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Abstract. The watchman route problem (WRP) was first introduced
in 1988 and is defined as follows: How to calculate a shortest route com-
pletely contained inside a simple polygon such that any point inside this
polygon is visible from at least one point on the route? So far the best
known result for the WRP is an O(n3logn) runtime algorithm (with in-
herent numerical problems of its implementation). This paper gives an
κ(ε) × O(kn) approximate algorithm for WRP by using a rubberband
algorithm, where n is the number of vertices of the simple polygon, k a
number of essential cuts and ε the chosen accuracy constant.
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1 Introduction

There are a number of computational geometry problems which involve find-
ing a shortest path [24], for example, the safari problem, zookeeper problem,
or watchman route problem (WRP). All are of obvious importance for robotics,
especially the WRP for visual inspection. This paper presents algorithms for solv-
ing the touring polygons problem (TPP), parts cutting problem, safari problem,
zookeeper problem, and watchman route problem. These problems are closely
related to one-another. A solution to the first problem implies solutions to the
other four problems. The safari, zookeeper, and watchman route problems belong
to the class of art gallery problems [40].

1.1 Touring Polygons Problem

We recall some notation from [13], which introduced the touring polygons prob-
lem. Let π be a plane, which is identified with R2. Consider polygons Pi ⊂ π,
where i = 1, 2, . . . , k, and two points p, q ∈ π. Let p0 = p and pk+1 = q. Let pi ∈
R2, where i = 1, 2, . . . , k. Let ρ(p, p1, p2, , . . . , pk, q) denote the path pp1p2 . . . pkq
⊂ R2. Let ρ(p, q) = ρ(p, p1, p2, , . . . , pk, q) if this does not cause any confusion.



If pi ∈ Pi such that pi is the first (i.e., along the path) point in ∂Pi ∩ ρ(p, pi),
then we say that path ρ(p, q) visits Pi at pi, where i = 1, 2, . . . , k.

Let A• be the topologic closure of set A ⊂ R2. Let Fi ⊂ R2 be a simple
polygon such that (P •

i ∪ P •
i+1) ⊂ F •

i ; then we say that Fi is a fence [with respect
to Pi and Pi+1 (mod k + 1)], where i = 0, 1, 2, . . . , k + 1. Now assume that we
have a fence Fi for any pair of polygons Pi and Pi+1, for i = 0, 1, . . . , k + 1.

The constrained TPP is defined as follows: How to find a shortest path
ρ(p, p1, p2, , . . . , pk, q) such that it visits each of the polygons Pi in the given
order, also satisfying pipi+1(mod k + 1) ⊂ F •

i , for i = 1, 2, . . . , k?

Assume that for any i, j ∈ {1, 2, . . . , k}, ∂Pi ∩ ∂Pj = ∅, and each Pi is
convex; this special case is dealt with in [13]. The given algorithm runs in O(kn
log(n/k)) time, where n is the total number of all vertices of all polygons Pi ⊂
π, for i = 1, 2, . . . , k. Let Π be a simple polygon with n vertices.

The watchman route problem (WRP) is discussed in [4], and it is defined as
follows: How to calculate a shortest route ρ ⊂ Π• such that any point p ∈ Π• is
visible from at least one point on the path?

This is actually equivalent to the requirement, that all points p ∈ Π• are
visible just from the vertices of the path ρ, that means, for any p ∈ Π• there is
a vertex q of ρ such that pq ⊂ Π•; see Figure 1. If the start point of the route
is given, then this refined problem is known as the fixed WRP.

Fig. 1. A watchman route.

A simplified WRP was first solved in 1988 in [10] by presenting an O(n loglog
n) algorithm to find a shortest route in a simple isothetic polygon. In 1991, [11]
claimed to have presented an O(n4) algorithm, solving the fixed WRP. In 1993,
[32] obtained an O(n3) solution for the fixed WRP. In the same year, this was
further improved to a quadratic time algorithm [33]. However, four years later,
in 1997, [17] pointed out that the algorithms in both [11] and [32] were flawed,
but presented a solution for fixing those errors. Interestingly, two years later, in
1999, [34] found that the solution given by [17] was also flawed! By modifying
the (flawed) algorithm presented in [32]. [34] gave an O(n4) runtime algorithm
for the fixed WRP.



In 1995, [7] proposed an O(n12) runtime algorithm for the WRP. In the same
year, [27] gave an O(n6) algorithm for the WRP. This was improved in 2001 by
an O(n5) algorithm in [35]; this paper also proved the following

Theorem 1. There is a unique watchman route in a simple polygon, except for
those cases where there is an infinite number of different shortest routes, all of
equal length.

