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Abstract. This paper proposes and demonstrates a new integration of
the theory of fractals and the butterfly effect of chaos theory. They both
have long histories in creating digital artworks, but besides of many ex-
isting fractal software programs, none of them allowed us to achieve
the proposed integration. Moreover, our program is the first to provide
the functional concepts of overlapping results and sequential transfor-
mations, which allow us to generate a wider variety of patterns. Our
program not only has the potential of creating 2D digital artworks but
also supports the creation of animated abstract artworks.
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1 Introduction

In recent years there has been an increasing interest in the fields of digital art
and mathematical art while computing power increases rapidly. Computers offer
a wide range of creative possibilities for digital artists to explore new ideas and
generate or deliver their artworks. Combining fractal and chaos theory is a well-
known approach which enables to create amazing artistic patterns [3, 6]. In this
paper, we elaborate particularly on the potential of The Butterfly Effect in chaos
theory for creating artistic animations.

There are software programs that support various fractal formulas and a wide
variety of color filters for creating fractal art images. Eye-catching fractal images
are easily accessible through web-based fractal art galleries. Fractal techniques
have became a powerful tool not only for digital art design but also for architec-
tural design [1, 5]. Moreover, fractal formulas have been applied to the creation
of simulated natural landscapes and plants in computer graphics [7].

Among all the studies of fractal and chaos theories, to the best of our knowl-
edge, no one has reported so far a mixed model of The Butterfly Effect fractal.
The integration of The Butterfly Effect formulas into fractal art is a newly pro-
posed concept, which provides a novel variety of possibilities in terms of forms
and shapes in fractal art creation. Figure 1 illustrates the potential of our de-
veloped program, in which a typical fractal and a Butterfly Effect pattern are
shown on the left and middle, respectively, as well as a resulting artistic pattern



Fig. 1. Left: a typical fractal structure. Middle: a typical Lorenz attractor. Right:
artwork generated by our program.

generated by our program on the right. Furthermore, due to the property of
The Butterfly Effect that data are expressed in three-dimensional (3D) space,
we may easily create 2D animated patterns by projecting such 3D data onto
various image planes. In other words, some special 2D animation effects can be
achieved by moving a virtual camera around or within a set of 3D data, captur-
ing images continuously during its motion. The organization of the paper is as
follows. Necessary mathematical background is provided in Section 2, program
design issues are addressed in Section 3, and some selected results are reported
in Section 4, followed by conclusions in the final section.

2 The Butterfly Effect

The Butterfly Effect is not only a fascinating mathematical theory, it also hap-
pens to be the name of a well-known movie from 2004. Perhaps more people
know about the story of this movie than about the history and essence of this
theory. We provide some useful mathematical background and a brief history of
The Butterfly Effect (partially recalled from [2]) in this section.

2.1 Lorenz Equations and Lorenz Attractor

Edward Lorenz was a Mathematician and Meteorologist at the Massachusetts In-
stitute of Technology who was interested in weather prediction. He constructed
a mathematical model of the weather, defined by a set of twelve differential
equations that represented changes in temperature, pressure, wind velocity, and
so forth. On a particular winter day in 1961, Lorenz wanted to re-examine a
sequence of data coming from this weather model. He discovered that his model
exhibits the phenomenon known as ”sensitive dependence on initial conditions”.
This is sometimes referred to as the Butterfly Effect (i.e., a butterfly flapping its
wings in South America may affect the weather in Central Park, London). The
data obtained by two different runs diverged dramatically due to rounding-off er-
rors; results differed in more than three decimal places. This lead to the question,



why does a set of completely deterministic equations exhibit this behavior? It is
due to the nature of the equations themselves which were nonlinear equations.
Nonlinear systems are central to chaos theory and often exhibit fantastically
complex and chaotic behavior.

