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Abstract. Disparity map generation is a significant component of
vision-based driver assistance systems. This report describes an efficient
implementation of a belief propagation algorithm on GPUs that can
be used to speed up stereo image processing. For evaluation purposes,
different kinds of images have been used: reference images from the
Middlebury stereo website, and real-world stereo sequences, self-recorded
with the research vehicle of the .enpeda.. project at The University of
Auckland.

1 Introduction

The generation of accurate disparity maps for pairs of stereo images is
a well-studied subject in computer vision, and is also a major subject in
vision-based driver assistance systems (DAS). Within the .enpeda.. project,
stereo analysis is used to ensure a proper understanding of distances to potential
obstacles (e.g., other cars, people, or road barriers). Recent advances in stereo
algorithms involve the use of Markov random field (MRF) models; however, this
leads to NP-hard energy minimization problems. Using graph cut (GC) or belief
propagation (BP) techniques allows us to generate approximate solutions with
reasonable computational costs [4].

Implementations of global methods such as GC or BP often generate disparity
maps that are closer to (if available) the ground truth than implementations of
local methods (e.g., correlation-based algorithms). Obviously, global methods
take more time for generating the stereo results [14]. Ideally, one wants to
combine the accuracy achieved via global methods with the running time of local
methods. One option towards achieving this goal is to speed up, for example,
a BP implementation without losing accuracy, by taking advantage of the high
performance capabilities of Graphic Processing Units (GPUs); available on most
personal computing platforms today.

This report describes a General Purpose GPU (GPGPU) implementation of
the BP algorithm using the NVIDIA Compute Uniform Device Architecture
(CUDA) language environment. The contemporary graphics processor unit
(GPU) has huge computation power and can be very efficient for performing
data-parallel tasks [7]. GPUs have recently also been used for many non-graphical
applications [8] such as in Computer Vision. OpenVIDIA [6] is an open source



package that implements different computer vision algorithms on GPUs using
OpenGL and Cg. Sinha et al [15] implemented a feature based tracker on the
GPU. SiftGPU [18] implements the SIFT descriptor on the GPU. Recently,
Vineet [16] implemented a fast graph cut algorithm on the GPU. The GPU,
however, follows a difficult programming model that applies a traditional
graphics pipeline. This makes it difficult to implement general graph algorithms
on a GPU.

[9] reports about BP on CUDA. However, that paper does not mention any
details about their implementation of BP on CUDA. This report explains the
implementation details clearly. We then go on to detail important pre-processing
steps that can be done to improve results on real-world data (with real-world
noise).

The report is structured as follows. Section 2 specifies the used processors and
test data. Section 3 describes the CUDA implementation of the BP algorithm.
Section 4 presents the experimental results. Some concluding remarks and
directions for future work are given in Section 5.

2 Used Processor and Test Data

We use either a normal PC (Intel Core 2 Duo CPU running at 2.13 GHz and
3 GB memory) or a GPU on an XPS machine. GPUs are rapidly advancing
from being specialized fixed-function modules to highly programmable and
parallel computing devices. With the introduction of the Compute Unified
Device Architecture (CUDA), GPUs are no longer exclusively programmed using
graphics APIs. In CUDA, a GPU can be exposed to the programmer as a
set of general-purpose shared-memory Single Instruction Multiple Data (SIMD)
multi-core processors, which have been studied since the early 1980s; see [11]. The
number of threads, that can be executed in parallel on such devices, is currently
in the order of hundreds and is expected to multiply soon. Many applications
that are not yet able to achieve satisfactory performance on CPUs may have
benefit from the massive parallelism provided by such devices.

