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Abstract. Current research in stereo image analysis focuses on improv-
ing matching algorithms in terms of accuracy, computational costs, and
robustness towards real-time applicability for complex image data and
3D scenes. Interestingly, performance testing takes place for a huge num-
ber of algorithms, but, typically, on very small sets of image data only.
Even worse, there is little reasoning whether data as commonly applied
is actually suitable to prove robustness or even correctness of a partic-
ular algorithm. We argue for the need of testing stereo algorithms on
a much broader variety of image data then done so far by proposing a
simple measure for putting image stereo data of different quality into
relation to each other. Potential applications include purpose-directed
decisions for the selection of image stereo data for testing the applica-
bility of matching techniques under particular situations, or for realtime
estimation of stereo performance (without any need for providing ground
truth) in cases where techniques should be selected depending on the
given situation.

1 Introduction

Performance evaluation of stereo algorithms became increasingly popular since
the availability of various test sites such as [18] at Middlebury University. Such
evaluations were speeding up progress in the design of stereo matching algo-
rithms. Ranking is typically done by comparing a few error measures, calculated
with respect to given ground truth and a relatively small number of images.
Evaluations lead to particular insights, for example about the role of used cost
functions [8], or of image preprocessing methods.

Necessity and limitation of such evaluations have been extensively discussed
in the literature. Issues often treated are missing ground truth for real-world
scenes [5] and a lack in theoretical understanding that prevents from making
intelligent predictions of stereo performance on yet unseen imagery [19].

Stereo image data, depending on recorded scenes, sensor quality and so forth,
can be of very different characteristics and origin (e.g., synthetic, controlled in-
door, real-world outdoor). The question arises: Given a stereo image pair, what
is the minimum error we may expect? This question should be answered for a
wide range of different types of stereo image data, ultimately allowing to quan-
tify this material in terms of quality. However, for the most interesting scenarios
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– outdoor real-world, highly dynamic and complex scenes with potentially very
poor image quality – the common evaluation approach of stereo matching tech-
niques is not feasible due to the lack of ground truth. Previous work [11, 14] that
does not require ground truth needs at least three time-synchronous views of a
scene. We propose an alternative approach that only needs binocular imagery.

The objective of the paper is to demonstrate that it might be possible to
quantify the quality of recorded stereo images with respect to some measures.
We also suggest that those measures may be used to indicate domains of relevant
imaging scenarios when performing evaluations for some particular test data.

The proposed approach is based on Lowe’s SIFT-descriptor [12], which in gen-
eral outperforms other descriptors in terms of discriminative power [13]. SIFT-
matching supports the definition of similarity measures that allow us to derive
spatial relations between (e.g.) millions of images [15].

Such results suggest that SIFT-matching can be used to define a measure
for establishing some relationships between different sets of stereo image data.
There is space for more advanced proposals in future, but a simple SIFT-based
measure of matching counts (Figure 2 illustrates SIFT matches in four stereo
pairs) is sufficient to initiate a discussion about this type of data evaluation.

To human viewers, it is immediately clear, whether a stereo pair is of good
quality for extracting depth information. For example, stereo photos taken under
insufficient lighting conditions (such as outdoors during the night), very high
contrast images with poor texturing or stereo pairs with contrast differing with a
factor of more than two between left and right image cannot be matched properly
by the human visual system. Similarly, semi-occluded objects or vertical parallax
lead to retinal rivalry and therefore to strong eyestrain.

The construction of SIFT descriptors itself is inspired by the functioning of
primate V1 cortical neurons. Such biological models have been successfully ap-
plied to the task object recognition [2]. Hence, there is another intuitive justifica-
tion for using these in assessing the quality of stereo data in terms of retrievable
depth information.

