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ABSTRACT

Panoramic images and panoramic cameras (or sensors)
are of increasing importance for various applications in com-
puter vision, computer graphics, visualization, and robotics.
Various panoramic image capturing sensors have been devel-
oped for different purposes. But many of the sensing de-
vices do not support stereo visualization. This paper reviews a
methodology for stereo panorama acquisition using a widely
available digital matrix camera. We also propose a method
for camera calibration. The calibration process of such an im-
age acquisition system is essential to ensure a high quality of
stereo visualization.

Index Terms— Panoramic Imaging, Stereo Panorama,
Camera Calibration

1. INTRODUCTION

Panoramic images have been widely used in 3D scene vi-
sualization, navigation and reconstruction applications. A
360-degree cylindrical panorama records scene information
of all possible viewing directions at a single viewpoint, which
supports the capability of wide-angle displaying. It gained
its popularity in public exhibition galleries, museums, show-
rooms, or theaters, as well as for web-based visualization of
environments such as in Google Map.

Over the last few years, various stereoscopic visualiza-
tion and display technologies have become more and more
accessible and affordable to end-users. Panoramic image ap-
plications have also started to provide stereo visualization.
As a result, the research topics related to stereo panoramic
image acquisition, analysis and visualization have received
an increasing interest. Stereo panoramic images have been
used for robot navigation [8], 3D scene understanding and
reconstruction [7, 3], environmental documentation [5], and,
of course, for stereo visualization in various types of virtual
reality systems [1] or stereo photography [4].

In the paper, we recall at first a relatively new methodol-
ogy for accurate stereo panorama acquisition, called a rotating
sensor-line camera [2], which is capable of not only capturing

a stereo panorama but is also able to preserve the geometri-
cal accuracy of the 3D scene information within the images.
The only shortage of such a camera is a relatively high im-
age acquisition time for a 360-degree scan. We discuss in
the paper then an alternative approach based on a (standard)
sensor-matrix camera, which is able to capture stereo panora-
mas more effectively, but with a trade-off between speed and
accuracy. For applications such as entertainments and virtual
reality, this alternative approach would be sufficient.

The main contribution of the paper is the proposed camera
calibration method for a rotating sensor-matrix camera. The
accurate recovery of the camera parameters is very important
to ensure a high quality stereo visualization of the resulting
stereo panorama and an accurate camera pose estimation from
multiple panoramas.

2. CAMERA GEOMETRY

This section introduces the imaging geometry and notation as
used in this paper.

2.1. Rotating Sensor-line Cameras

A digital camera equipped with a linear sensing element (e.g.,
a single column CCD) is placed on a tripod and rotated, tak-
ing many images, “column by column”, during such a rota-
tion. This defines a rotating sensor-line camera, which is ca-
pable of recording a 360◦ panoramic images with very high
image resolution. Figure 1 demonstrates an example of a
high-resolution panorama captured by a rotating sensor-line
camera. The resolution of this panorama is 56,580 × 10,200
pixels, and the size of the image is 3 GB.

Rotating sensor-line cameras (see Figure 2) have been the
subject of the book [2]. We use the same notation as in this
book, which provided a general model for rotating sensor-line
cameras. The intrinsic camera parameters, R (radius of base
circle, also called off-axis distance), f (focal length of cam-
era) or g for a projection parameter in general, and ω (princi-
ple angle) characterize how a panoramic image is acquired.



Fig. 1. A high-resolution panoramic image of Auckland city
from the top of the Harbour Bridge, captured in 2001.

2.2. Rotating Sensor-Matrix Cameras

A sensor-matrix camera is more accessible and lower in price
then a sensor-line camera. Thus, an alternative panoramic im-
age acquisition would be by rotating a normal matrix cam-
era on a tripod instead of using a line camera. The final
panoramic image is generated by combining some particular
image columns of each shot. Thus, the geometry is very much
similar to the imaging geometry of a rotating line camera. In
order to reduce the panoramic image acquisition time, nor-
mally a set of adjacent image columns are used for each shot
to generate the panoramic image. Consequently, less shots are
required during a full rotation. Figure 3 illustrates an exam-
ple of a stereo panorama captured by a rotating sensor-matrix
camera.

We unify the notations between both approaches by con-
versions as described below. According to the definition of
a model of a rotating sensor-line camera, any column of the
sensor-matrix defines one specific panoramic image; see left
of Fig. 4. The choice of the column corresponds to the choice
of angle ω, and every column identifies a different projection
parameter g (note: we only have g = f for one sensor-column
cM where the optical axis of the camera passes through).

