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Abstract. Applying computer technology, such as computer vision in
driver assistance, implies that processes and data are modeled as be-
ing discretized rather than being continuous. The area of stereo vision
provides various examples how concepts known in discrete mathematics
(e.g., pixel adjacency graphs, belief propagation, dynamic programming,
max-flow/min-cut, or digital straight lines) are applied when aiming for
efficient and accurate pixel correspondence solutions. The paper reviews
such developments for a reader in discrete mathematics who is interested
in applied research (in particular, in vision-based driver assistance). As
a second subject, the paper also discusses lane detection and tracking,
which is a particular task in driver assistance; recently the Euclidean
distance transform proved to be a very appropriate tool for obtaining a
fairly robust solution.
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1 Vision-Based Driver Assistance

Driver assistance systems (DAS) are developed to (i) predict traffic situations,
(ii) adapt driving and car to current traffic situations, and (iii) optimize for
safety. Vision-based DAS applies one or multiple cameras for understanding the
environment, to help achieve goals (i-iii).

After specifying a processing model, possibly in continuous space, any spec-
ification for its algorithmic use will depend on discrete mathematical models,
such as numerical algorithms [13], or concepts in discrete mathematics such as
adjacency sets A(p) of pixels p, digital straight lines, or distance transforms,
which are examples from digital geometry [14]. Typically, continuous models are
used in motion analysis up to the moment when mapping those concepts into
algorithms, but matching techniques for multi-ocular vision typically already
start with a discrete model.

This paper is organized as follows: Section 2 describes techniques applied
in binocular correspondence analysis, followed by Section 3 with (further) illus-
trations of matching results in vision-based DAS. Lane detection via distance
transform is the subject of Section 4. A few conclusions are given in Section 5.
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2 Stereo Algorithms

Stereo algorithms are designed for calculating pairs of corresponding pixels in
concurrently recorded images. After calibration and rectification [6], images L
(left) and R (right) are in standard stereo geometry (i.e., parallel optical axes,
coplanar image planes, aligned image rows), defined on pixels of an M ×N grid
Ω. See Figure 1; the third view has been used in [17] for prediction error analysis.

Thus, stereo pixel correspondence is basically a 1D search problem, com-
pared to motion pixel correspondence (e.g., [10]) which is a continuous 2D search
problem. Two corresponding pixels pL = (x, y) and pR(x−∆(x, y), y) identify a
disparity ∆(x, y) which defines the depth bf/∆(x, y), where b is the base distance
between both focal points, and f is the uniform focal length of both cameras
(after rectification). However, the search should also account for disparity con-
sistency between adjacent scan lines (e.g., between rows y, y − 1, and y + 1).

2.1 Data and Continuity Terms

This stereo matching problem is an instance of a general pixel labeling problem:
given is a finite set L of labels l, h, . . .; define a labeling ∆ which assigns to each
pixel p ∈ Ω (in the base image; we assume L to be the base image) a label
∆p ∈ L. Consider a data term of penalties Dp(∆p) for assigning label ∆p to
pixel p. The simplest data term is given by Dx(l) = |L(x, y)− R(x− l, y)|b, for
a fixed row y, 1 ≤ x ≤ M , and b either 1 or 2, assuming that image pairs are
photo-consistent (i.e., corresponding pixels have about the same value).

[7] compares various data terms within a the-winner-takes-all strategy: for
each pixel p = (x, y) in the left image, a selected data term is applied for all
potential matches q = (x − l, y) in the right image, for l ≥ 0; that l is taken
as disparity which defines a unique (within the whole row) minimum for this
cost function; if there is no such unique global minimum then the disparity at
p remains undefined. – For example, results in [7] indicate that the census cost
function seems to be very robust (w.r.t. image data variations) in general.

Fig. 1. One time frame of image sequences taken with three cameras (called: third, left,
and right camera - from left to right) installed in HAKA1, test vehicle of the .enpeda..
project. Note the reflections on the windscreen, and differences in lightness (e.g., image
of right camera is brighter than the other two). Left and right views are rectified.
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The minimization of the following energy (or: cost) functional E defines a
basic approach for solving the stereo matching problem:

E(∆) =
∑
p∈Ω

Dp(∆p) +
∑

q∈A(p)

C(∆p, ∆q)

 (1)

This functional combines a data term with a continuity term C(∆p, ∆q), which
is often simplified to a unary symmetric function C(|∆p − ∆q|), for assigning
labels ∆q to adjacent pixels q ∈ A(p). Further terms may be added (e.g., for
occlusion, or ordering constraint). The continuity term assumes that projected
surfaces are piecewise smooth (i.e., neighboring pixels represent surface points
which are at about the same distance to the cameras). A convex function C
supports efficient global optimization, but leads to oversmoothed results [11].