We envision four major benefits of assessing stereo image data independently
from geometric ground truth. First, it can guide the selection of applied methods
as already mentioned above. Second, it may make processing of real-world stereo
images more tractable by providing an additional measure of confidence. Third,
we can identify “problematic” situations in real-time; this gives a chance to iden-
tify unexpected problems when doing an on-line stereo analysis of real-world
stereo image sequences, and to be aware of those when further improving stereo
matching. Fourth, it may advance theoretical knowledge about stereo match-
ing by implementing performance evaluation on sophisticated synthetic scenes
(i.e., using progress in physics-based rendering) and showing its conclusiveness
regarding relevance to real-world scenarios.

The paper is structured as follows. Section 2 introduces two measures based
on SIFT matching counts. Section 3 provides details of data used in this study
and presents results from experiments to point out the feasibility of the approach.
Section 4 explains potential applications in more detail and concludes.
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2 Our Method

SIFT features are defined by extrema in a difference-of-Gaussians scale-space,
also applying sub-pixel accuracy and rejection of poorly defined locations. To-
gether with a well-constructed descriptor, these are called distinctive features.

Our hypothesis is that sparse matching of distinctive features provides mea-
sures strongly correlated to the outcome of a dense stereo matching process. The
chosen implementation [20] together with the method outlined below seems to
be sufficient to illustrate this correlation according to our experiments.

For a rectified stereo pair and known ground truth, a match between a feature
location (il, jl) in the left image and a feature location (ir, jr) in the right image
is correct up to known constraints if

(ir − εi < il < ir + εi) ∧ (jl + dij − εj ≤ jr ≤ jl + dij + εj) (1)

for small εi, εj > 0 with known disparity values dij (i.e., the ground truth). If
ground truth is not available, then we evaluate by testing for

(ir − εi < il < ir + εi) ∧ (jl ≤ jr ≤ jl + dmax) , (2)

where dmax is the maximum disparity between both stereo views. We choose
εi = εj = 1.

Equation (2) appears to be very much “forgiving”. However, note that in
this case of modeled unavailable ground truth, the probability of the event that
“a mismatch is wrongly classified as being correct up to known constraints” has
a very small probability of at most (2εidmax − 1)/(I · J) in an image of size
I × J . This assumption can be violated, for example, for images with repetitive
textures in some areas.

We analyze the counts of correct matches (up to known constraints) and
the ratio between detected and matched features for given stereo pairs. Assume
that the feature detector identifies n features in the base image that lead to m
matches in the match image, and that from those m matches, o are classified as
being incorrect. In this case, we define that

x = n/m and y = 100× o/m , (3)

where x is the matching rate and y the mismatch rate. Thus, x ≥ 1 and y ≤ 100%.
The matching rate x expresses how many features on average lead to one

match (no matter whether correct or not), while the mismatch rate y identifies
the percentage of incorrect matches.

3 Experiments

Our experiments are designed to demonstrate that the information provided by a
selective stereo matching process of distinctive features may be suitable to label
stereo image data with an expected quality of disparity calculations, without
requiring any ground truth except the value of dmax.
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Comparison of SIFT-matches on various data sets. In particular, we com-
pare recorded stereo pairs, both “engineered” and real-world, to synthetic pairs,
and we attempt to modify the synthetic stereo pairs in a way such that they
quantify similar to the recorded pairs for the proposed measures. We compare
values of our measures with values of the normalized cross correlation (NCC)
derived from prediction errors following [14], on stereo sequences showing “prob-
lematic” situations. We use the following stereo image data:

(1) Synthetic data:
• EISATS 2, Sequence 1, see [3]: a sequence of 100 frames with low object

complexity showing views from a simulated moving vehicle.
• EISATS 2, Sequence 2, same source: a more complex sequence of 300

frames, containing vegetation modelled with L-Systems.
• Synthetic stereo data of high complexity, rendered by the authors with

physically correct simulation of the light distribution, using path-tracing
[17]. Different image sensor distortion effects are applied to study their
effect, including blooming and chromatic aberration.

(2) Engineered test images (i.e., photos taken under controlled lighting):
• Middlebury 2001 and 2003, see [18], in particular the stereo sets named
Tsukuba, Venus, Cones, and Teddy.

