
Symp. Computational Geometry, pages 350–359, 1995.

[5] R. Klette and T. Bülow. Critical edges in simple
cube-curves. In Proc. Discrete Geometry Computational
Imaging, LNCS 1953, pages 467–478, Springer, Berlin,
2000.

[6] F. Li and R. Klette. Rubberband algorithms for solving
various 2D or 3D shortest path problems. Invited talk,
in IEEE Proc. Computing: Theory and Applications,
The Indian Statistical Institute, Kolkata, pages 9 - 18,
2007.

[7] M. Sharir and A. Schorr. On shortest paths in polyhe-
dral spaces. SIAM J. Comput., 15:193–215, 1986.

[8] C.-K. Yap. Towards exact geometric computation.
Computational Geometry: Theory Applications., 7:3–
23, 1997.

