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Abstract

Let A be an animal. We consider magnifications of A in x-, y-, or
z-direction. But this is not always possible because there may be voxels
that block the magnification. To overcome this difficulty, we consider
an AD-movement. This is performed by considering the magnification
in two directions (e.g., y-direction and z-direction) such that any series
of blocking voxels never forms a cycle. If a magnification is possible for
two directions then it is also possible for the third direction. After all
undilatable voxels have been erased, we can apply a previously shown
result for showing that the animal problem is positively solvable.

This paper is a continuation of [4]. Let B be a well-composed picture [3] that
does not contain any cavity or any tunnel. Is B SD-equivalent (i.e., equivalent
by repeated simple deformations) to a single voxel? This problem was named
B-problem by the late Azriel Rosenfeld. In [4], we have given a positive solution
to this problem.

The animal problem proposed by Janos Pach was the question whether every
animal can be reduced to a single unit cube by a finite sequence of moves, each
consisting of either adding or deleting a cube provided the result is an animal
again at each move. Azriel Rosenfeld called this problem the A-problem. In
this animal problem, the deformation is not based on SD but must preserve
animality of the picture at each step. This means that the B-problem is weaker
than the A-problem.

In this paper, we give a positive solution to the animal problem. We as-
sume that readers are familiar with basic definitions in digital topology, such as
provided in [1, 2], and, in particular, with the discussion in [4].

An animal is defined as a topological 3-ball in R3, consisting of unit cubes
(i.e., a subcomplex in the 3D grid cell space). In accordance with terms of
digital topology, hereafter, we call a unit cube also a vozel. Let A be an animal
consisting of black voxels (black means that a unit cube is present, i.e., in a
given “object”) and p be a black voxel.
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Definition 1 An additional animal voxel p is defined by the property that AU
{p} is also an animal, and a deletable animal voxel ¢ by the property that A\{q}
1s still an animal. An animal voxel is an additional or a deletable animal voxel.

Usually, we denote a black voxel or a white voxel (note: white means that a
unit cube is absent, i.e., in a “background component”) by 1 or 0, respectively.

Furthermore, an animality-preserving deformation (abbreviated by AD) is
defined as a finite sequence of deformations, each defined by either adding or
deleting an animal voxel. Therefore, the animal problem is nothing but answer-
ing the following question:

Is an arbitrary animal A AD-equivalent to a single black voxel?

Let A be an animal. Then, the boundary of A must be a topological 2-
sphere, so that it cannot contain any line (called a singular line) or any point
(called a singular point) which destroys a topological 2-sphere. Figure 1 shows
examples of singular lines and singular points.
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Figure 1: Singular line and singular point.

Notice: In Figure 1, we show a configuration of black voxels, but this is similar
for white voxels that is obtained as the dual configuration. For example, the
configurations in the middle and on the right are dual.
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Figure 2: Animal A and the isothetic rectangular parallepiped R.



Let A be an animal. We consider the smallest isothetic rectangular paral-
lelepiped (denoted by R) that contains A. See Figure 2 in which A is shown
by a curve since its digital representation is complicated. In Figure 2, a voxel
is put at each integer coordinate. Hereafter, we call the positive direction of
z-axis, the positive direction of y-axis the south, the east, respectively.

Here, we consider scan order in an isothetic rectangular parallelepiped con-
sisting of voxels.

() For horizontal planes, we scan from the top level to the bottom level.

(B) For a line (called z-line) that is parallel to x-axis on the same horizontal
plane, we scan from east to west.

() For voxels on the same z-line, we scan from south to north.

First, we do () and then (8), and finally do («). This scan order is denoted
by (a-y-z). This may be called the reverse-lexicographic order. Notations such
as (z-x-y), (z-y-x), - - - mean the similar scan orders. We start (z-y-z) from the
south-east corner of the top level of R and end at the north-west corner of the
bottom level of R. This procedure is called one-pass scan of R. If this one-pass
scan is repeated, it is called multi-pass scan of R.