So far the best known result for the WRP is due to [13] which gave in 2003
an O(n3 log n) runtime algorithm.

Given the time complexity of those algorithms for solving the WRP, finding
efficient (and numerically stable) approximation algorithm became an interesting
subject. In 1995, [21] gave an O(log n)-approximation algorithm for solving the
WRP. In 1997, [8] gave a 99.98-approximation algorithm with time complexity
O(n log n) for the WRP. In 2001, [36] presented a linear-time algorithm for an
approximative solution of the fixed WRP such that the length of the calculated
watchman route is at most twice of that of the shortest watchman route. The
coefficient of accuracy was improved to

√
2 in [38] in 2004. Most recently, [39]

presented a linear-time algorithm for the WRP for calculating an approximative
watchman route of length at most twice of that of the shortest watchman route.

There are several generalizations and variations of watchman route problems;
see, for example, [5, 6, 9, 12, 14–16, 18, 23, 26–30]. [1–3] show that some of these
problems are NP-hard and solve them by approximation algorithms.

The rest of this paper is organized as follows: Section 2 recalls and introduces
useful notions. Section ?? lists some known results which are applied later in this
paper. Section 3 describes the new algorithms. Section 5 analyzes the time com-
plexity of these algorithms. Section 4 proves the correctness of the algorithms.
Section 6 concludes the paper.

2 Definitions and Known Results

We recall some definitions from [39]. Let Π be a simple polygon. The vertex v of
Π is called reflex if v’s internal angle is greater than 180◦. Let u be a vertex of

Fig. 2. Examples for cuts and essential cuts.



Π such that it is adjacent to a reflex vertex v. Let the straight line uv intersect
an edge of Π at v′. Then the segment C = vv′ partitions Π into two parts. C is
called a cut of Π, and v is called a defining vertex of C. That part of Π is called
an essential part of C if it does not contain u; it is denoted by Π(C). A cut C
dominates a cut C ′ if Π(C) contains Π(C ′). A cut is called essential if it is not
dominated by another cut. In Figure 2 (which is Figure 1 in [39]), the cuts xx′

and yy′ are dominated by C2 and C5, respectively; the cuts C1, C2, C3, C5 and
C4 are essential. Let C be the set of all essential cuts. The WRP is reduced to
find the shortest route ρ such that ρ visits in order each cut in C (see Lemma 1,
and also see [2] or [6]).

Let SC = {C1, C2, . . . , Ck} be the sorted set C such that vi is a defining
vertex of Ci, and vertices vi are located in anti-clockwise order around ∂Π, for
i = 1, 2, . . . , k.

Definition 1. Let Π and SC be the input of a watchman route problem. This
problem is simplified iff, for each i ∈ {1, 2, . . . , k− 1}, for each pi ∈ Ci and pi+1

∈ Ci+1 we have that pipi+1 ∩ ρ(vi+1,Π, vi) = ∅.

We lists some useful results used in the rest of this paper. The first one is
about “order”, and the remaining three are about time complexity.

Lemma 1. ([10], Lemma 3.3) A solution to the watchman route problem (short-
est tour) must visit the Pi’s in the same order as it meets ∂Π.

Lemma 2. ([24], pages 639–641) There exists an O(n) time algorithm for cal-
culating the shortest path between two points in a simple polygon.

Lemma 3. ([31]) The two straight lines, incident with a given point and being
tangents to a given convex polygon, can be computed in O(log n), where n is the
number of vertices of the polygon.

Theorem 2. ([39], Theorem 1) Given a simple polygon Π, the set C of all es-
sential cuts for the watchman routes in Π can be computed in O(n) time.

3 The Algorithms

3.1 A Local Solution for the Constrained TPP

The following procedure handles a degenerate case (see also Section 7.5 of [20]) of
the rubberband algorithm, to be discussed later in this paper as “Algorithm 1”.
Such a case may occur and should be dealt with when we apply Algorithm 1 to
the unconstrained TPP when the polygons are not necessarily pairwise disjoint.
See Figure 3.

Procedure 1

Input: A point p and two polygons P1 and P2 such that p ∈ ∂P1 ∩ ∂P2.
Output: A point q ∈ ∂P1 such that de(q, p) ≤ ε and q /∈ ∂P2.



Fig. 3. Illustration for Procedure 1.

1. Let ε = 10−10 (the accuracy).
2. Find a point ej ∈ E(Pj), where j = 1, 2, such that p ∈ e1 ∩ e2.
3. Let e1 = q1q2. Let q3 and q4 be two points in two segments q1p and q2p,

respectively (see Figure 3) such that de(qj , p) ≤ ε and qj /∈ ∂P2, where j = 3, 4.
4. Let q = min{q3, q4} (with respect to lexicographic order).
5. Output q.

