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Summary. Image sensor technology provides in recent years the tools for wide-
angle and high-resolution 3D recording, analysis and modeling of static or dynamic
scenes, ranging from small objects such as artifacts in a museum to large-scale 3D
models of a castle or 3D city maps, also allowing real time 3D data acquisition from
a moving platform, such as in vision-based driver assistance. The paper documents a
particular subfield of these developments by providing mappings of omnidirectional
images (catadioptric or dioptric images) into panoramic images on a cylinder. The
mappings are specified by using the geometries of omnidirectional cameras. Image
examples illustrate potentials for projects in arts, science or technology.
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Cusco mural by Juan Bravo (1992, length: about 17 m).

1.1 Introduction

Panoramic photography is needed for recording a painting as shown above. We
briefly review the geometry of catadioptric and dioptric cameras, which are
relatively new tools for panoramic photography. Omnidirectional camera sys-
tems [2] have been developed to observe a 360-degree field of view; see Fig. 1.1
for an example. Popular omnidirectional imaging systems are catadioptric or
dioptric camera systems.3 A catadioptric camera system is constructed as a
combination of a quadric mirror and a conventional camera [8, 9, 10]. The
dioptric camera system is constructed with a specially designed refractor,
which controls the angles of rays passing through the lens [9], as the optical
lens of the camera. Cylindric panoramas are, for example, generated by rotat-
ing line cameras [7]; we consider single-projection center cylindric panoramas

3 catadioptric: pertaining to, or involving both the reflection and the refraction of
light; dioptric: relating to the refraction of light
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Fig. 1.1. Omnidirectional cameras. Left: a digital camera with a hyperboloidal
shaped mirror. Right: a fish-eye camera. [1, 2]

in the following (i.e., where the off-axis distance equals zero). Omnidirectional
images are either of the catadioptric or dioptric kind.

Omnidirectional imaging systems are used for controlling mobile robots
[1] or in vision-based driver assistance [5]. Therefore, image analysis is also
required for omnidirectional images. Basically, analysis may happen directly
in those catadioptric or dioptric images, or after a transform of those into
traditional formats (preferably cylindric panoramas).

Besides robotics, another significant use of catadioptric or dioptric cam-
eras is the generation of panoramic views from captured images. Panoramic
images are essential for virtual reality applications, such as Google Earth [6].
Furthermore, panoramic images play an important role in the creation of artis-
tic photographs [12]. In this paper, we identify mappings of catadioptric and
dioptric images into images on a cylinder (i.e., cylindric images). See Fig. 1.2
for three examples.

Omnidirectional images are required to be pre-processed before applying
computer vision or image recognition tools (e.g., detectors and trackers of

Fig. 1.2. Upper row: original fish-eye images (180-degree fields of view, showing
Prague castle and a group of people). Lower row: resulting panoramic images.
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pedestrians, cars, and other objects [3, 4]), because available tools are typi-
cally established and trained on perspective images. The aim is often to gen-
erate perspective cutouts from omnidirectional images, and to adapt common
tools without special modifications. However, such cutouts completely lose
the benefit of the large field of view (e.g., surveying a large area, without
a need to switch between multiple images). Consequently, a mapping of the
captured 360-degree field of view into a cylindric panorama is often the best
solution, because single-center cylindric images possess perspective-like ap-
pearances while suppressing circular distortion due to catadioptric or dioptric
projection.

The structure of this short paper is as follows. In Section 2, we first in-
troduce central hyperbolic and parabolic camera models for characterizing
common catadioptric cameras, and then we derive mappings from hyperbolic
and parabolic images into cylindric images. In Section 3, we describe a fish-
eye camera model as an example of dioptric cameras, and derive a mapping of
fish-eye images into cylindric images. Finally, we show examples of cylindric
images obtained from recorded hyperbolic or fish-eye images.

1.2 Catadioptric into Cylindric Images

Hyperbolic or parabolic mirrors are two commonly used in catadioptric cam-
eras, and further mirrors are under consideration (e.g., to ensure a single
projection center and uniform image resolution at the same time).