Lorenz first reported his weather model and the discovery in Deterministic
Nonperiodic Flow [4], which was a journal paper published in 1963 and had great
influence on many subsequent related studies. His work is important even today
because he had an insight into the essence of chaos, and his work settled in
today’s chaos theory. Later, Lorenz decided to look for complex behavior in an
even simpler set of equations, and was led to the phenomenon of rolling fluid
convection. He attempted to simplify a few fluid dynamic equations (called the
Navier-Stokes equations) and ended up with a set of three nonlinear equations
known as the Lorenz equations:

dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)− y

dz

dt
= xy − βz

where σ is the Prandtl number representing the ratio of the fluid viscosity to
its thermal conductivity, ρ is the Rayleigh number representing the difference in
temperature between top and bottom of the system, and β is the ratio of width
to height of the box used to hold the system. All σ, ρ, β > 0, but usually σ = 10,
β = 8/3 and ρ is varied. The system exhibits chaotic behavior for ρ = 28 but
displays knotted periodic orbits for other values of ρ.

Although the equations look quite simple, they are nonlinear depending on
the products of the variables xz and xy, and an analytic solution is impossible
in general. We employed the iterative method that allows solving the system of
nonlinear equations numerically [8]. To compute a numerical approximation for
the solution, we employ the following iterative equations:

xn+1 = xn + 10(yn − xn)h
yn+1 = yn + (−xnzn + 28xn − yn)h (1)

zn+1 = zn + (xnyn −
8
3
zn)h

We obtained the 3D plot as shown in Figure 1 (middle), which is known as
Lorenz attractor, generated by an iterative process as in Equations (1) with
initial values x0 = 0.0001, y0 = 0.0001, and z0 = 0.000001. This illustrates the
typical butterfly-like pattern when projecting data points onto the xz-plane.

2.2 Integration of Fractal and Lorenz Equations

We formulate the concept of fractals by equations. The Lorenz attractor becomes
a basic element of a fractal structure. As a result of a two-leveled fractal struc-
ture, the initial base Lorenz attractor will grow into smaller version of Lorenz



Fig. 2. The fractal Butterfly Effect.

attractors along its path as shown in Figure 2. The equations used to generate
such fractal Butterfly Effect pattern are as follows:

An+1 = An + 10(Bn −An)
Bn+1 = Bn + (−AnCn + 28An −Bn)

Cn+1 = Cn + (AnBn −
8
3
Cn)

am+1 = am + 10(bm − am)
bm+1 = bm + (−amcm + 28am − bm) (2)

cm+1 = cm + (ambm −
8
3
cm)

xnm = 20An + am

ynm = 20Bn + bm

znm = 20Cn + cm

We show only the equations for a two-leveled fractal structure here. Equa-
tions or n-leveled fractal structures, with n > 3, would involve huge amounts
of computations. Since we are interested to achieve real-time calculation, and
accelerating computation is not our major objective in this work, our program
offers at most three-leveled fractal.

3 Program Code and Design

In this section, we first report the program code for Equations (2), and then
explain design issues and functions of control buttons provided in our program.

3.1 The Coding

Our program is written in Matlab because Matlab provides many useful built-in
functions for viewing of 3D data. (However, Matlab is not the best choice for
algorithms involving loop structures).



The coding of Equations (2) is the essential part of the whole program. The
iterative concept of these equations is not difficult to implement; however, it
is the fractal butterfly concept that makes the key contribution to this work.
Figure 2 illustrates a typical result of two-leveled fractal butterfly effects. The
Matlab code for generating this picture is as follows:

for i2=2:abs(str2num(get(findobj(‘Tag’,‘TBigLoop’),‘string’)))+1

a1(i2)=a1(i2-1)+0.1*(b1(i2-1)-a1(i2-1));

b1(i2)=b1(i2-1)+0.01*(-a1(i2-1)*c1(i2-1)+28*a1(i2-1)-b1(i2-1));

c1(i2)=c1(i2-1)+0.01*(a1(i2-1)*b1(i2-1)-8/3*c1(i2-1));

a(1)=rem(randn*10,10)+1;

b(1)=rem(randn*10,10)+1;

c(1)=rem(randn*10,10)+1;