Common choices for a unary continuity function are either a simple step
function (Pott’s model), a linear function, or a quadratic function, where the
latter two need to be truncated for avoiding oversmoothing. A simple choice is
also a two-step function, which penalizes small disparity changes at adjacent
pixels with a rather low weight (to allow for slanted surfaces), but penalizes
larger disparity changes with a higher weight.

Finding a global minimum∆, which minimizes the energy in Equation (1), as-
suming a continuity function which is not enforcing some kind of over-smoothing,
is an NP-hard problem; see [15]. Purely local matching strategies (e.g., hierar-
chical correlation based methods) failed to provide reasonable approximate solu-
tions. Strategies favored recently follow some semi-global optimization scheme.

2.2 Semi-Global Paradigms for Sub-Optimal Solutions

Basically, current stereo algorithms follow one of the following three paradigms:
scanline optimization often implemented by (DP) dynamic programming [18],
(BP) belief propagation [3], or (GC) graph-cut [15]. These paradigms aim at
finding a sub-optimal solution to the stereo matching problem.

SGM using Scanline Optimization. Semi-global matching (SGM) is com-
monly identified with applying scanline optimization along several digital rays,
all incident with the start pixel p in the base image [9]. Original dynamic pro-
gramming stereo [18] was defined for energy minimization along a single scan
line. Assume that row y remains constant; matching aims at minimizing

Em(∆) =
m∑
x=1

Dx(∆x) +
∑

x̂∈A(x)

C(∆x, ∆x̂)

 with E(∆) = EM (∆) (2)

Value m defines the stage of the dynamic optimization process; when arriving
at stage m we have assignments of labels ∆x, for all x with 1 ≤ x < m (possibly
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Fig. 2. Left: streaks in a single-line DP result (for left and right image as shown in
Figure 1). Right: visible search line patterns in the calculated depth map for 8-ray DP
using mutual information as cost function (also known as SGM MI).

excluding pixels close to the left border of the left image), and we have not yet
assignments for x ≥ m; we select ∆m by taking that l ∈ L which minimizes

Dm(l) + C(l,∆m−1) + Em−1(∆) (3)

(Obviously, the term Em−1(∆) can be deleted for the minimization task.) At
m = 1 we only have ∆1 = 0, for m = 2 we may decide between l = 0 or l = 1,
and so forth. When arriving at stage x = M , we have an optimized value E(∆)
(modulo the applied DP strategy); we identify the used labels for arriving at
this value by backtracking, from x = M to x = M − 1, and so forth.

Dynamic programming propagates errors along the used digital line; here,
this occurs along image rows, from left to right, resulting in horizontal streaks
in the calculated depth map. Disparities in adjacent pixels of the same line, or
in adjacent rows may be used to define a continuity term in the used energy
function for reducing this streak effect. A further option is to combine forward
DP also with the following backward DP strategy:

Em(∆) =
M∑
x=m

Dx(∆x) +
∑

x̂∈A(x)

C(∆x, ∆x̂)

 with E(∆) = E1(∆) (4)

where ∆m is selected as that l ∈ L which minimizes

Dm(l) + C(l,∆m−1) + Em−1(∆) + C(l,∆m+1) + Em+1(∆) (5)

(Em−1(∆) and Em+1(∆) can be ignored again.) Obviously, this requires to pro-
ceed up to x = m with ‘normal’ DP both from left and from right, then combining
values along both digital rays into one optimized value ∆m at x = m follow-
ing Equation (5). This increases the time complexity, compared to the simple
approach in Equation (3), and time-optimization is an interesting subject.

This double-ray approach was generalized to optimization along multiple
digital rays [9], thus approximating the global (NP-complete; see above) solution.
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For a digital ray in direction a, processed between image border and pixel p,
consider the segment p0p1 . . . pna of that digital ray, with p0 on the image border,
and pna = p; the energy contribution along that ray at pixel p is defined via
scanline optimization as in Equation (3). All used digital rays a (ending at p) are
assumed to have identical impact; the label at pixel p is obtained by generalizing
Equation (5); we assign that disparity l which minimizes

Dp(l) +
∑
a

[C(l,∆na−1) + Ena−1(∆)] (6)

Labeling ∆ in Equation (6) obtains thus a further value ∆p at pixel p. Again,
all those Ena−1(∆) can be deleted for minimization, and algorithmic time opti-
mization (say, scanline optimization along all lines at first, and then combining
results) leads to a feasible solution. [8] also includes a second-order prior into
the used energy function.

Belief Propagation. Belief propagation is a very general way to perform prob-
abilistic inference; the BP stereo matching algorithm in [3] passes messages (the
“belief” which is a weight vector for all labels) around in a 4-adjacency image
grid. Message updates are in iterations; messages are passed on in parallel, from
a pixel to all of its 4-adjacent pixels. At one iteration step, each pixel of the ad-
jacency graph computes its message based on the information it had at the end
of the previous iteration step, and sends its (new) message to all the adjacent
pixels in parallel.