1.2.1 Hyperbolic into Cylindric Images

A central hyperbolic camera consists of a hyperboloidal shaped mirror and a
conventional digital camera [8, 10]. Such a hyperbolic camera has a unique
center of projection at the focus of the hyperboloidal mirror by locating the
projection center of the digital camera at the other focus of the hyperboloid,
as illustrated on the left in Fig. 1.3. In this configuration, light rays which
pass through the focus of the hyperboloid are reflected on the mirror, and the
reflected rays pass through the other focus of the hyperboloid.

For deriving the transformation equation, we consider at first the case as
illustrated on the left in Fig. 1.3. Let C = (0, 0,−2e) be the center of the
pinhole camera. Letting the focus F of the hyperboloid C2 be the origin of
the world coordinate system, the hyperboloid is expressed in the quadric form:
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where e =
√

a2 + b2. The projection of a point X = (X, Y, Z)⊤ in 3D space
into a point x = (x, y, z)⊤ on the hyperboloid C2 is then expressed as x = χX
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Fig. 1.3. Mapping from hyperbolic to cylindric images. Left: hyperbolic camera
system. Right: hyperbolic and cylindric camera systems combined.

where

χ =
a2

b|X| − eZ

The projection of point x into a corresponding point m = (u, v)⊤ on the
image plane π is expressed as

(

m

1

)

=
1

z + 2e





f 0 0 0
0 f 0 0
0 0 1 0





(

x

1

)

Accordingly, the total mapping, from X to m, is formulated as

u =
fa2X

(a2 − 2e2)Z + 2be|X| and v =
fa2Y

(a2 − 2e2)Z + 2be|X| (1.1)

The hyperbolic to cylindric image transform is illustrated on the right in
Fig. 1.3. Let Cp be the center of the cylindric projection. By setting Cp = F,
a point xp on the cylindric image and a point x on the hyperboloid lie on
a line, connecting point X in 3D space with the focus F of the hyperboloid.
The cylindric coordinate system expresses a point xp = (xp,yp, zp) on the
cylindric surface as

xp = r cos θ, yp = r sin θ, zp = r tan ϕ (1.2)

where 0 ≤ θ < 2π and −π/2 ≤ ϕ < π/2. Hereafter, without loss of generality,
we set r = 1. The mapping between the hyperbolic image I(u, v) and the
cylindric image IP (θ, ϕ) can then be formulated as

u =
fa2 cos θ

(a2 ∓ 2e2) tanϕ ± 2be
√

1 + tanϕ2

v =
fa2 sin θ

(a2 ∓ 2e2) tanϕ ± 2be
√

1 + tanϕ2



1 Panoramic and 3D Computer Vision 5

θ

ϕ

C C

X
X

x
x

π π

C2

x
y

z z

F

c

2c Cp

xp

m m

Fig. 1.4. Mapping from parabolic to cylindric images. Left: parabolic camera sys-
tem. Right: parabolic and cylindric camera systems combined.

We thus derived a one-to-one correspondence between points on a hy-
perbolic image and points on a cylindric image. This allows to transform
these images using common interpolation techniques, such as bilinear, cubic
convolution, or B-spline interpolation. Note that substituting Equ. (1.2) into
Equ. (1.1) derives a mapping with central cylindric projection. Cylindric im-
ages can also be derived for different projections (e.g., setting zp = rϕ achieves
equi-rectangular projection).

1.2.2 Parabolic into Cylindric Images

We consider at first the case illustrated on the left in Fig. 1.4. Let C =
(0, 0,−∞) be the center of the orthographic camera. Letting the focus F of
the paraboloid C2 be the origin of the world coordinate system, the paraboloid
C2 is expressed in the quadric form:
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The projection of a point X = (X, Y, Z)⊤ in 3D space into a point x =
(x, y, z)⊤ on the paraboloid is then expressed as x = χX where