for i=2:abs(str2num(get(findobj(‘Tag’,‘TsmallLoop’),‘string’)))+1

a(i)=a(i-1)+0.1*(b(i-1)-a(i-1));

b(i)=b(i-1)+0.01*(-a(i-1)*c(i-1)+28*a(i-1)-b(i-1));

c(i)=c(i-1)+0.01*(a(i-1)*b(i-1)-8/3*c(i-1));

x(xi)=a(i)+a1(i2)*20;

y(xi)=b(i)+b1(i2)*20;

z(xi)=c(i)+c1(i2)*20;

xi=xi+1;

end

end

3.2 Function Design

Target users of this program are people who do not have mathematical back-
ground on chaos theory but are interested in creating fractal art. Thus, there is
no formula appearing in the user interface. An artistic pattern can be created
purely by pressing buttons, selecting data-points, shape or color, and changing
the view point by simple mouse drag.

Functionality provided by our program can be classified into five categories,
namely initialization, transformation, viewing, point style, and coloring filters.
We explain the purpose of each of these categories in the following:

Initialization. There are three initial values defining the x, y, and z coordi-
nates of the Butterfly Effect’s starting position in 3D space. A different starting
position leads to different butterfly pattern. There are two initial values indi-
cating the complexity of the butterfly pattern, namely Big loop and Small loop.
The Big (Small) loop corresponds to the first (second) level of a fractal struc-
ture. The larger the value the more complex the butterfly pattern and thus more
computation time.

Transformation. There are three menus provided in this category. The first
menu is called Old Shape, in which a user may decide whether to keep the cur-
rent data or to transform them. If we choose Keep, then the current pattern(s)
will be kept in the displaying window. In this case, the next generated pattern



will overlap the previous one(s) in the window. If we choose Release, then the
last generated pattern will be transformed according to the next transforma-
tion command. The performed transformations are displayed in a text region.
The second menu is called Evolve, in which there are many predefined transfor-
mations. The key to explore a new pattern is to try different combinations of
transformations and in different order. The third menu is called Mirror, which
performs mirror transformation to the current data.

Fig. 3. Predefined transformations and their equations.



Viewing. This changes user’s viewing position and direction. The buttons
and menus provided here are quite trivial. For instance, you can choose the pre-
defined view by menu selection, rotate the data by mouse drag, or continuously
rotate by pressing a button.

Point Style. This changes the style (shape, size, color) of the data point.
Coloring Filter. Sometimes only changing the point style is not sufficient to

create impressive results. Here, we provide some coloring methods in the Color
Map menu to create different coloring effects. This category is called Sphere
Controller because those coloring filters are only applicable to facets, and thus it
is necessary to represent the data by some 3D geometric shapes before applying
coloring filters. So far, we only implemented spheres.

3.3 Results

Typical patterns and corresponding equations of ten predefined transformations
are illustrated in Figure 3. Those are meant to show the structure of the pattern
only, and are thus displayed in black only. Applying different transformations in
different order will result in very different patterns. Some examples are illustrated
in Figure 4. Figure 5 illustrates some of our digital artwork, in which structures
are generated by our program, with subsequent minor graphical fine-tuning in
Adobe’s Photoshop.

Fig. 4. Fractal Butterfly Effects.



Fig. 5. Generated artwork utilizing the fractal butterfly effect.

4 Conclusions

We reported about a fractal art program (written in Matlab). The friendly user
interface enables users who have no mathematical background to create artis-
tic fractal patterns. The major contribution is the proposal and implementation
of a fractal Butterfly Effect concept; we believe that this is the first program
that allows us to generate such an integration. Other contributions include the
specification of equations of predefined transformations and concepts for apply-
ing overlapping results and sequential transformations in the fractal program.
There are various existing programs for generating various fractals or Lorenz at-
tractors, but none of them provides overlapping and sequential transformation
functions.

We also demonstrated our program’s potential for creating 2D digital art.
Moreover, the self-rotation function also allows us to create animated abstract
artwork.
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