Letmi
q→p denote the message send from pixel q to adjacent pixel p at iteration

i, defined for all l ∈ L as follows:

mi
q→p(l) = min

h∈L

C(h, l) +Dq(h) +
∑

r∈A(q)\p

mi−1
r→q(h)

 (7)

l is just one of the |L| possible labels at p, and h runs through L and is again just
a possible label at q. We accumulate at p a vector of length |L| of all messages
received from all q ∈ A(p), and this contains at its position l ∈ L the following:

Dp(l) +
∑

q∈A(p)

mi
q→p(l) (8)

Besides Dp(l), we also have the sum of all the received message values for l ∈
L. Instead of passing on vectors of length |L|, a belief propagation algorithm
typically uses |L| message boards of the size of the images, one board for each
label l. At the end of an iteration t, that disparity with minimum cost is selected
as being the result for pixel p ∈ Ω.

BP fails in cases of photometric inconsistencies between left and right image;
[5] showed that some edge preprocessing of both images is of benefit, and [19]
performed a systematic study which shows the residual images (rather than orig-
inal input images) carry the important information for correspondence analysis.



6 Reinhard Klette, Ruyi Jiang, Sandino Morales, and Tobi Vaudrey

Fig. 3. Left: BP result (for left and right image as shown in Figure 1). Right: GC
result.

Graph-Cut. Consider 4-connected pixels of the base image; this defines an
undirected graph (Ω,A) with nodes Ω and edges A. Assume two additional
nodes s and t, called source and sink, respectively, with directed edges from s
to all the nodes in Ω, and from those nodes to t. This defines altogether an
undirected graph G = (Ω ∪ {s, t}, A ∪ {s} ×Ω ∪Ω × {t}). Edges in this graph
are weighted by w(p, q) (continuity values to undirected edges and data values
to undirected edges), also called capacities.

An (s, t)-cut of G is a partition of Ω∪{s, t} into subsets S and S, with s ∈ S
and t ∈ S. The energy E(S) of such an (s, t)-cut is the sum of all weights of
edges connecting S with S:

E(S) =
∑

p∈S,q∈S,{p,q}∈A

w(p, q) (9)

A minimum (s, t)-cut is an (s, t)-cut with minimum energy. Ford and Fulkerson
(see [4]) proved that the calculation of a minimum cut is equivalent to the calcu-
lation of a maximum flow; the calculation of a min-cut is commonly implemented
via calculating a max-flow. Used algorithms have about O(n4) worst case run
time, but run in practice in about O(n3) expected time or better.

Let ∆ be a labeling of Ω. Any α-expansion of ∆ into ∆′ satisfies that

∆′p 6= ∆p =⇒ ∆′p = α

for every pixel p ∈ Ω. The following expansion-move algorithm is a greedy algo-
rithm which runs in practice in near-linear time:

start with an arbitrary labelling ∆ on Ω;
do { success := false;

for each label α ∈ L {
calculate the minimum-energy α-expansion ∆′ of ∆;
if E(∆′) < E(∆) then { ∆ := ∆′; success := true} } }

until success = false;
return ∆
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The calculation of the minimum-energy α-expansion is performed by applying
a min-cut (meaning, via max-flow) algorithm. An α-extension either keeps an
old label ∆p or assigns the new label α; this defines a partition of the graph
into set S (old label) and S (new label). Equation (9) defines the energy for this
partitioning (labeling). See, for example, [1] for more details.

3 Improving Stereo Results by Preprocessing

Obviously, the illustrated resulting depth maps are not satisfactory for DAS.
Errors are often due to varying illumination conditions or other real world imag-
ing effects, and this is different to studies using only ideal images taken indoors

Fig. 4. Top: Sobel edge maps of the left-right stereo pair in Figure 1, used as stereo
input pair. Middle: depth maps of single line DP (left) and Birchfield-Tomasi cost
function in 8-ray DP (also known as SGM BT). Bottom: BP (left) and GC results.
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or under controlled conditions. The paper [19] identified residual images as a
promising type of input data for stereo or motion correspondence algorithms.

3.1 Edge Operators

Earlier than [19], the paper [5] studied the effect of edge-preprocessing on stereo
matching, showing that edge-preprocessed input data improve resulting depth
maps in general, especially when applying BP.

Figure 4 shows four resulting depth maps for the left-right stereo pair in
Figure 1, but after applying the (3 × 3) Sobel edge operator. In case of 8-
path DP, the use of the Birchfield-Tomasi cost function (SGM BT) shows better

Fig. 5. Top: residual images using 40 iteration of 3×3 mean, used as stereo input pair.
Middle: depth maps of single line DP (left) and Birchfield-Tomasi cost function in 8-ray
DP (also known as SGM BT). Bottom: BP (left) and GC results.
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results compared to the use of mutual information (SGM MI). – Edge images are
high-frequency components of images, and the same is true for residual images.