χ =
2c

|X| − Z

The projection of point x into a point m = (u, v)⊤ in the image plane π is
expressed as
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Accordingly, the mapping from X into m is formulated as

u =
2cX

|X| − Z
, v =

2cY

|X| − Z
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Furthermore, as show on the right in Fig. 1.4, by setting Cp = F, a point
xp on the panoramic image and a point x on the paraboloid lie on a line,
connecting point X in 3D space with the focal point F of the paraboloid.
Let xp = (xp, yp, zp) be a point on the cylindric surface as in Equ. (1.2). A
mapping between the parabolic image I(u, v) and the cylindric image IP (θ, ϕ)
is given as follows:

uh =
2c cos θ

√

1 + tanϕ2 − tan ϕ
and vh =

2c sin θ
√

1 + tanϕ2 − tan ϕ

1.3 Fish-Eye into Cylindric Images

A fish-eye camera generates an image on the basis of a stereographic, equi-solid
angle, orthogonal, and equi-distant projection. This projection is illustrated in
Fig. 1.5. Let m = (u, v)⊤ and X = (X, Y, Z)⊤ be a point on an image acquired
by fish-eye camera and a point in a 3D space, respectively. Depending on the
projection model, the mapping of X into m can be stated as follows:

stereographic : u = 2fa tan(cos−1(c)/2), v = 2fb tan(cos−1(c)/2)

equi-solid angle : u = 2fa sin(cos−1(c)/2), v = 2fb sin(cos−1(c)/2)

orthogonal : u = fa sin(cos−1(c)), v = fb sin(cos−1(c))

equi-distant : u = fa cos−1(c), v = fb cos−1(c)

where

a =
X√

X2 + Y 2
, b =

Y√
X2 + Y 2

, c = Z/|X |

Next, let xp = (xp, yp, zp) be a point on the cylindric surface as in
Equ. (1.2). A mapping between the fish-eye camera image I(u, v) and the
cylindric image IP (θ, ϕ) is then as follows (where γ = π/2 − ϕ):

stereographic : u = 2f tan(γ/2) cos θ, v = 2f tan(γ/2) sin θ

equi-solid angle : u = 2f sin(γ/2) cos θ, v = 2f sin(γ/2) sin θ

orthogonal : u = f sin(γ) cos θ, v = f sin(γ) sin θ

equi-distant : u = f(γ) cos θ, v = f(γ) sin θ
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Fig. 1.5. Transform of a fish-eye into a cylindric image.
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1.4 Experiments

We show some examples of cylindric images transformed either from hyper-
bolic or fish-eye images into this format. The top left and the middle left in
Fig. 1.6 show two hyperbolic images with 360-degree fields of view, acquired
with a hyperbolic camera as shown on the left of Fig. 1.1. Using the mapping
derived in Section 1.2.1, the original images are instantly transformed into
cylindric images as shown on the top right and middle right of Fig. 1.6. The
bottom row in Fig. 1.6 shows the Inca shield of Cusco (part of Bravo’s mural
as shown above) and its cylindric image, assuming that the shield was created
by imagining a ‘hyperbolic camera’.

Furthermore, the top row in Fig. 1.2 shows three original images recorded
with a hemispherical field of view, acquired with a fish-eye camera as show on
the right of Fig. 1.1. The resulting panoramic images are shown in the bottom
row of Fig. 1.2.

Figure 1.7 just illustrates a stereo pair of fish-eye images, recorded on
a roof-rack of HAKA1, a research vehicle in the driver assistance project
.enpeda.. at Auckland University. Stereo images require geometric rectification
before applying a stereo matching algorithm [5]. Prior to rectification, these
images are mapped into cylindric format as described above.

Fig. 1.6. Hyperbolic into panoramic images (top and middle row: Tamaki campus,
The University of Auckland; bottom row: Inca shield of Cusco). Left: original images;
right: resulting panoramic images.
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Fig. 1.7. Stereo pair of fish-eye images, for ensuring a wide field of view in vision
based driver assistance.

1.5 Concluding Remarks

This brief paper accompanies a keynote talk at this conference by providing
transformation formulas of catadioptric and dioptric images into cylindric
images, thus detailing one particular subject in the large field of panoramic or
3D computer vision. The provided ideal geometric transforms still need to be
“refined” by further analysis of potential impacts, such as optical distortions,
to ensure resultant panoramas of ‘perfect quality’.
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