The following Procedure 2 is used in Procedure 3 which will be called in
Algorithm 1 below.

Procedure 2

Input: Two polygons P1 and P2 and their fence F ; two points pi ∈ ∂Pi, where
i = 1, 2, such that p1p2 ∩ ∂F = {q1, . . . , q2}.
Output: The set of all vertices of the shortest path, which starts at p1, then visits
∂F , and finally ends at p2 (but not including p1 and p2).

1. Compute ρ(q1, F, q2), which is the subpath from q1 to q2 inside of F .
2. Apply the Melkman algorithm (see [22]) to compute the convex path from

q1 to q2 inside of F , denoted by ρ(q1, q2).
3. Compute a tangent piti of pi and ρ(q1, q2) such that piti ∩ F = ti, where

i = 1, 2 (see [31]).
4. Compute ρ(t1, F, t2), which is the subpath from t1 to t2 inside of F .
5. Output V (ρ(t1, F, t2)).

Fig. 4. Illustration for Procedure 2.



Fig. 5. Illustration for Procedure 3.

See Figure 4 for an example: V (ρ(q1, F, q2)) = {q1, v1, v2, v3, t1, v4, v5, t2, q2}
and V (ρ(t1, F, t2)) = {t1, v4, v5, t2}. – The following Procedure 3 will be called
in Step 4 in Algorithm 1 below.

Procedure 3

Input: Three polygons P1, P2 and P3 in order, the fence of P1 and P2, denoted
by F12, the fence of P2 and P3, denoted by F23, and three points pi ∈ ∂Pi, where
i = 1, 2, 3.
Output: The set of all vertices of the shortest path which starts at p1, then visits
P2, and finally ends at p3 (see Figure 5).

1.1. Let ε = 10−10 (the accuracy).
1.2. If (p2 = p1 ∧ p2 6= p3) ∨ (p2 6= p1 ∧ p2 = p3) ∨ (p2 = p1 ∧ p2 = p3),

then apply Procedure 1 to compute a point to update p2 such that p2 6= p1 and
p2 6= p3.

1.3. Compute a point p2 ∈ ∂P2 such that

de(p1, p
′
2) + de(p′2, p3) = min{de(p1, p

′) + de(p′, p3) : p′ ∈ ∂P2}

2. Update V by letting p2 = p′2.
3. If p1p2 ∩ F12 = ∅, then let V12 = ∅.
4. Otherwise suppose that p1p2 ∩ F12 = {q1, . . . , q2}.
5. Use P1, P2, F12, q1, and q2 as input for Procedure 2; the output equals

V12.
6. Analogously, compute a set V23 from p2, p3 and F23, as follows:
6.1. If p2p3 ∩ F23 = ∅, then let V23 = ∅.
6.2. Otherwise suppose that p2p3 ∩ F23 = {q′2, . . . , q′3}.
6.3. Use P2, P3, F23, q′2, and q′3 as input for Procedure 2; the output equals

V23.
7. Let V = {v1} ∪ V12 ∪ {v2} ∪ V23 ∪ {v3}.
8. Find q1 and q3 ∈ V such that {q1, p2, q3} is a subsequence of V .
9.1. If (p2 = q1 ∧ p2 6= q3) ∨ (p2 6= q1 ∧ p2 = q3) ∨ (p2 = q1 ∧ p2 = q3), then

apply Procedure 1 to compute an update of point p2 such that p2 6= q1 and
p2 6= q3.



9.2. Find a point p′2 ∈ ∂P2 such that

de(q1, p
′
2) + de(p′2, q3) = min{de(q1, p

′) + de(p′, q3) : p′ ∈ ∂P2}

10. Update set V by letting p2 = p′2.
11. Output V .

Note that in Steps 1.2 and 9.1, the updated point p2 depends on the chosen
value of ε. – The following algorithm is for the constrained TPP.

Algorithm 1

1. For each i ∈ {0, 1, . . . , k − 1}, let pi be a point on ∂Pi.
2. Let V = {p0, p1, . . . , pk−1}.
3. Calculate the perimeter L0 of the polygon, which has the set V of vertices.
4. For each i ∈ {0, 1, . . . , k − 1}, use Pi−1, Pi, Pi+1 (mod k) and Fi−1, Fi

(mod k) (note: these are the fences of Pi−1 and Pi, and Pi and Pi+1 (mod k),
respectively) as input for Procedure 3, to update pi and output a set Vi.