• Middlebury 2006, see [8], a more extensive stereo test set, containing
21 images; each image is available for three different illuminations and
three different exposures (normal, two f-stops under- and overexposed).

(3) Real-world sequences (150 - 200 stereo frames per sequence) of public road
scenarios captured with industrial b/w cameras from a moving vehicle:
• EISATS 1, "Construction site", see [3]: a 10-bit stereo recording.
• NZ Road 1-3, traffic scenes on New Zealand roads, 8-bit trinocular record-

ings as made available by [14]; these sequences support an error estima-
tion without ground truth based on calculating the third view.

Figure 3 illustrates feature matching relationships between the listed stereo
image data when always applying the same SIFT matcher and measures x and
y as defined in (3). The test set Middlebury 2001 evaluates similar to synthetic
images of medium complexity, but is significantly different from real world scenes
captured with industrial cameras. The quantization resolution (8-, 10- or 12-bit)
is of minor relevance (see Fig. 3), optimal exposure and contrast provided.

We also see that the more extensive (and somehow “closer” to uncontrolled
scenarios) dataset Middlebury 2006, which is not yet widely used for testing,
spans a much wider region in our xy-space. However, our xy-space still shows a
clear separation of this dataset from real-world outdoor scenes.

The attempt to synthesize stereo image data using physics-based render-
ing, also including physics-based imaging distortions, leads to distributions of
xy-values which are very close to those of uncontrolled image data. Interest-
ingly, applying further distortions does not produce the results we might expect:
Chromatic aberration increases both, matching rate and mismatch rate. Adding
sensor blooming slightly increases the mismatch rate but improves matching.
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This indicates to us that either our xy-space is somehow incomplete, or the ap-
plied model for the simulation of blooming and chromatic aberration is still “too
simple”.

Comparison with results based on third-view analysis. This subsection
discusses how our simple SIFT-based evaluation relates to a particular kind of
“ground truth-based evaluation” when testing stereo matching techniques on
real-world data. In fact, providing theoretical evidence for this relationship is
rather difficult, as there seems to be no common underlying model. However,
there are some strong statistical dependencies between our SIFT-based evalua-
tion on two views, and the third-eye approach for stereo algorithm evaluation
as proposed in [14]. For illustrating those, we use real-world stereo sequences as
provided in Set 5 of [3].

We process each stereo sequence with five different stereo matching algo-
rithms, namely belief propagation (BP) [4], semi-global matching (SGM) [7]
using either the Birchfield-Tomasi (BT) or a mutual information (MI) cost func-
tion, graph cut (GC) [10], or dynamic programming (DP) [16].1 Each of those
algorithms run either on the original stereo sequence, a Sobel operator prepro-
cessed stereo sequence, or on residual images [1] with respect to 40-times re-
peated 3×3 mean filtering (or one run of a comparable large smoothing kernel).
In uncontrolled image data, suitable preprocessing often has a dramatic effect
on the quality of stereo results. We compare altogether 15 different matching
results, used for generating a virtual third view, compared by normalized cross
correlation with the recorded third view. For a simple comparison to the pro-
posed SIFT test, we use the mean (x + y)/2 of matching and mismatch rate.
The distribution of observed values in Fig. 2 suggests that this even more sim-
plified measure is sufficiently discriminative. See Fig. 3 and Fig. 4 for results
on real-world stereo sequences with 150 stereo frames. For this visual com-
parison, all these error measures are normalized as follows: if T is the num-
ber of frames and NCC(t) is the error measure for a particular frame t with
1 ≤ t ≤ T , we display (NCC(t) − µT )/σT , where µT = 1/T

∑T
t=1 NCC(t) and

σ2
T = 1/(T − 1)

∑T
t=1(NCC(t)− µT )2. The same normalization is applied to the

results of SIFT matching.