2.1 Compute Unified Device Architecture

General purpose programming on graphics processing units (GPGPU) tries to
solve a problem by posing it as a graphics rendering problem, restricting the
range of solutions that can be ported to the GPU [16]. The GPU memory
layout is optimized for graphics rendering. This restricts GPGPU solutions to be
possibly not available for optimal data structures. The GPGPU model provides
limited autonomy to individual processors. Creating efficient data structures
using the GPU memory model is a challenging problem in itself [12]. The
available memory on a GPU is another restricting factor. A single data structure
on the GPU cannot be larger than the maximum texture size supported by it.
Compute Unified Device Architecture (CUDA) is a programming interface
that uses the parallel architecture of NVIDIA GPUs for general purpose
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Fig. 1. CUDA Hardware Model for NVIDIA GeForce GTX 280.

computing. CUDA produces a set of library functions as extensions of the C
language. A compiler generates executable code for the CUDA device. The CPU
sees a CUDA device as a multi-core co-processor. All memory available on the
device can be accessed using CUDA with no restrictions on its representation
though access times vary for different types of memory. This enhancement in the
memory model allows programmers to better exploit the parallel power of the
GPU for general purpose computing.

CUDA Hardware Model. At the hardware level, the GPU is a collection
of multiprocessors, with several processing elements (PEs) in each of them
(Figure 1) [13]. For example, the NVIDIA GeForce GTX 280 has 30
multiprocessors, each with 8 processing elements. Each multiprocessor has 16
KB of common shared memory accessible to all PEs inside of it. It also has
a set of 32-bit registers, texture, and constant memory caches. All PEs in all
multiprocessors execute the same instruction at a given cycle. Each PE can
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Fig. 2. CUDA Programming Model for NVIDIA GeForce GTX 280.

operate on its own data, which identifies each multiprocessor to be of SIMD
architecture. Communication between multiprocessors is only through the device
memory, which is available to all the PEs of all the multiprocessors. The PEs
of a multiprocessor can synchronize with one another, but there is no direct
synchronization mechanism between the multiprocessors.

CUDA Programming Model. For the programmer, the CUDA consists of
a collection of threads running in parallel. A warp is a collection of threads
that are scheduled for execution simultaneously on a multiprocessor. The warp
size is fixed for a specific GPU. The programmer can select the number of
threads to be executed. If the number of threads is more than the warp size,
they are time-shared internally on the multiprocessor. A collection of threads,
called a block, runs on a multiprocessor at a given time. Multiple blocks can be
assigned to a single multiprocessor for time-shared execution. They also divide
the common resources like registers and shared memory equally among them. A
single execution on a device generates a number of blocks. The collection of all
blocks in a single execution is called a grid (Figure 2).

Each thread and block is given a unique ID that can be accessed within the
thread during its execution. All threads of the grid execute a single program
called the kernel. The kernel is the core code to be executed on each thread.



Using the thread and block IDs, each thread can perform the kernel task on
different data. Since the device memory is available to all the threads, which can
access any memory location.

The CUDA programming interface represents a Parallel Random Access
Machine (PRAM) architecture if one uses the device memory alone. The
performance improves with the use of shared memory which can be accessed
in a single clock cycle. In contrast, the global or device memory access takes
200-400 cycles [13].

Read-only texture memory, optimized for 2D texture, fetch and constant
memory assigned by the CPU are also available. Their access is slow but the
internal caching mechanism reduces the effective access times for coherent access.
The hardware architecture allows multiple instruction sets to be executed on
different multiprocessors. The current CUDA programming model, however,
cannot assign different kernels to different multiprocessors, though this may be
simulated using conditionals.

The NVIDIA GeForce GTX 280 graphics card has 1 GB memory. Large
images can reside in this memory, given a suitable representation. The problem
needs to be partitioned appropriately into multiple grids for handling even larger
images and graphs.

2.2 Used Test Data

To evaluate our accelerated BP algorithm, different kinds of images have been
used: a stereo pair of Tsukuba from the Middlebury Stereo website (Figure 3),
and real-world stereo sequences, which are captured with HAKA1 (Figure 4), a
research vehicle of the .enpeda.. project at The University of Auckland [3].