5. Let V1 = V and update V by replacing {pi−1, . . . , pi, . . . , pi+1} by Vi.
6. Let V = {q0, q1, . . . , qm}.
7. Calculate the perimeter L1 of the polygon, which has the set V of vertices.
8. If L1 − L0 > ε, then let L0 = L1, V = V1, and go to Step 4. Otherwise,

output the updated set V and (its) calculated length L1.

If a given constrained TPP is not a simplified constrained TPP, then we can
slightly modify Procedure 3: just replace “Procedure 2” in Step 5 of Procedure
3 by the algorithm in [24] on pages 639–641. In this way, Algorithm 1 will still
work also for solving a non-simplified constrained TPP locally.

3.2 Solution for the Watchman Route Problem

The algorithm for solving the simplified constrained TPP (or the “general” con-
strained TPP) implies the following algorithm for solving the simplified WRP
(or the “general” WRP).

Algorithm 2

We modify Algorithm 1 at two places:

1. Replace polygon “Pj” by segment “sj” in Steps 1 and 4, for j = i− 1, i,
or i + 1.

2. Replace “Fi−1, Fi (mod k)” (the fences of Pi−1 and Pi, and Pi and Pi+1,
all mod k, respectively) by the common polygon Π.

4 Proof of Correctness

A single iteration of a w-rubberband algorithm is a complete run through the
main loop of the algorithm. – Let Π be a simple polygon.



Definition 2. Let P = (p0, p1, p2, . . . , pm, pm+1) be a critical point tuple of Π.
Using P as an initial point set, and n iterations of the w-rubberband algorithm,
we get another critical point tuple of Π, say P ′ = (p′0, p

′
1, p

′
2, . . . , p

′
m, p′m+1). The

polygon with vertex set {p′0, p′1, p′2, . . . , p′m, p′m+1} is called an nth polygon of Π,
denoted by AESPn(Π), or (for short) by AESPn, where n = 1, 2, . . ..

Let p, q ∈ Π•. Let dESP (Π, p, q) be the length of the shortest path between
p and q inside of Π. Let AESPn(Π) be an nth polygon fully contained inside of
Π, where n ≥ 1. Let

AESP = lim
n→∞

AESPn(Π)

Let pi(ti0) be the i-th vertex of AESP , for i = 0, 1, . . ., or m + 1. Let

dESP i
= dESP (Π, pi−1, pi) + dESP (Π, pi, pi+1)

where i = 1, 2, . . ., or m. Let

dESP (t0, t1, . . . , tm, tm+1) =
m∑

i=1

dESP i

Fig. 6. Illustration for Definition 3.

Definition 3. Let s0, s1, s2, . . . sm and sm+1 be a sequence of segments fully
contained in Π and located around the frontier of a simple polygon Π, with points
pi ∈ ∂si (see Figure 6),1 for i = 0, 1, 2, . . ., m or m + 1. We call the m + 2
tuple (p0, p1, p2, . . ., pm, pm+1) a critical point tuple of Π. We call it an AESP
critical point tuple of Π if it is the set of all vertices of an AESP of Π.

Definition 4. Let

∂dESP (t0, t1, . . . , tm, tm+1)
∂ti

|ti=ti0 = 0

for i = 0, 1, . . ., or m+1. Then we say that (t00, t10, . . . , tm0, tm+10) is a critical
point of dESP (t0, t1, . . . , tm, tm+1).
1 Possibly, the straight segment pipi+1 is not fully contained in Π. In this case, replace

pipi+1 by the ESP(Π, pi, pi+1) between pi and pi+1, where i = 1, 2, . . ., or m.



Definition 5. Let P = (p0, p1, p2, . . . , pm, pm+1) be a critical point tuple of Π.
Using P as an initial point set and n iterations of the w-rubberband algorithm,
we calculate an n-w-rubberband transform of P , denoted by P

−−−−−−−−→
(w − r − b)nQ, or

P → Q for short, where Q is the resulting critical point tuple of Π, and n is a
positive integer.

4.1 A Correctness Proof for Algorithm 2

We provide mathematic fundamentals for our proof that Algorithm 2 is correct
for any input (see Theorem 5 below). At first we recall some basic definitions
and theorems from topology, using the book [25] as a reference for basic notions
such as topology, topologic space, compact, cover, open cover and so forth. The
following is the well-known Heine-Borel Theorem for En (see [25], Corollary 2.2
on page 128):

Theorem 3. A subset S of Rn is compact iff S is closed and bounded.