Let us consider a procedure to delete all animal voxels of an animal A.
That is, if a voxel p is animal voxel of A, we delete p. To do this deletion
systematically, we perform it in order of (z-y-z). In general, one-pass scan
cannot delete all animal voxels of A, so that we use multi-pass scan. Many
animals can be deformed to a single voxel by this multi-pass scan. However,
there is an animal A such that it cannot be deformed to a single voxel by AD-
deletion only. The Bing house is well-known as an example of such animals.
In this note, we call this house the standard Bing house. Besides the standard
Bing house, there are several animals which are not deformed to a single voxel
in the procedure of animal voxel deletion only. In addition of the standard Bing
house, we can construct various animals to which we can not apply the deletion
of a voxel. There are three-storied (4-storied, - -- , n-storied) Bing house; and
also there is a small picture proposed by T. Shermer [5]. Such a picture is
characterized by the property: It does not contain any arc and deleting of any
voxel from the picture creates a tunnel (based on the adjacency (8, 26) of digital
topology).

From this observation, it follows that we need mixed use of animal-preserving
addition (abbreviated to AD-addition) and AD-deletion for the animal problem.
But, this AD-addition is not always possible. See Figure 3.

By the way, “addition” can be regarded as “dilation of a black voxel” and
“deletion” can be also regarded as “dilation of a white voxel”. In this situation,
we use the term “dilation” for both cases. In Definition 2, we shall define
a concept of “AD-undilatable pattern”. As mentioned above, an animal can
contain AD-undilatable local patterns. To erase such a local pattern from an
animal, we try to AD-dilate a voxel to the south, the east, and the upward
direction, which are denoted by -, y-, and z-, respectively.

Here, we give some definitions:



Definition 2 Let us consider a 4-connected set H of voxels on the same hor-
izontal plane. Let H be the largest 4-connected set satisfying the following
conditions.

(1) For every voxel p of H, the immediately upward voxel have the different
color from that of p.

(2) For an arbitrary voxel p of H, the z-dilation of p creates always a singular
line. Then, H is called a z-AD-undilatable pattern. Further, every voxel in a
z-AD-undilatable pattern is called a z-A D-undilatable voxel.

We can similarly define an 2-A D-undilatable pattern, a y-AD-undilatable pat-
tern, and also an x-AD-undilatable vozxel, and a y-AD-undilatable vozel. There
are various (z-, y-, z-) AD-undilatable patterns. Some of them are illustrated
in Figure 3.
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Figure 3: Examples of z-AD-undilatable patterns.

Definition 3 Let us consider a 4-connected set J of voxels on the same hor-
izontal plane. J is not a z-AD-undilatable pattern, but if at least one z-
AD-undilatable pattern is created by multi-pass z-AD-dilation of voxels of J,
J is called a z-AD-quasi-undilatable pattern. Also, a voxel of a z-AD-quasi-
undilatable pattern is called a z-AD-quasi-undilatable vozel.

Figure 4 illustrates some of z-AD-quasi-undilatable pattern. We can sim-
ilarly define an xz-AD-quasi-undilatable pattern, a y-AD-quasi-undilatable pat-
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Figure 4: Examples of z-AD-quasi-undilatable patterns.




tern, and also an x-AD-quasi-undilatable vozel, and a y-AD-quasi-undilatable
vozel.

As mentioned above, there are voxels that block z-dilation of z-AD-undilatable
pattern by creating a singular line. A set of such blocking voxels of z-AD-
undilatable pattern IT is called SIDE of II. This notion is defined as follows:

Definition 4 Let II be a z-AD-undilatble pattern. Let P be a set of voxels
that have the same color as IT such that z-AD-dilation of a voxel of II always

creates a singular line as a common line with a voxel of P. Then, P is called
SIDE of 11.

See Figure 5. Note that SIDE P has at least height 2.

SIDE

Figure 5: SIDE of II.