3 Implementation of Belief Propagation

Our GPU implementation is based on the “multiscale” BP algorithm presented
by Felzenszwalb and Huttenlocher [4]. If run on the original stereo images, it

Fig. 3. Tsukuba stereo pair [14].



Fig. 4. Real image pair captured by HAKATL.

produces a promising result on high-contrast images such as Tsukuba, but the
effect is not very satisfying for real-world stereo pairs; [10] shows a way (i.e., Sobel
preprocessing) how to improve in the latter case, and [17] provides a general
study (i.e., for the use of residual input images).

3.1 Belief Propagation Algorithm

Solving the stereo analysis problem is basically achieved by pixel labeling: The
input is a set P of pixels (of an image) and a set L of labels. We need to find a
labeling

fiP—1L (1)

(possibly only for a subset of P). Labels are, or correspond to disparities which
we want to calculate at pixel positions. It is general assumption that labels should
vary only smoothly within an image, except at some region borders. A standard
form of an energy function, used for characterizing the labeling function f, is (see
[1]) as follows:

E(f) =Y Dyf)+ D Vfsr—fo)s 2)

peP (p,g)€A

D,(fp) is the cost of assigning label f, to pixel p, and the discontinuity term
V(fp — fq) is the cost of assigning labels f, and f; to adjacent pixels p and g¢.
Since we aim at minimizing the energy, this approach corresponds to the
Maximum A-Posteriori (MAP) estimation problem. In the stereo vision case, the
data cost D,(f,) may be defined by the difference in intensities between pixels
in left and right image defined to be ‘corresponding’ when applying disparity f,,.
The discontinuity cost V' (f, — f;) increases as the difference between f, and f,
increases. The goal is to find the disparity image that minimizes the total energy
E(f). This problem is equivalent to finding the maximum a posteriori (MAP)



estimator of a MRF [4], so an approximate solution can be found using the loopy
BP algorithm that is used for inference on MRFs.

The BP algorithm is defined by iterations of passing a message around in the
image grid. Typically, 4-adjacency is assumed. The message update schedule is in
each iteration, and messages pass from node to node in parallel. Then the values
in the received messages and the data costs are used to compute the messages to
send in the next iteration. Each message is represented as an array, which size
is determined by the maximum disparity. After all the iterations are complete,
the data costs and the values for each label in the messages are used to retrieve
the estimated disparity at each pixel.

As a global stereo algorithm, BP always produces good results (in relation
to input data !) when generating disparity images, but also has a higher
computational time than local stereo methods. Sometimes we require many
iterations to ensure convergence of the message values, and each iteration takes
O(n?) running time to generate each message where n corresponds to the number
of possible disparity values (labels). In [5], Felzenszwalb and Huttenlocher
present the following methods to speed up the BP calculations.

First, a red-black method is provided. Pixels are divided in being either black
or red, at iteration ¢, messages are sent from black pixels to adjacent red pixels;
based on received messages, red pixels sent at iteration ¢ + 1 messages to black
pixels, and thus the message passing scheme adopts a red-black method, which
allows us that only half of all messages are updated at a time. (Such a red-black
technique is also used for Gauss-Seidel relaxations. A Gauss-Seidel relaxation
attempts to increase the convergence rate by using values computed for the kth
iteration in subsequent computations of the kth iteration.)

The coarse-to-fine algorithm provides a second method for speeding up BP,
and is useful to achieve more reliable results. In the coarse-to-fine method, a
common data pyramid is used: Nodes in one 2 x 2 array in one layer are also
adjacent to one node in the next layer. All 2™ x 2™ pixels at the bottom layer
are connected this way with a single node at top layer m. Using such a pyramid,
long distances between pixels are shortened, this makes message propagation
more efficient. This increases the reliability of calculated disparities and reduces
computation time without decreasing the disparity search range.