Now let X be a set, and let d be a metric on X ×X defining a metric space
(X, d), for example, such as the Euclidean space (Rn, d). A map f of a metric
space (X, d) into a metric space (Y, e) is uniformly continuous iff, for each ε > 0,
there is a δ > 0 such that e(f(x), f(y)) < ε, for any x, y ∈ X with d(x, y) < δ.
Another well-known theorem (see [25], Theorem 3.2, page 84) is the following:

Theorem 4. Let f be a map of a metric space (X, d) into a metric space (Y, e).
If f is continuos and X is compact, then f is uniformly continuous.

Now let s0, s1, s2, . . ., sm and sm+1 be a sequence of segments fully contained
in a simple polygon Π, and located around the frontier of Π (see Figure 6). We
express a point pi(ti) = (xi +kxi

ti, yi +kyi
ti, zi +kzi

ti) on si this way in general
form, with ti ∈ R, for i = 0, 1, . . ., or m + 1. In the following, pi(ti) will be
denoted by pi for short, where i = 0, 1, . . ., or m + 1.

Lemma 4. (t00, t10, . . . , tm0, tm+10) is a critical point of
dESP (t0, t1, . . . , tm, tm+1).

Proof. dESP (t0, t1, . . . , tm, tm+1) is differentiable at each point

(t0, t1, . . . , tm, tm+1) ∈ [0, 1]m+2

Because AESPn(Π) is an nth polygon of Π, where n = 1, 2, . . ., and

AESP = lim
n→∞

AESPn(Π)

it follows that
dESP (t00 , t10 , . . . , tm0 , tm+10)

is a local minimum of
dESP (t0, t1, . . . , tm, tm+1)

By Theorem 9 of [20], ∂dESP

∂ti
= 0, for i = 0, 1, 2, . . ., m + 1. ut



Let s0, s1 and s2 be three segments. Let pi(pi1 , pi2 , pi3) ∈ si, for i = 0, 1, 2.

Lemma 5. There exists a unique point p1 ∈ s1 such that

de(p1, p0) + de(p1, p2) = min{de(p′, p0) + de(p′, p2) : p′ ∈ ∂s2}

Proof. We transform the segment from the original 2D coordinate system into
a new 2D coordinate system such that s1 is parallel to one axis, say, the x-axis.
Then follow the proof of Lemma 16 of [20]. ut

Lemma 5 and Algorithm 2 define a function fw, which maps [0, 1]m+2 into
[0, 1]m+2. A point pi is represented as follows:

(ai1 + (bi1 − ai1)ti, ai2 + (bi2 − ai2)ti, ai3 + (bi3 − ai3)ti)

Then, following the proof of Lemma 5, we obtain

Lemma 6. Function t2 = t2(t1, t3) is continuous at each (t1, t3) ∈ [0, 1]2.

Lemma 7. If P
−−−−−−−−→
(w − r − b)1Q, then, for every sufficiently small real ε > 0, there

is a sufficiently small real δ > 0 such that P ′ ∈ Uδ(P ), and P ′−−−−−→(r − b)1Q′ implies
Q′ ∈ Uε(Q).

Proof. This lemma follows from Lemma 5; also note that Π has m+2 segments,
that means we apply Lemma 6 repeatedly, m + 2 times. ut

By Lemma 7, we have the following

Lemma 8. If P
−−−−−−−−→
(w − r − b)nQ, then, for every sufficiently small real ε > 0, there

is a sufficiently small real δε > 0 and a sufficiently large integer Nε such that
P ′ ∈ Uδε

(P ), and P ′−−−−−−−−−→(w − r − b)n′Q
′ implies that Q′ ∈ Uε(Q), where n′ is an

integer and n′ > Nε.

Lemma 9. Function fw is uniformly continuous in [0, 1]m+2.

Proof. By Lemma 8, fw is continuous in [0, 1]m+2. Since [0, 1]m+2 is a compact
and bounded set, by Theorem 4, fw is uniformly continuous in [0, 1]m+2. ut

By Lemma 9, we are now able to construct an open cover for [0, 1]m+2 as
follows:

1. For each ti ∈ [0,1]:
1.1. Let

P = (p0(t0), p1(t1), p2(t2), . . . , pm(tm), pm+1(tm+1))

be a critical point tuple such that p(ti) ∈ si, for i = 0, 1, 2, . . ., m + 1.