Let ψ be the angle between the surface normal of the
sensor-matrix and the normal of the base circle (at a given
position of the camera C) as shown in Fig. 4, right. The
panorama composed by the ith column of the sensor matrix
has the following parameter values: R remains unchanged;
the values of the projection parameter and the principle angle
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Fig. 2. Basic entities of a rotating sensor-line camera.
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Fig. 4. Left: A rotating sensor-matrix camera. Right: Illus-
tration for the notation conversions.

are calculated as

g=
√
f2+(i− cM)2 τ2 and ω=ψ+arctan

(
(i−cM) τ

f

)
respectively, where τ is the size of a single sensor-cell (as-
suming perfectly square pixel) and f is the focal length of the
camera.

For this system, an off-axis distance (i.e., R > 0) together
with the principle angle ω offer the capability of acquiring
stereo panoramas. A stereo panorama can be acquired at a
single location with constant values ofR, but for two different
(symmetric) values ω and−ω. (Note that these two values are
symmetric with respect to the normal of the base circle.) Such
a pair of panoramas is directly stereo viewable [6] because
any pair of corresponding points lies on the same image row.
The major task of the paper is to calibrate these two important
camera parameters R and ω.

3. CAMERA CALIBRATION

Intrinsic parameters of the camera used for panoramic im-
age acquisition can be accurately calibrated in advance using
some publicly available toolbox. Thus, the focal length f (in
pixel) and the central row jc are assumed to be known. The
task here is to calibrates the off-axis distance R and princi-
ple angle ω of our camera setup. We present a parallel line
approach that uses geometric properties of parallel line seg-
ments (calibration lines) available in the scene. It is a standard
procedure to ensure that both the camera and the rotating rig
are both leveled during image acquisition. Therefore, we aim
to use vertical edges available in the scene to recover the sen-
sor parameters. The advantage of this approach is that no
calibration object is needed.

We assume that there are at least three pairs of parallel
straight line segments in the scene (e.g., straight edges of
doors or windows), which are parallel to the rotation axis.
For each straight line segment we further assume that both
endpoints are visible (from the camera) and identifiable in the
panoramic image, and that we may have an accurate measure-
ment of the physical distance between these two end points.
Finally, we assume that the distances between selected pairs
of parallel lines are also measurable and known.

Any useable straight line segment in the 3D scene is de-
noted as L and indexed where needed for the distinction of



Fig. 3. Anaglyphic stereo panorama of Ilan University captured in 2007.

multiple lines. The (Euclidean) distance of two visible points
on a line L is denoted by H . The length of a projection of a
line segment on an image column is denoted by h and mea-
sured in pixel. Examples of Hk and corresponding hk are
illustrated in Figure 5, where k ∈ [1, . . . , 5]. Let Dij denote
the distance between two parallel lines Li and Lj . If the dis-
tance between two straight line segments is available then we
say that both lines form a pair of lines. A line segment may
be paired up with more than just one other line segment.

Consider a pair of lines Li and Lj in 3D space. The an-
gular distance of two image columns, associated to these two
lines, is the angle 6 CiOCj , where O is the center of the base
circle and Ci and Cj are the corresponding optical centers
(which “see” this line segment). We denote the angular dis-
tance of a pair (Li, Lj) of lines by θij . An example of an-
gular distance for pairs of lines is given in Fig. 5, right. The
distance S between a line segment L and the associated opti-
cal center can be obtained by equation S = gH

h , where g is
the pre-calibrated projection parameter corresponding to this
panoramic image.

3.1. Geometric Relation

Now we are ready to formulate a distance constraint by com-
bining all the previously described geometric information. A
2D coordinate system is defined on the base plane for every
pair of lines (Li, Lj); see right of Figure 5. Note that even
though all the measurements are defined in 3D space, the ge-
ometric relation of interest can be described in a 2D space
since all the straight segments are assumed to be parallel to
the rotation axis. The origin of the coordinate system is O,
and the Z-axis is incident with the camera focal point Ci.
The X-axis is orthogonal to the Z-axis and is incident with
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Fig. 5. Left: Configurations of parallel straight lines in the
3D scene and on the panoramic image. Right: A defined co-
ordinate system for any pair of lines (from top view).