Statistical relation between error measures. Normalized cross correlation
was used again to examine the relationship between error measures of all stereo
matching algorithms and between stereo and SIFT-matching counts, for long
sequences as illustrated by the previous two figures. The correlation coefficients
and p-values were computed. Table 1 summarizes the correlation between those
stereo algorithms. Due to space limitations, we only display results for the mean
of NCC values for the three different preprocessing options of the two sequences
already illustrated in Figs. 3 and 4.

1 Sources of used matching programs are as acknowledged in [14].
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Table 1 indicates a moderate correlation between errors of the SIFT-measure
and all stereo algorithms except DP. Strongest correlations are mostly found
between global algorithms, but all measures in the highway sequence are signif-
icantly correlated (p < 0.001) except the combinations SIFT – DP (p = 0.59),
and SGM(MI) – DP (p = 0.17). In the night-time sequence, all measures are sig-
nificantly correlated(p < 0.001). Reasons for outliers in particular frames leading
to weaker correlation between BP and SIFT based measures are as follows:

In the highway sequence, the most obvious deviation is in Frames 39 and
40. In these images, a large area (a big truck on the highway) is coming close
(less than ten times the baseline) to the camera, resulting in semi-occluded areas
at the image border. Many stereo algorithms do not cope with this situation.
However, for the method described above this simply results in no matches being
found in this area, thus no mismatches can occur. Frames 120 to 150 are subject
to major brightness differences, where belief propagation stereo performs poorly.

For the night-time sequence, significant deviations occur in Frames 1 to
16, and 50 to 60. Outliers in Frames 111, 128 and 136 are caused by time-
synchronization problems. Frames 50 to 60 are big objects coming closer and
becoming increasingly semi-occluded by the image border. Of interest are Frames
1 to 16, where strong blooming (caused by strong light sources nearby) is present.
This is not very well detected by counting matches.

We see that for many artifacts in uncontrolled image data there is no cor-
relation between matching statistics and stereo performance. These need to be
addressed by different methods.

4 Future work and conclusions

It is certainly of general interest in computer vision to have some evaluation of
stereo data at hand, for judging its complexity, or qualitative relation to other
sequences of stereo data (also covering the common case that ground truth is
not available). This evaluation is of interest for the following:

Table 1. Pearson correlation between error measures.

Algorithm Sequence BP SGM(BT) DP GC SGM(MI) SIFT

Highway 1 0.95 0.30 0.81 0.69 0.63
Belief propagation

Night 1 0.97 0.85 0.97 0.96 0.57

Highway 1 0.35 0.88 0.60 0.64
Semi-global matching (BT)

Night 1 0.83 0.94 0.94 0.52

Highway 1 0.55 0.11 0.05
Dynamic programming

Night 1 0.88 0.82 0.40

Highway 1 0.50 0.56
Graph cut

Night 1 0.97 0.62

Highway 1 0.43
Semi-global matching (MI)

Night 1 0.66
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Identification of crucial scenarios in large datasets of stereo images: Crucial
3D scenarios, defined by special events in the real world, need to be identified
when testing stereo matching in the real world. Such events have to be isolated
from a sufficiently diversified database of real world data (e.g., when running a
stereo analysis system for days or weeks in real-world traffic). As ground truth
is generally not available, our approach helps in identification of these critical
datasets.

Realtime check of stereo data in real world applications: In our method, com-
puting feature descriptors and matching depends on the number of detected in-
terest points, which are numerous in highly structured images. Ensuring realtime
here requires to limit their number to a fixed upper bound. For SIFT-features
such kind of pruning is described in [6]. In its application to image-database
retrieval, an insignificant decline in performance was reported even if the num-
ber of features is very small. Such realtime checks may be crucial for reliable
safety-relevant decisions in, for example, driver assistance systems.

Purposeful design of synthetic sequences for stereo testing: Synthetic data
will remain important for testing stereo matching, especially due to having full
control about the image formation process. Simulations of interesting situations
(rarely appearing in reality, but possible) such as for weather, poor light condi-
tions, or deficiencies in cameras systems, need to come with some evidence of its
adequacy for testing stereo vision algorithms.