1.2. By Lemma 9, there exists a δ > 0 such that, for each Q ∈ Uδ(P ) ∩
[0, 1]m+2, it is true that fw(P ) = Q.

1.3. Let U ′
δ(P ) = Uδ(P ) ∩ [0, 1]m+2.

1.4. Let Sδ = {U ′
δ(P ) : ti ∈ [0, 1]}.

By Theorem 3, there exists a subset of Sδ, denoted by S′δ, such that, for each
t′i ∈ [0,1], and a critical point tuple

P ′ = (p′0(t
′
0), p

′
1(t

′
1), p

′
2(t

′
2), . . . , p

′
m(t′m), p′m+1(t

′
m+1))

there exists U ′
δ(P ) ∈ S′δ such that P ′ ∈ U ′

δ(P ). This proves the following:

Lemma 10. The number of critical points of

dESP (t0, t1, . . . , tm, tm+1)

in [0, 1]m+2 is finite.

Furthermore, in analogy to the proof of Lemma 24 of [20], we also have the
following:

Lemma 11. Π has a unique AESP critical point tuple.

Analogously to the proof of Theorem 11 of [20], we obtain

Theorem 5. The AESP of Π is the shortest watchman route of Π.

Corollary 1. For each ε > 0, the w-rubberband algorithm computes an approx-
imative solution ρ′ to a WRP such that |l(ρ′) − l(ρ)| < ε, where ρ is the true
solution to the same WRP.

Corollary 2. The WRP has a unique solution.

Obviously, Corollary 2 is a stronger result than Theorem 1.

4.2 Another Correctness Proof for Algorithm 2

Let P0, P1, . . . , Pk−1 be a sequence of simple polygons (not necessary convex).

Theorem 6. For the constrained TPP, the number of local minima is finite.

Proof. Let Fi be a fence of Pi and Pi+1 (mod k), for i = 0, 1, . . ., k - 1. For
each segment s, let ∂s = {p : p ∈ s} (i.e., ∂s = s). For each polygon P , let ∂P =
{p : p ∈ e ∧ e ∈ E(P )}, where E(P ) is the set of all edges of P . Let (as default)

k−1∏
i=0

∂Pi = ∂P0 × ∂P1 × · · · ∂Pk−1

For each pi ∈ ∂Pi, there exists a unique constrained ESP

ρ(piqi1qi2 · · · qimi
pi+1) ⊂ F •

i



such that qij
∈ V (Fi), where j = 0, 1, . . ., mi, mi ≥ 0 and i = 0, 1, . . ., k - 1.

For a set S, let ℘(S) be the power set of S. – We define a map f from

k−1∏
i=0

∂Pi to
k−1∏
i=0

℘(V (Fi))

such that

f : (p0, p1, . . . , pk−1) 7→
k−1∏
i=0

{qi1 , qi2 , . . . , qimi
}

In general, for a map g : A 7→ B let

Im(g) = {b : b ∈ B ∧ ∃ a [a ∈ A ∧ b = g(a)]}

For each subset B1 ⊆ B, let

g−1(B1) = {a : a ∈ A ∧ ∃ b [b ∈ B ∧ b = g(a)]}

Since V (Fi) is a finite set, Im(f) is a finite set as well. Let

Im(f) = {S1, S2, . . . , Sm} (m ≥ 1)

Then we have that

∪m
i=1f

−1(Si) =
k−1∏
i=0

∂Pi

In other words,
k−1∏
i=0

∂Pi

can be partitioned into m pairwise disjoint subsets

f−1(S1), f−1(S2), . . . , f−1(Sm)

For each constrained ESP

ρ(p0q01q02 · · · q0m0
p1 · · · piqi1qi2 · · · qimi

pi+1 · · · pk−1qk−11qk−12 · · · qk−1mk−1
p0)

there exists an index i ∈ {1, 2, . . . ,m} such that

(p0, p1, . . . , pk−1) ∈ f−1(Si)

and
k−1∏
i=0

{qi1 , qi2 , . . . , qimi
} ⊆ Si

On the other hand, analogously to the proof of Lemma 24 of [20], for each
f−1(Si), there exists a unique constrained ESP. – This proves the theorem. ut

By Theorems 6 and 1, we have a second and shorter proof for Corollary 2
which implies that Algorithm 2 computes an approximative and global solution
to a WRP.



5 Time Complexity

5.1 Constrained TPP

Lemma 12. Procedure 1 can be computed in O(|E(P1)|+ |E(P2)|) time.

Proof. Steps 1 and 5 only need constant time. Step 2 can be computed in time
O(|E(P1)| + |E(P2)|), Step 3 in time O(|E(P2)|), and Step 4 in time O(1).
Therefore, Procedure 1 can be computed in O(|E(P1)|+ |E(P2)|) time. ut

Lemma 13. Procedure 2 can be computed in O(|V (ρ(q1, F, q2))|) time.