3.2 Residual Images

We consider an image I as being a composition I(p) = s(p) + r(p), for p ∈ Ω,
where s = S(I) denotes the smooth component and r = I − s the residual. We
use the straightforward iteration scheme:

s(0) = I, s(n+1) = S(s(n)), r(n+1) = I − s(n+1), for n ≥ 0.

Figure 4 shows four resulting depth maps for the left-right stereo pair in Figure 1,
but on the residual images defined by a 3×3 mean operator and n = 40 iterations.

As a general conclusion, single-line DP is quite robust and provides a fast
and approximate depth map (“a good draft”, and some kind of temporal or
spatial propagation of results might be useful [16]), SGM-BT fails absolutely on
original data but seems to perform better than SGM-MI on preprocessed images,
BP is highly sensitive to illumination changes, and improves very nicely when
using optimized parameters on preprocessed input data, and GC also improves
on preprocessed input data.

4 Lane Detection and Tracking

Lane detection and tracking has been a successful research subject in DAS. [12]
reviews briefly related work in vision-based DAS and discusses a new lane model,
also providing two algorithms for either time-efficient or robust lane tracking (to
be chosen in dependency of current road situation).

4.1 Bird’s-Eye View and Edge Detection

The proposed lane detection and tracking algorithms work on a single image
sequence. However, the figures show results for both stereo sequences in paral-
lel, illustrating this way the robustness of the method with respect to different
camera positions.

Fig. 6. Bird’s-eye views (for left and right image as shown in Figure 1).
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The process starts with mapping a given image into a bird’s-eye view (i.e., a
homography mapping a perspective image into an orthographic top-down view),
based on calibrated projections of corners of a rectangle in front of the car; see
Figure 6 for two resulting bird’s-eye views. This is followed by an edge detection
method which aims at detecting vertical step edges (such as lane marks) rather
than horizontal edges; small artifacts are eliminated from these binarized edge
images which would otherwise disturb the subsequent distance transform.

4.2 Distance Transform and Lane Tracking

Consider a distance transform, applied to a binary edge map, which labels every
pixel p ∈ Ω by its shortest distance to any edge pixel; see, for example, [14], for
distance transforms in general. Experiments have been performed with various
kinds of distance transforms, and preference was given to the Euclidean distance
transform (EDT). For example, [2] proved that a 2D EDT can efficiently cal-
culated by two subsequent 1D EDT. (The developed procedure for calculating
lower envelops is also applicable for calculating lower envelops in a BP algorithm
while using a truncated quadratic continuity function.)

[20] suggested the orientation distance transform (ODT) which separates
EDT values into a row and a column component, represents as complex numbers.
We use the real (i.e., row) part of the ODT. See Figure 7 for binary input edge
maps and resulting RODT (i.e., real ODT) maps, where gray values increase
with measured distance.

Fig. 7. Detected edges (top) and RODT results (bottom). Both for bird’s-eye views as
shown in Figure 6. In RODT, dark = low distance, white = high distance.
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Fig. 8. Detected lanes (for left and right image as shown in Figure 1), illustrating
robustness of the technique (i.e., independence of camera position).

In a predefined start row (near to the image’s bottom) we identify a left
and right boundary point for the current lane based on the calculated RODT
values; these two boundary points initialize a particle filter for lane detection.
The subsequent lane tracking module applies either an efficient (but less robust;
designed for good road conditions), or a robust (but less efficient) algorithm.

Figure 8 shows final results of lane detection (using robust method), for
left and right sequence. Some kind of unification might be considered; however,
our experience shows that the method performs very robust on a single image
sequence. Both tracking algorithms are operating in the bird’s-eye views, and
both are using results of the RODT for evaluating possibilities of finding lane
boundaries.

The RODT not only provides information about the expected centerline of
a lane but also about lane boundaries. However, it takes slightly more computa-
tion time than the total for generating the bird’s-eye view, edge detection, and
removal of artifacts.

5 Conclusions

This paper informs the reader about a few subjects where discrete mathematics
have met program development in recent vision-based DAS, and proved to be
very useful for defining fairly efficient, accurate or robust techniques. The dis-
cussed stereo techniques have been proposed elsewhere, and we provided a brief
and uniform presentation, together with experimental illustration. The lane de-
tection and recognition solution was reported in [12]. Vision-based DAS is ex-
pected to move further ahead, from low-level stereo and motion analysis into
advanced subjects for understanding complex traffic scenes, and further interac-
tions with discrete mathematics are certainly coming this way.
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