We have shown that even a simple measure, such as the matching count based
on SIFT-features, can provide error measures significantly correlated to a third-
view error measure. We pointed out the necessity to benchmark a fairly “huge
amount” of stereo image data, and to put those data into qualitative relation to
each other.

Future research may aim at more complex measures, allowing to analyze
more detailed quality aspects of stereo images. In continuation of the simple
count measure as presented here, this could be based on statistics of spatial
distributions of matches or mismatches in stereo image pairs. (Note that a simple
root-mean square or NCC error value in relation to ground truth does not yet
give any information about the spatial distribution of errors.)

Models as presented in [9] may be of very high interest, yet their use is limited
due to prohibitive computational costs.
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Fig. 1. Illustration of sparse stereo matching with SIFT-features (not constrained by
epipolar geometry, but on rectified images) applied to stereo pairs of different charac-
teristics (first three images: synthetic EISATS stereo pairs; rest: real-world scenes of
suboptimal quality). Straight connectors of locations of matched features are overlaid
to the left image of the used image pair. Synthetic or engineered images generally show
a majority of same-row matches.
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Fig. 2. Same as in previous figure on image data from the Middlebury stereo vision
website.



Testing Stereo Data – Not the Matching Algorithms 11

 1

 10

 100

 1  10

M
is

m
at

ch
 r

at
e 

[%
]

Matching rate [features per match]

Matching statistics for synthetic and real-world stereo sequences and engineered stereo pairs

Middlebury 2001 and 2003 (8-bit)

Cones

Teddy
Tsukuba

Venus
Middlebury 2006 (8-bit)

EISATS 2, Synthetic sequence 1 (12-bit)

EISATS 2, Synthetic sequence 2 (12-bit)

EISATS 1, Construction site (10-bit)

NZ Road 1 (8-bit)

NZ Road 2 (8-bit)

NZ Road 3 (8-bit)

Synthetic, generated with path tracing (8-bit)

1
23

4

5

6
7

Fig. 3. Mismatch rate y (in percent) and matching rate x in logarithmic scales. Symbols
show how stereo data of different origin and quality is discriminated by the proposed
measures. Filled black disks for physics-based synthetic data are numbered as follows: 1
(original), 2,3,5 (low, moderate, or severe blooming), 4,6 (moderate or strong chromatic
aberration), and 7 (comparison to ordinary raytracing).



12 Ralf Haeusler and Reinhard Klette

 0

 0.5

 1

 1.5

 2

 0  10  20  30  40  50  60  70  80  90  100
 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

M
at

ch
in

g 
ra

te

M
is

m
at

ch
 r

at
e

Frame

Comparison between 8-bit and 12-bit synthetic sequence

Matching rate 8-bit
Mismatch rate 8-bit

Matching rate 12-bit
Mismatch rate 12-bit

Fig. 4. Matching rate and mismatch rate differ only by about 10% between 8-bit and
12-bit quantization.



Testing Stereo Data – Not the Matching Algorithms 13

-8

-6

-4

-2

 0

 2

 4

 0  20  40  60  80  100  120  140  160

N
or

m
al

iz
ed

 e
rr

or
 m

ea
su

re
s

Stereo frame number in sequence

Comparision of the SIFT-Test with NCC - Values of various stereo methods

Combination of three BP methods
SIFT stereo test

Combination of 15 different stereo methods

Fig. 5. Normalized error measures for stereo frames 1 to 150 of a day-light highway
sequence. We compare results of the proposed SIFT-measure with prediction error
based on third-view-synthesis using 15 different stereo matching schemes. For clarity
of presentation, only the mean of selected values is displayed.

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150

N
or

m
al

iz
ed

 e
rr

or
 m

ea
su

re
s

Stereo frame in sequence

Comparison of the SIFT-Test with NCC - Values of various stereo methods

Combination of three BP methods
SIFT stereo test

Combination of 15 different stereo methods
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