Proof. Step 1 can be computed in O(|V (ρ(q1, F, q2))|) time. According to [22],
Step 2 can be computed in O(|V (ρ(q1, F, q2))|) time. By Lemma 3, Step 3 can
be computed in O(log |V (ρ(q1, F, q2))|) time. Steps 4 and 5 can be computed
in O(|V (ρ(t1, F, t2))|) time. Altogether, the time complexity of Procedure 2 is
equal to O(|V (ρ(q1, F, q2))|). ut

Lemma 14. Procedure 3 can be computed in time

O(|E(P1)|+ 2|E(P2)|+ |E(P3)|+ |E(F12)|+ |E(F23)|)

Proof. Step 1.1 requires only constant time. By Lemma 12, Steps 1.2 and 9.1
can be computed in time O(|E(P1)| + 2|E(P2)| + |E(P3)|). Steps 1.3 and 9.2
can be computed in O(|E(P2)|), and Steps 2 and 10 in O(1)) time. Steps 3–4
can be computed in time O(|E(F12)|). By lemma 13, Step 5 can be computed
in time O(|V (ρ(q1, F12, q2))|) = O(|V12|). Since |V12| ≤ |E(F12)|, Steps 3–5 can
be computed in O(|E(F12)|) time. Step 6 can be computed in O(|E(F23)|), and
Steps 7, 8 and 11 in O(|V12|) + O(|V23|) ≤ O(|E(F12)|) + O(|E(F23)|) time.

Therefore, Procedure 3 can be computed in

O(|E(P1)|+ 2|E(P2)|+ |E(P3)|+ |E(F12)|+ |E(F23)|)

time. This proves the lemma. ut

Lemma 15. Algorithm 1 can be computed in time κ(ε) · O(n), where n is the
total number of all vertices of the polygons involved.

Proof. Steps 1–3 can be computed in O(k) time. By Lemma 14, each iteration
in Step 4 can be computed in time

O(
k−1∑
i=0

(|E(Pi−1)|+ 2|E(Pi)|+ |E(Pi+1)|+ |E(Fi−1)|+ |E(Fi)|))

Steps 5 and 8 can be computed in O(k), and Steps 6 and 7 in O(|V |) time. Note
that

|V | ≤
k−1∑
i=0

(|V (Pi)|+ |V (Fi)|)



|V (Pi)| = |E(Pi)|, and |V (Fi)| = |E(Fi)|, where i = 0, 1, . . ., k − 1. Thus, each
iteration (Steps 4–8) in Algorithm 1 can be computed in time

O(
k−1∑
i=0

(|E(Pi−1)|+ 2|E(Pi)|+ |E(Pi+1)|+ |E(Fi−1)|+ |E(Fi)|))

Therefore, Algorithm 1 can be computed in

κ(ε) · O(
k−1∑
i=0

(|E(Pi−1)|+ 2|E(Pi)|+ |E(Pi+1)|+ |E(Fi−1)|+ |E(Fi)|))

time, where each index is taken mod k. This time complexity is equivalent to
κ(ε) · O(n) where n is the total number of vertices of all polygons. ut

Lemma 15 allows to conclude the following

Theorem 7. The simplified constrained TPP can be solved locally and approxi-
mately in κ(ε) ·O(n) time, where n is the total number of all vertices of involved
polygons.

At the end of this subsection, we finally discuss the case when the constrained
TPP is not simplified. In this case, we replaced “Procedure 2” in Step 5 of
Procedure 3 by the algorithm in [24] on pages 639–641. Then, by Lemma 2 and
the proof of Lemma 14, Steps 3–5 can still be computed in O(|E(F12)|) time,
and Step 6 can still be computed in O(|E(F23)|) time. All the other steps are
analyzed in exactly the same way as those in the proof of Lemma 14. Therefore,
the modified Procedure 3 has the same time complexity as the original procedure.
Thus, we have the following

Theorem 8. The constrained TPP can be solved locally and approximately in
κ(ε) · O(n) time, where n is the total number of vertices of involved polygons.

According to the following theorem, Theorem 8 is the best possible result in
some sense:

Theorem 9. ([13], Theorem 6) The touring polygons problem (TPP) is NP-
hard, for any Minkowski metric Lp (p ≥ 1) in the case of nonconvex polygons
Pi, even in the unconstrained (Fi = R2) case with obstacles bounded by edges
having angles 0, 45, or 90 degrees with respect to the x-axis.

5.2 Watchman Route Problem

We consider the time complexity of Algorithm 2 for solving the simplified watch-
man route problem.