the base plane.
The position of Ci can now be described by coordinates

(0, R), and the position Cj can be described by coordinates
(R sin θij , R cos θij). The intersection point of line Li with
the base plane, denoted as Pi, can be expressed by a sum of
vector

−−→
OCi and vector

−−→
CiPi. Thus, we have the following:

Pi =
[

Si sinω
R+ Si cosω

]
Analogously, the intersection point of line Lj with the base
plane, denoted as Pj , can be described by a sum of vectors
−−→
OCj and

−−−→
CjPj . We have the following:

Pj =
[
R sin θij + Sj sin(θij + ω)
R cos θij + Sj cos(θij + ω)

]
The distanceDij between points Pi and Pj has been mea-

sured. We have the following equation:

D2
ij = (Si sinω −R sin θij − Sj sin(ω + θij))2

+ (R+ Si cosω −R cos θij − Sj cos(ω + θij))2 (1)

3.2. Error Function

Basically we use Equation (1) as error function. The values
of Si, Sj , Dij , and θij are known. Thus, Equation (1) can be
arranged into the linear formA1X1+A2X2+A3X3+A4 = 0
with coefficients An, n = 1, 2, 3, 4, defined as follows:

A1 = 1− cos θij

A2 = (Si + Sj)(1− cos θij)
A3 = −(Si − Sj) sin θij

A4 =
S2

i + S2
j −D2

ij

2
− SiSj cos θij

For the three linearly independent variables Xn, n = 1, 2, 3,
we have X1 = R2, X2 = R cosω, and X3 = R sinω.

In this case we can solve for values R and ω by using all
three equations. If more than three equations are provided
then it is possible to apply a linear least-square technique. To
tackle the multiple-solution problem, we constrain the param-
eter estimation process further by X2

1 = X2
2 +X2

3 .
Assume thatN copies of Equation (1) are given. We want

to minimize the following:

N∑
n=1

(A1nX1 +A2nX2 +A3nX3 +A4n)2 (2)



Fig. 6. The panoramic image for camera calibration.

subject to the equality constraint X1 = X2
2 +X2

3 , where the
values of A1n, A2n, A3n, and A4n are calculated based on
measurements in the real scene and in the image. Now, the
values of R and ω can be uniquely (!) calculated as

R =
√
X1 and ω = arccos

(
X2√
X1

)
Note that even though the additional constraint forces a use of
a non-linear optimization method, the accuracy of the method
remains at the quality level of a linear parameter estimation
procedure.

4. EXPERIMENTS

Real and synthetic experiments were conducted to evaluate
the proposed method. The synthetic experiments were car-
ried out using 3D Max, where the ground truth values of all
the parameters were known. Grid patterns were mapped on
the walls in the virtual environment and captured by a virtual
camera. We had R = 0.5 m, ω = 60◦, and g = 1555.5 pixel,
and the image resolution was 3,600 × 1,600. The generated
panoramic image is shown in Fig. 7. Ten pairs of parallel
lines (highlighted in red) were used for calibration, and we
obtained R = 0.5054 m and ω = 60.2991◦. The minor devi-
ations of recovered values compared to the true values were
caused by rounding-off error of endpoint pixel identifications.

The real-image experiments were performed indoor; the
parallel lines used for calibration are shown in Fig. 6. The
lengths of those line segments were within the range of 0.5 m
to 1.2 m and were measured with an error of less than 0.005
m. The camera was set up as accurate as possible, such that
we had R = 0.5 ± 0.01 m and ω = 60 ± 1◦. The sensor-
matrix camera was accurately pre-calibrated and we had g =
3133.57 pixel. The recovered values of R and ω based on our
approach were 0.5117 m and 59.7786◦. The results are about

Fig. 7. A synthetic panorama for camera calibration.

as accurate as the synthetic experiment. We conclude that
the proposed camera calibration method is practical because
errors are reasonably small.

5. CONCLUSIONS

This paper reviewed the methodology for stereo panorama
acquisition using either a sensor-line or a widely available
sensor-matrix camera. A camera calibration approach for re-
covering two essential parameters of the system, off-axis dis-
tance and principal angle, were presented. The calibration can
be performed anywhere as long as there are more than three
pairs of vertical parallel lines available in the scene. Both
the synthetic and real experiments showed that the proposed
method is able to achieve good accuracy even if there are er-
rors introduced by measurements and pixel identifications.
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