Similarly, we can define SIDE of y-AD-undilatable pattern and z-AD-undilatable
pattern.

As previously mentioned, we want to dilate R. This dilation is blocked by
AD-undilatable pattern. Nevertheless, we consider dilations called M -magnification
that is given later. Hereafter, the prefix such as x-, y-, z- is omitted, except spe-
cial cases. For example, AD-undilatble pattern means one of z-AD-undilatable
pattern, y-AD-undilatable pattern, and z-AD-undilatable pattern. Our dila-
tion is not one-step dilation, but it is successively done as mentioned below.

In this paper, we consider dilations for two-directions only (y-direction and z-
direction). This is a key idea of this paper. Even if an animal is a 3D picture,
but we treat it as a 2D picture of the “thickness”.

By the way, voxels that block our successive dilations (will be called M-
magnification, later) was SIDE, but there are another blocking voxel of these
dilations. It is a voxel whose existence destroys animality. Such a voxel called
a stopping vozel. See Figure 6.

If a voxel p can be M-magnified, p is called an applicable voxel, and if it is
not possible, p is called a non-applicable voxel.

Thus, there are two sorts of non-applicable voxels for M-magnification: One
is an undilatable voxel and another is a stopping voxel.



Figure 6: Stopping voxel (s is a stopping voxel of z-M-magnification of r).

Now, let us consider successive dilation of voxels in R. If there are no AD-
undilatable patters (i.e., no AD-undilatable voxels), we can SD instead of AD.
Therefore, our problem is solvable by making use of the result of [1]. Thus, we
assume that at least one z-AD-undilatable voxel and also at least one y-AD-
undilatable voxel.

Let the first picture on R be R(O). Note that a given animal is in R. Then,
we successively construct pictures R(O), R(I), R(II), - - - as follows:

I. Construction of R(I) from R(O):

First, we construct R(Oy) from R(O) as follows: In R(O), if p(x,y,z) is
black then we AD-dilate p until (z, My, z) and p is white then we AD-dilate until
(x, My +1,2). Here, M is a sufficiently large integer such that M > g + h and
it is called the magnification coefficient. Also, this AD-dilation is called y-M -
magnification. In this case, if there is a voxel that blocks this M-magnification,
then we do nothing. Further, we do nothing for the case where some SIDE of
a local pattern is created on a vertical (for y-axis) plane. (This stipulation is
called SIDE-RULE.) For the case where a y-AD-undilatable pattern is created
from a y-AD-quasi-undiltable pattern, this SIDE-RULE is not applied.

We apply successively this M-magnification to every vertical (that is orthog-
onal for y-axis) plane-by-plane, from the eastmost face of R to the westmost
face of R. For each vertical plane, we do this in multi-pass of a raster scan.
A picture obtained by the above deformation is denoted by R(Oy). Note here
that R(Oy) is the smallest isothetic rectangular parallelepiped containing all of
created black voxels. From R(Oy), we construct R(I) as follows:

In R(Oy), if p(zx,y, 2) is black then we AD-dilate p until (z,y, Mz) and p
is white then we AD-dilate until (x,y, Mz + 1). The M is the same as above.
This AD-dilation is called z-M -magnification. In this case, if there is a voxel
that blocks this M-magnification, then we do nothing. Further, we do nothing
for the case where some SIDE is created on a horizontal plane (SIDE-RULE).
We apply successively this M-magnification to every horizontal plane-by-plane,
from the top level of R to the bottom level of R. A picture obtained by the
above deformation is denoted by R(I).



IT. Construction of R(A + 1) from R(A):

Hereafter, capital Greek letters mean the Roman numerals. By the similar
method as we constructed R(I) from R(O), we define R(A 4+ 1) from R(A),
inductively.

We aim at decreasing the number of AD-undilatable voxels as well as AD-
quasi-undilatable voxels in R(O) by constructing the sequence R(O), R(I),---,
R(A),---. To this end, let us prove some claims:

Claim 1 Let p be a (white or black) voxel, and ¢ be the next west voxel of p.
(1) If p and ¢ have the same color and p is y-applicable, then ¢ is also y-
applicable.