Lemma 16. Consider Procedure 3. If Pi is an essential cut, for i = 1, 2, 3, and
F12 = F23 = Π, then this procedure can be computed in time O(|V (ρ(v1,Π, v3))|),
where vi is the defining vertex of the essential cut Pi, for i = 1, 3.



Proof. Step 1.1 requires constant time only. By Lemma 12, Steps 1.2 and 9.1 can
be computed in O(|E(P1)|+2|E(P2)|+ |E(P3)|) = O(1) time. Steps 1.3 and 9.2
can be computed in O(|E(P2)|) = O(1) time. Steps 2 and 10 can be computed
in constant time. Steps 3–4 can be computed in time O(|E(ρ(v1,Π, v2))|), where
vi is the defining vertex of the essential cut Pi, for i = 1, 2.

By Lemma 13, Step 5 can be computed in O(|V (ρ(v1,Π, v2))|) time. Thus,
Steps 3–5 can be computed in O(|V (ρ(v1,Π, v2))|) time. Analogously, Step 6
can be computed in time O(|V (ρ(v2,Π, v3))|), where vi is the defining vertex of
the essential cut Pi, for i = 2, 3.

Steps 7, 8 and 11 can be computed inO(|V (ρ(v1,Π, v2))|)+O(|V (ρ(v2,Π, v3))|)
= O(|V (ρ(v1,Π, v3))|) time. Therefore, the time complexity of Procedure 3 is
equal to O(|V (ρ(v1,Π, v3))|). ut

Lemma 17. Consider Algorithm 1. If Pi is an essential cut, and Qi = Π, for
i = 0, 1, . . ., k− 1, then this algorithm can be computed in time κ(ε) · O(n + k),
where n is the number of vertices of Π, and k the number of essential cuts.

Proof. Steps 1–3 can be computed in O(k) time. By Lemma 16, each iteration
in Step 4 can be computed in time

O(
k−1∑
i=0

(|V (ρ(vi−1,Π, vi+1))|))

where vi is the defining vertex of the essential cut Pi, for i = 0, 1, . . ., k − 1.
This time complexity is actually equivalent to O(|V (Π)|). Steps 5 and 8 can be
computed in O(k), and Steps 6 and 7 in O(|V |) time. Note that |V | ≤ k+|V (Π)|,
and |V (Pi)| = 2, where i = 0, 1, . . ., k − 1, and

∑k−1
i=0 (|V (ρ(vi−1,Π, vi+1))|) =

2|E(Π)| = 2|V (Π)|. Thus, each iteration (Steps 4–8) in Algorithm 1 can be
computed in time O(n + k). Therefore, Algorithm 1 can be computed in time
κ(ε) · O(n + k), where n is the total number of vertices of Π, and k the number
of essential cuts. ut

Lemma 17 allows to conclude the following

Theorem 10. The simplified WRP can be solved approximately in κ(ε)·O(n+k)
time, where n is the number of vertices of polygon Π, and k the number of
essential cuts.

If the WRP is not simplified, then we have the following

Lemma 18. Consider Algorithm 1. If Pi is an essential cut, and Fi = Π, for
i = 0, 1, . . ., k − 1, then this algorithm can be computed in κ(ε) · O(kn) time,
where n is the number of vertices of Π, and k the number of essential cuts.

Proof. Steps 1–3 can be computed in O(k) time. By Lemma 16, each iteration
in Step 4 can be computed in

O(
k−1∑
i=0

(|E(Pi−1)|+ 2|E(Pi)|+ |E(Pi+1)|+ |E(Fi−1)|+ |E(Fi)|))



time, what is equivalent to the asymptotic classO(k|E(Π)|), because of |E(Pi−1)|
= |E(Pi)| = |E(Pi+1)| = 1 and |E(Fi−1)| = |E(Fi)| = |E(Π)| = |V (Π)|. Steps
5 and 8 can be computed in O(k), and Steps 6 and 7 in O(|V |) ≤ |V (Π)| time.

Thus, each iteration (Steps 4–8)) in Algorithm 1 can be computed in O(kn)
time. Therefore, Algorithm 1 can be computed in κ(ε) · O(kn) time, where n is
the total number of vertices of Π, and k the number of essential cuts. ut

6 Conclusions

Lemma 18 and Theorem 8 allow to conclude the following

Theorem 11. The general WRP can be solved approximately in κ(ε) · O(kn)
time, where n is the number of vertices of polygon Π, and k the number of
essential cuts.

The subprocesses of Algorithms 1 and 2 (as typical for rubberband algorithms
in general) are also numerically stable. The proposed algorithms can be recom-
mended for optimization of visual inspection programs.
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