3.2 Belief Propagation on CUDA

BP algorithms have been implemented on the GPU in the past several years:
[2] and [19] describe GPU implementations of BP on a set of stereo images.
However, each of these implementations use a graphics API rather than CUDA.
Grauer-Gray [9] had implemented BP using CUDA, but did not discuss possible
improvements for real-world stereo pairs which always accompany various types
of noise, such as different illumination in left and right image, which causes BP
to fail.

In our CUDA BP implementation, we define four kernel functions on GPUs
to implement the generation of disparity images with the BP algorithm. The first
kernel is calculating the data cost in parallel, then another function is used to



Fig. 5. Tile apron.

implement the Gaussian pyramid for five levels. The third one is for computing
messages with 7 iterations, and finally we define the last kernel function for the
output of the disparity image. In the implementation of computing messages,
which takes most of the time, a pixel is processed by one thread in the block. For
the Tsukuba images, where the size equals 384 x 288, 5 x 5 pixels are computed
at the same time in one block with 7 x 7 threads in each. The blocks in the
kernel function (a grid) are dependent on the level of computing. For the first
level, 77 x 58 blocks are used, and 39 x 29 in the second level.

In detail, the implementation contains the following steps:

1. Allocate memory on the global memory of GPUs for stereo pairs, data cost
and messages with the messages initialized by zero.

2. Load left and right images to the host, and smooth with a Gaussian filter of
o = 0-7 before computing the data costs, then transport data from host to
GPUs.

3. Compute data cost. After that we call the first kernel function to calculate
the data cost Dy, with r blocks (number of rows which is 288 for the Tsukuba
image) and s threads (which is the number of columns plus maximum
disparity, i.e., 400 for Tsukuba) in each block. Each block in the GPU
contains automatically synchronized threads. Maximum disparity is 16 for
the Tsukuba image. For improving the speed, all pixels in each row are
processed in parallel. When calculating cost of each pixel, 16 more threads
are needed for each row. In this kernel, we just use 288 cycles instead of
384 x 288 cycles on a CPU.

4. Calculate the data pyramid in parallel with the second kernel function. We
employ five levels in the data pyramid to compute the messages and obtain
Dy to Dy,_q here.

5. Implement BP algorithm from coarse to fine in five levels with the third
kernel function. Here we divide the data cost D, to a series of tiles which



Fig. 6. Residual images of a scene recorded with HAKA1.

size is k x j (which are the pixels we calculate in one block, i.e., 5 x 5 for
Tsukuba), so that the smaller tile can be cached to the shared memory of
the block (shown in Figure 5). As this can not be synchronized for different
blocks, we must transport more pixels (which we name apron here, and those
are 7 x 7 for Tsukuba) for calculation messages with BP. After receiving
message for every pixel in parallel, we send them to adjacent pixels using
the current message values and data costs. Finally, we obtain messages at
the highest level.

6. Get the disparity image using the last kernel function. Retrieve the estimated
disparity map by finding, for each pixel in a block, the disparity that
minimizes the sum of the data costs and message values.

7. Last step: transport the disparities from the GPU back to the host.

For a stereo pair sequence, we just need to allocate memory on the GPU (Step
1) once for the first pair, and set all that memory to zero after transporting the
result back to the host. Then we can process the next stereo pair beginning at
Step 2, which will save more time. All of these steps have also been implemented
in [9], but the details of computing data costs or updating messages in parallel are
not made clear in [9]. In comparison, we also achieved a faster implementation.

Compared to high-contrast indoor images such as the Tsukuba stereo pair,
real-world images contain various types of noise, such as changes in lighting,
out-of-focus lenses, differing exposures, and so forth. So we take two alternative
measures to remove this low frequency noise, the first one is using the Sobel edge
operator before BP [10], and another method is using the concept of residuals,
which is the difference between an image and a smoothed version of itself [17].
The residuals of real-world images are shown in Figure 6.