(2) If p is y-non-applicable, then ¢ is also y-non-applicable. (In this case, colors
of p and ¢ are irrelevant.)

(Proof) This is immediately known from the definitions of non-applicable
voxels and applicable voxels. a

Let us consider a case where the colors of p,q are different. In this case,
even if p is y-applicable, ¢ is not always y-applicable. Because, p may be a
y-AD-undilatable voxel so that ¢ is not blocked by its SIDE. Now, assume that
a (white or black) voxel p has been (z- or y-) AD-magnified. Then, we have a
run (say, r) of magnified voxels of p. The head of this run is called the head
vozel of magnification of p. Further, we consider a diagonal (digital) plane that
intersects the horizontal plane by /4. This diagonal plane is denoted by D,
and the region above D is denoted by E. Also, the region below D is denoted
by R*. See Figure 7.

Figure 7: Positions of D, F, and R*.

Claim 2 Assume that a (black or white) voxel ¢ has been M-magnified. Let e
be the head of magnified run of ¢t. Then, e is in the outside of R*.



(Proof) If ¢ is in the outside of R*, this is trivial. Even if ¢ is in the inside
of R*, this is obvious from our definition of M > g + h. ad

Claim 3 For any A, there is no non-applicable voxel in the outside of R* in
R(A).

(Proof) For R(O), there is no non-applicable voxel in the outside of R*. This
is obvious, because the outside of R* in R(O) are all white.

Let us consider R(Oy). E is the outside of R*. There is no y-non-applicable
voxel in E. The reason is as follows:

All black voxels in E are voxels created by y-M-magnification of each voxel.
Thus, from the definition of M-magnification of black voxel it is known that
there is no z-non-applicable voxel. Further, assume that there is a y-non-
applicable voxel v in E. Let v be on a vertical plane V. Since we can take
an integer N that is greater than M, V must be y-AD-dilated again by further
one step. This is a contradiction with the assumption that v is y-non-applicable
voxel. For a white voxel w, the above discussion is similar. Therefore, we know
that there is no non-applicable voxel in E for R(Oy).

Next, we want to show that there is no non-applicable voxel in E for R(I). By
making use of the similar discussion as above, we can prove this case. Anyway,
we know that there is any non-applicable voxel in E for R(I).

Now, let us assume that this claim is true for a A. Then, we will show that
the calim is also true for a A+1. But, this is shown by the quite similar argument
as that we used in the case of R(I). Note that there is no non-applicable voxel
in F for R(A) — this is the hypothesis.

Therefore, by the induction on A we know that this claim is true. ad

Claim 4 For any A, there is no AD-undilatable voxel in the outside of R in
R(A).

(Proof) This is provable by the quite similar method as in Claim 3. a

From Claim 3, we know that there is no non-applicable voxel in E. But,
there may exist some non-applicable voxel (say, p) in the region R*. Because
there may exist an AD-undilatable voxel (say, q) in R such that ¢ is a stopping
voxel of p. Here, we introduce a notion of subordination. If a voxel r is a stopping
voxel of s, we say that s is subordinate to r (denoted by S(s,r). Further, if a
voxel r is a stopping voxel of s and a voxel ¢ is a stopping voxel of r, then we
say again that s is subordinate to t. This subordinate relation is adequate and
also it can be generalized. Thus, we have S(s,r) and S(r,t) = S(s,t). It is
obvious that S(p,p) is not true for an arbitrary voxel p.

Now, let us investigate the number of AD-undilatable voxels and AD-quasi-
undilatable voxels in R(O), R(I), R(II), ---. Note here that there is no AD-
undilatable voxel in the outside R for any R(A) (where A = O, I, II, 111, - - -).

Let us denote the total sum of the number of AD-undilatable voxels and the
number of AD-quasi-undilatable voxels in R(A) by #R(A).