4 Experimental Results

The BP algorithm that was implemented in CUDA is based on the algorithm
introduced in [5] and the resulting GPU-based disparity images were validated



Fig. 7. Upper left: disparity image for the Tsukuba stereo pair. Results for a HAKA1
sequence: disparity image for the original stereo pair (upper right), disparity image
after applying a Sobel operator (lower left), disparity image calculated for the mean
residual stereo pair (lower right).

to be nearly identical with the sequential version. Figure 7 shows the results of
running the implementation on two stereo pairs of images. The Tsukuba stereo
images are 384 x 288 with Tyatq = 150, Tyyise = 1-7, A = 0-07, and the disparity
space runs from 0 to 15. We use r = 288 blocks and s = 400 threads per block for
computing data cost, and calculate 5 x 5 pixels in BP (Step 5) using 7 x 7 pixels.
The real-world images recorded with HAKA1 are 640 x 480 with an assumed
maximum disparity of 32 pixels. We use r = 480 x 2 blocks with s = 320 + 32
threads per block, and calculate 3 x 3 pixels in BP (Step 5) using 5 x 5 pixels.
(to keep within physical limits of the 280 GTX). The parameters are Ty,tq =
300, Tyise = 11:0, and A = 0-:033. The BP implementations of both stereo pairs
uses 5 levels, and 7 iterations per level.

We test the speed of belief propagation on the NVIDIA Geforce GTX 280
with CUDA and a normal PC. The normal PC is an Intel Core 2 Duo CPU
running at 2:13 GHz and 3 GB memory. The CPU implementation runs 32-42
seconds on the normal PC for the Tsukuba stereo pair, while the running time
using CUDA is 0-127 seconds when the time to transfer image data to the GPU



and the disparity values back to the host is included, and 0-081 milliseconds
when the transfer time is not included. The time of real-world images (Figure 4)

Fig. 8. Upper left: original image captured by HAKA1. Upper right: disparity image
for the original stereo pair. Middle left: stereo pair after Sobel operator. Middle right:
disparity image after applying a Sobel operator. Lower left: stereo pair after residual.
Lower right: disparity image calculated for the mean residual stereo pair.



running on normal PC is 93-98 seconds, compared with 2-75 seconds using CUDA
implementation, and its running time without transfer time is 0-115 seconds.

Fig. 9. Upper left: original image captured by HAKA1. Upper right: disparity image
for the original stereo pair. Middle left: stereo pair after Sobel operator. Middle right:
disparity image after applying a Sobel operator. Lower left: stereo pair after residual.
Lower right: disparity image calculated for the mean residual stereo pair.



5 Conclusions

We have implemented the belief propagation algorithm (applied to stereo vision)
on programmable graphics hardware, which produces fast and accurate results.
We have included full details on how to run and implement belief propagation on
CUDA. We divided the stereo pairs to a lattice in order to suit the architecture
of a GPU. Results for real images (shown in the upper right image of Figure 7)
are not satisfying as on high-contrast indoor images (shown in the upper left
image of Figure 7). Resulting disparity images improve by using either the
Sobel edge operator or residual images as input, as suggested elsewhere. We
still aim at a better speed improvement to achieve real-time processing in
driver-assistance applications; we will continue optimizing the implementation
of the BP algorithm, possibly by utilizing an initialization using Dynamic
Programming Stereo on CUDA. Also, exploiting the texture memory has not
yet been discussed, and this is an idea for future improvements.
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Some Useful Links and Notes

Links

1. CUDA, Supercomputing for the Masses. http://www.ddj.com/cpp/207200659
2. CUDA Zone. http://www.nvidia.com/object/cuda_home.html
3. CUDA Stereo. http://www.cs.unc.edu/~gallup/stereo-demo/

Useful Notes

1. The maximum size of shared memory we can use in a block is only 64 KB
(64 x 64 float data).

2. When we compute messages during BP on the GPU, the maximum number
of pixels which can be processed in a block depends on the maximum
disparity of the stereo pairs.