Claim 5 Let R(A) be a picture that contains at least one y-non-applicable and
at least one z-non-applicable voxel. Then, there exists an integer = such that

£R(A) > #£R(2).

Notice: If the assumption is not satisfied, we can easily erase all AD-undilatable
voxels. This follows from the following observation:

Assume that there is no y-non-applicable in R(A). From this assumption,
we can always y-AD-dilate all voxels in R(A), so that all z-non-applicable voxels
are also AD-erased. Hence, this claim is trivially true.

(Proof) First of all, let us introduce a notion “AD-movement of SIDE”.
AD-movement of SIDE is performed as follows: After a SIDE P has been AD-
magnified to a direction (e.g., y-direction), we AD-magnify again voxels (with
different color from P) adjoining to P to the same y-direction. If this is possible,
we say that SIDE P can be AD-moved.

Now, let us consider an AD-undilatable p in R(A). Our assumption guar-
antees the existence of such a voxel p. Then, there must be SIDE that blocks
AD-dilation of p. If this SIDE can be AD-moved, p may change into an appli-
cable voxel. If so, this claim is true. But, there is a case where AD-movement
of this SIDE needs again AD-movement of another SIDE. See Figure 8.

Under this situation, p changes into an applicable voxel after R(A + 1).

SIDE 2
SIDE 1

Figure 8: Two SIDEs of II.

Even if SIDE 1 is y-AD-moved, a voxel p on z-AD-undilatable pattern IT is
still a z-non-applicable voxel. When SIDE 2 is y-AD-moved, p may change into
an applicable voxel.

However, there is a case where we need repeatedly AD-movement of SIDE.
See Figure 9.

However, this process does not continue infinitely and also does not enter
any cycle. This is known from the following consideration:

(1) We have considered AD-dilation to two-directions only (i.e., the east and
the upward).

(2) AD-dilation of white voxel is blocked by a white voxel and AD-dilation
of black voxel is blocked by a black voxel.
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Figure 9: SIDE of SIDE.

(3) When we need M-magnification of either the south SIDE or the north
SIDE, we take always the south SIDE. See Figure 10.

(4) Our picture is finite.

Therefore, we know that a non-applicable voxel change eventually into an
applicable voxel (i.e., in some R(Z) , where = > A).

But, the above consideration is not yet sufficient. Because, even if SIDE
of a voxel p is erased, p may be subordinate to another voxel. In this case,
let h be the first voxel of the subordinate relation containing p, i.e., h is no
loger subordinated to another voxel. Then, p must be AD-undilatable voxel.
Under such a circumstance, we begin the above discussion from h instead of p.
Obviously, this does not continue infinitely.

However, our argument is not yet completed. M-magnification of a voxel u
may create a new AD-undilatable pattern. But, this is avoided by our SIDE-
RURE. Thus, we know that this claim is true. a

From Claim 5, we have the following proposition:

Proposition 1 Let A be a given animal. By making use of AD, we can erase
all AD-undilatable voxels from A.

(Proof) This is easy. It is sufficient to repeat the discussion of the proof
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Figure 10: Adoption of SIDE.

of Claim 5. For a sufficient large A, there is R(A) that does not contain any
AD-undilatable voxel. a

Note here that the obtained R(A) is not similar to the first animal A but it
may be extremely large.

Theorem 1 Animal problem has a positive solution.

(Proof) R(A) of Proposition is obtained by AD (i.e., in animality-preserving)
and it never contain any AD-undilatable pattern. Hence, we can use SD for the
R(A).

Meanwhile, we have the result of [4] that gives a weak theorem of animal
problem. At the present, we can use SD for R(A) instead of AD. Let Q be a
sufficiently large numeral such that the magnification method used in [4] can be
applied to R(Q). Then, from the result of [4], it is known that a given animal
can be reduced into a single unit cube in AD (i.e., animality-preserving). O
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